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Abstract

NMR metabolic fingerprinting methods almost exclusively rely upon the use of one-dimensional 

(1D) 1H NMR data to gain insights into chemical differences between two or more experimental 

classes. While 1D 1H NMR spectroscopy is a powerful, highly informative technique that can 

rapidly and nondestructively report details of complex metabolite mixtures, it suffers from 

significant signal overlap that hinders interpretation and quantification of individual analytes. 

Two-dimensional (2D) NMR methods that report heteronuclear connectivities can reduce spectral 

overlap, but their use in metabolic fingerprinting studies is limited. We describe a generalization 

of Adaptive Intelligent binning that enables its use on multidimensional datasets, allowing the 

direct use of nD NMR spectroscopic data in bilinear factorizations such as principal component 

analysis (PCA) and partial least squares (PLS).
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1. INTRODUCTION

By and large, the phrase “NMR metabolic fingerprinting” implies the use of one-

dimensional (1D) 1H NMR spectroscopic methods, due in no small part to the ease and 

speed of 1D data collection and the large natural abundance of NMR-active protons found in 

metabolomics samples [1, 2]. Before processed spectra are submitted to multivariate 

statistical algorithms like principal component analysis (PCA) or partial least squares (PLS) 

for modeling, they are often subdivided into bins to simplify multivariate analyses [2]. 

Spectral binning reduces the dimensionality of the data matrix and masks chemical shift 

variability between samples at the expense of decreased model interpretability: any given 

bin in a 1D 1H NMR spectrum may contain several overlapped signals from multiple 

distinct metabolites [3]. Thus, without utilizing computationally intensive methods of 
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deconvolution to tease apart signal contributions of individual metabolites [4, 5], the 

resulting metabolic fingerprint from a binned 1D dataset is usually limited to high-level 

inference about metabolic trends.

By leveraging the connectivities between 1H and 13C nuclei in metabolites, two-dimensional 

(2D) heteronuclear NMR methods reduce spectral overlap by spreading 1H information over 

a second (13C) chemical shift dimension [6]. Heteronuclear single quantum coherence 

(HSQC) experiments are commonly performed in NMR metabolic profiling studies, and 

provide an NMR singlet or multiplet for each directly bonded 1H-13C pair in the sample. 

Developments in NMR hardware and acquisition techniques have brought natural 

abundance 1H-13C HSQC experiment times down to values compatible with high-

throughput metabolic fingerprinting studies [7, 8]. However, multivariate analysis of 2D 

NMR datasets is still a nontrivial undertaking that requires either vectorization [9], which 

breaks the inherent structure of the data, or the use of multilinear factorizations [10], which 

are more computationally intensive and difficult to cross-validate.

Spectral binning is another potential means of preparing 2D NMR datasets for multivariate 

analysis that holds several advantages over binning 1D spectra. First, multiple integration of 

bins maps each spectrum to an observation vector regardless of its original dimensionality, 

allowing bilinear PCA and PLS algorithms to be used without concern for loss of the 

inherent structure of the data. Second, binning of 2D spectral data yields more well-

conditioned data matrices than simple vectorization. Finally, because signals are better 

resolved in 2D spectra, each bin contains substantially fewer signals from distinct 

metabolites. Multiple different algorithms have been developed to bin 1D NMR data 

[11-15], and the use of uniform binning on 2D NMR data has also been reported [16]. 

However, to our knowledge, no methods exist to intelligently bin multidimensional data for 

use in multivariate analysis. Therefore, we propose a generalization of Adaptive Intelligent 

(AI) binning [14] to spectral data of any dimensionality, called Generalized Adaptive 

Intelligent (GAI) binning (Figure 1).

2. CALCULATION

2.1 AI-binning

Generalized AI-binning (GAI-binning) is a logical extension of AI-binning to two or more 

dimensions. In the AI algorithm (Figure 1A), bins are recursively subdivided until a 

stopping criterion or minimum bin width is reached [14]. For a 1D dataset containing N 

spectra, the following objective function is used to assess the quality of each bin:

(1)

where maxn,b is the maximum intensity inside the bin b in spectrum n, and In,b,1 and In,b,end 

are the bin edge intensities. The exponent R in the AI objective function is referred to as a 

‘resolution parameter’, which offers a means of tuning the binning result based on signal-to-

noise and peak resolution of a dataset. By replacing R with R/2 in the exponent of equation 

1, we have chosen a slightly modified interpretation of the resolution parameter as a relaxed 

form of a geometric mean of the differences between the bin edge intensities and the 
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maximum bin intensity. At each subdivision step, new bin edges are chosen to maximize the 

combined (summed) objective values of the two resulting bins over the objective value of 

the original bin. If no bin subdivision exists with a combined objective function greater than 

that of the original bin, recursive subdivision within that bin is terminated, and the AI 

algorithm terminates once all bins may no longer be subdivided.

2.2 GAI-binning

In two or more dimensions, the set of bin boundary points expands to include all points that 

lie on the edges (or faces, hyperfaces, etc.) of the bin. By denoting the set of all edge points 

in bin b as Eb, a new objective function may be constructed:

(2)

Thus, the GAI algorithm computes the ‘relaxed’ geometric mean of the differences between 

the bin maximum and all points on the boundary. In the case of one-dimensional data, it is 

apparent that equation 2 reduces to equation 1, and GAI-binning operates identically to AI-

binning. As dimensionality increases, the risk of floating-point overflow or underflow 

increases due to the larger bin edge set Eb. To avoid this, the following ‘log-objective’ may 

be used in lieu of equation 2:

(3)

Like AI-binning, GAI-binning initializes a bin around the entire dataset and proceeds to 

recursively subdivide each bin until a minimum bin size is reached or no bin may be divided 

to yield an increase in the objective value. Because the number of ways to subdivide each 

bin increases with dimensionality, all possible dimensions are tested, and the new bin 

boundary that maximizes the objective over all possible subdivision dimensions is selected 

(Figure 1B). Therefore, the GAI algorithm may be considered a form of binary space 

partitioning (BSP) which limits its partition hyperplanes to lying orthogonally to the basis 

vectors of the coordinate system [17].

2.3 Noise bin elimination

It is important that noise bins be removed from the data matrix prior to multivariate analysis, 

as their presence is known to negatively impact the interpretability and reliability of 

multivariate models [18, 19]. Because the integration of a noisy space of increasing 

dimensionality (i.e. double or triple integration) results in a random variable having a 

similarly increasing variance, the importance of noise removal is compounded in 

multidimensional binning. Therefore, a noise bin removal step based on spectral intensity 

was added to the GAI algorithm. A running mean and variance calculation was performed to 

estimate the noise floor of each spectrum. The initial mean μn and standard deviation σn of 

the noise were computed using the first 32 points on one edge of the spectrum, which were 

assumed to contain only baseline noise. Every other data point was then classified as signal 

or noise based on whether its intensity exceeded the current running noise floor, μn + 3σn. 

Upon inclusion of a new noise data point, the mean and standard deviation of the noise were 
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appropriately updated. Once the estimated noise floor was determined for each spectrum in 

the dataset, a threshold for bin removal was computed as the median noise floor of all the 

spectra:

(4)

where k is a user-selectable parameter to adjust the noise threshold. Only bins whose 

maximum intensity fell above the threshold were retained in the final data matrix.

3. METHODS

3.1 Human liver dataset

Two independently collected 1H-13C HSQC NMR datasets from ongoing metabolomics 

studies were used as test cases for the GAI-binning algorithm. For the first dataset, twenty-

four 1.0 mL samples of SK-Hep1 human liver cells were provided for metabolic 

fingerprinting, half of which were treated with 50 μM tetrathiomolybdate (TTM). The cells 

were extracted into 80:20 methanol:water to collect the water-soluble metabolites, spun in a 

rotary evaporator for two hours, lyophilized at -50°C and 0.02 mBar for 24 hours, and 

finally redissolved in 600 μL of 50.0 mM phosphate buffer in 99.8% D2O (Isotec, St. Louis, 

MO) adjusted to pH 7.4. The redissolved, pH-adjusted samples were then collected into 

NMR tubes.

Experiments were collected on a Bruker Avance III HD 700 MHz spectrometer equipped 

with a 5 mm inverse quadruple-resonance (1H, 13C, 15N, 31P) cryoprobe with cooled 1H 

and 13C channels and a z-axis gradient. A Bruker SampleJet and ICON-NMR were used to 

automate NMR data collection. A 2D gradient-enhanced 1H-13C HSQC with improved 

sensitivity [20, 21] (hsqcetgpsi) was collected for each sample. Spectra were collected with 

4 scans and 16 dummy scans over a uniform grid of 512 and 64 complex points along the 1H 

and 13C dimensions, respectively. Spectral windows were set to 3,285 ± 4,545 Hz along 1H 

and 12,677 ± 14,620 Hz along 13C. All spectra were collected at a sample temperature of 

298.0 K.

3.2 Mouse embryonic fibroblast dataset

A second set of samples from kinase suppressor of Ras 1 (KSR1) knockout mouse 

embryonic fibroblast (MEF) cells was also provided to generate a test 1H-13C HSQC dataset 

for GAI-binning. For this second dataset, ten cell samples from ksr1−/− MEFs and ten 

samples from KSR1-rescued ksr1−/− MEFs were used to produce metabolite extracts. The 

cells were washed, extracted into 80:20 methanol:water, spun in a rotary evaporator, 

lyophilized and redissolved according to the procedures used to extract metabolites from the 

liver cell samples.

Experiments were collected on a Bruker Avance DRX 500 MHz spectrometer equipped with 

a 5 mm inverse triple-resonance (1H, 13C, 15N) cryoprobe with a z-axis gradient. A Bruker 

BACS-120 sample changer and ICON-NMR software were used to automate data 

collection. A 2D gradient-enhanced 1H-13C HSQC (hsqcetgp) was collected for each 

sample. Spectra were collected with 128 scans and 16 dummy scans over a uniform grid of 
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1024 and 32 complex points along the 1H and 13C dimensions, respectively. Spectral 

windows were set to 2,359 ± 2,367 Hz along 1H and 8,174 ± 8,803 Hz along 13C. All 

spectra were collected at a sample temperature of 293 K.

3.3 NMR processing and multivariate analysis

All processing, treatment and statistical modeling was performed in GNU Octave 3.6 [22] 

using routines currently available in the MVAPACK toolbox for NMR chemometrics [23]. 

The 2D raw serial files were loaded [24], apodized with a squared-sine window, zero-filled 

once along 1H and twice along 13C, and Fourier-transformed. Spectra from the liver cell 

extracts were manually phase-corrected and cropped (1.0 – 6.6 ppm along 1H; 16 – 112 ppm 

along 13C), and spectra from the MEF extracts were similarly phase-corrected and cropped 

(1.25 – 6.2 ppm along 1H; 8 – 102 ppm along 13C). Both uniform and GAI-binning were 

performed on each data tensor using minimum 1H and 13C bin widths of 0.025 ppm and 2.5 

ppm, respectively, and a GAI resolution parameter of 0.1. Binned regions identified to be 

less intense than three times the standard deviation of the spectral noise (k = 3) were 

removed after binning. The mean spectrum of the entire processed liver dataset, 

superimposed with bins identified by both uniform and GAI-binning, is shown in Figure 2.

The applicability of GAI-binning to bilinear factorizations was demonstrated by modeling 

the data tensors using both PCA and OPLS-DA. For PCA modeling of the data, the spectral 

regions identified by each binning method were doubly integrated. Scores and loadings were 

then calculated using the Nonlinear Iterative Partial Least Squares (NIPALS) algorithm [25]. 

Internal leave-one-out cross-validation (LOOCV) of each computed PCA model was 

performed to yield model fit (R2
X) and predictive ability (Q2) statistics [26, 27]. For OPLS-

DA, spectral data points within the identified bins were vectorized row-wise into a data 

matrix as previously described [9]. During vectorization, all data points within each binned 

region are stacked into an observation vector, and data points not within bins are excluded. 

The use of vectorization prior to supervised modeling facilitates the creation of backscaled 

pseudospectral OPLS loadings, which hold greater ease of interpretation over binned 

loadings [28]. Modeling by an OSC-filtered NIPALS algorithm [29] and 100 rounds of 

seven-fold Monte Carlo internal cross-validation (MCCV) [30] were performed to compute 

data fit (R2
X), response fit (R2

Y) and predictive ability (Q2) statistics. The binned data 

matrices produced via double integration were also subjected to OPLS-DA modeling in the 

same manner as the vectorized data. All OPLS-DA models were further validated using CV-

ANOVA [31] and 1,000 iterations of response permutation testing [32] to rigorously ensure 

model reliability. Backscaled predictive OPLS loadings were computed from the vectorized 

bins according to previously published works [9, 33]. During backscaling, OPLS loading 

vectors were scaled by the inverse of their original Pareto scaling coefficients and then 

unstacked into a two-dimensional pseudospectrum using bin information. Data points not 

included in the vectorized loadings were set to zero in the backscaled pseudospectrum. All 

data matrices were normalized using Probabilistic Quotients (PQ) [34] and then Pareto 

scaled [35] prior to modeling.
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4. RESULTS AND DISCUSSION

Processing of the liver extract spectra yielded a real data tensor of 24 1H-13C HSQC spectra 

having 442x149 points each, and processing of the fibroblast spectra yielded a tensor of 17 

spectra having 1071x172 real data points each. The observation counts (N), variable counts 

(K) and PCA/OPLS cross-validation statistics (R2, Q2) for each dataset and variable 

reduction method are summarized in Table 1. Further validation results from the OPLS 

models, all of which indicate varying degrees of high model reliability, are also summarized 

in Table 2. Through examination of the variable counts within Table 1, it is readily apparent 

that GAI-binning is dramatically more effective than uniform binning at discriminating 

between signal and noise regions within spectral data. On average, GAI-binning segmented 

each data tensor into less than half the number of bins produced by uniform binning, and 

produced PCA models with markedly higher R2
X and Q2 statistics. Moreover, even with the 

greatly reduced variable counts produced by GAI-binning relative to uniform binning, the 

OPLS Q2 statistics between the two methods are statistically indistinguishable. In fact, the 

variable counts resulting from GAI-binning these third-order tensors are substantially lower 

than the few hundred variables typically produced by binning one-dimensional spectra. 

Resulting scores from PCA modeling of the GAI-binned liver data tensor are shown in 

Figure 3.

Backscaled predictive OPLS-DA loadings of the vectorized 1H-13C HSQC spectral data 

tensors (Figure 4) lend further support for the use of multidimensional binning in metabolic 

fingerprinting experiments. Even when vectorization is performed in place of integration to 

produce a data matrix, binning offers an effective means of variable selection: only 10,474 

of 65,858 variables (16%) were retained when GAI-binning was used as a pre-filter prior to 

modeling the liver data. A similar reduction was observed in the fibroblast dataset, where 

GAI-binning retained 18,789 of 184,212 total variables for a 90% reduction in 

dimensionality. These substantially reduced variable counts offered by binning translate to 

more well-conditioned bilinear modeling problems. As the dimensionality of the input 

dataset is increased further, the reductions in variable count afforded by multidimensional 

binning are expected to become even more dramatic. While the variable counts produced by 

vectorization of uniformly binned data tensors are comparable to those from GAI-binning, it 

is critical to recognize that the uniformly binned regions contain more noise data points than 

their GAI-binned counterparts, and thus offer a less efficient dimensionality reduction (cf. 

Figure 2).

Spectral regions produced by GAI-binning (Figure 2) demonstrate several important 

properties of the combined binning and noise removal processes. Because t1 noise and 

truncation artifacts yield phase-incoherent negative spectral excursions after Fourier 

transformation, ‘unrelaxed’ GAI-binning (R = 1) tends to preferentially subdivide near such 

regions, producing elongated bins along the F1 dimension. Decreasing the resolution 

parameter from its maximum value shrinks these bins to contain only true signals. Thus, an 

objective rule for determining an optimal resolution parameter during binning is to decrease 

R until all bins shrink to contain a minimal amount of noise. Once an optimal resolution 

parameter has been identified, a suitable noise threshold (k) must be determined such that all 

noise bins are removed without loss of bins containing weak signals. However, once optimal 
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R and k have been determined for a given set of experimental conditions, they may be 

applied during GAI-binning to any data collected at later times under the same conditions to 

achieve ideal results. Our selections of resolution parameter (R = 0.1) and noise threshold (k 

= 3) were made according to the above criteria through a manual visual examination of the 

binning results, but it is conceivable that objective metrics of the criteria could be 

constructed that facilitate automated determination of these parameters.

Finally, like AI-binning, the execution time of GAI-binning scales quadratically with the 

number of spectral data points, and scales approximately linearly with both the number of 

spectral dimensions and the number of observations. Typical runtimes for binning two-

dimensional datasets range from seconds to a few minutes, depending mostly on the data 

point count. Thus, while zero-filling may be used to increase the digital resolution of data 

being input into GAI-binning, it should be applied sparingly to avoid unnecessarily long 

computation times during bin region determination.

5. CONCLUSIONS

Generalized Adaptive Intelligent binning is a logical extension of the previously established 

Adaptive Intelligent binning algorithm [14] to multidimensional datasets, and provides a 

model-free alternative to peak-fitting and peak-picking as a means of variable selection in 

multivariate analyses. Furthermore, GAI-binning is a more intelligent method to extract 

signal regions from multidimensional spectral data tensors than uniform binning, and may 

be used to generate very low-dimensionality data matrices via multiple integration or 

efficiently noise-filtered data matrices via vectorization. Our C++ implementations of 1D 

and 2D GAI-binning are freely available as part of the open-source MVAPACK 

chemometrics toolbox [23], which may be downloaded at http://bionmr.unl.edu/

mvapack.php.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Generalizations to AI-binning afford binning of multidimensional datasets

• Use of binning is an alternative to peak-picking multidimensional spectra

• Highly effective means of dimensionality reduction for PCA or PLS
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Figure 1. 
Illustration of the GAI-binning bin subdivision procedure for one-dimensional and two-

dimensional spectral fragments. (A) In the one-dimensional case, the bin containing regions 

1 and 2 is optimally subdivided (asterisk) when the sum of the objective values in regions 1 

and 2 is greater than the original bin's objective value. (B) In the D-dimensional case, there 

are now D possible dimensions along which an optimal subdivision may exist. The optimal 

subdivision along the 1H dimension (triangle) occurs when the sum of the objective values 

in regions 3+6 and 4+5 exceeds that of the original bin. Similarly, the optimal subdivision 

along the 13C dimension (circle) occurs when the sum of the objective values in regions 3+4 

and 5+6 exceeds the original value. A comparison between all possible optimal subdivisions 

along all dimensions yields the best possible subdivision (circle).
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Figure 2. 
Processed 1H-13C HSQC mean spectrum of the liver data tensor, with overlaid uniform (A) 
and GAI (B) bin boundaries. The dataset was binned with minimum bin widths along 1H 

and 13C of 0.025 ppm and 2.5 ppm, respectively. Retained bins all have maximum 

intensities no less than three times the standard deviation of the noise floor.
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Figure 3. 
Principal component analysis scores resulting from modeling the GAI-binned 1H-13C HSQC 

data matrix, indicating a high degree of separation between experimental groups. Model fit 

(R2
X) and predictive ability (Q2) were 0.68 and 0.64 for the first principal component (Q1) 

and 0.12 and 0.09 for the second (t2). Class separations of this magnitude are readily 

achievable using data matrices generated by GAI-binning, due in large part to the low 

variable counts it generally produces.
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Figure 4. 
Backscaled full-resolution pseudospectral loadings from OPLS-DA modeling of the GAI-

reduced (A) liver and (B) fibroblast 1H-13C HSQC data tensors. Positive and negative 

loadings are represented by red and blue contours, respectively.
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Table 1

Data matrices and PCA/OPLS model statistics.

Integration Vectorization

PCA OPLS OPLS

K R2x Q2 R2y Q2 K R2y Q2

Liver Unif. 248 0.82 0.71 0.993 0.938 ± 0.002 11,160 0.993 0.929 ± 0.003

N = 24 GAI 113 0.89 0.75 0.991 0.928 ± 0.003 10,474 0.994 0.933 ± 0.003

MEF Unif. 334 0.48 0.40 0.994 0.974 ± 0.004 18,348 0.994 0.963 ± 0.005

N = 17 GAI 93 0.71 0.56 0.994 0.973 ± 0.005 18,789 0.996 0.962 ± 0.006
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Table 2

OPLS-DA cross-validation p values.

Integration Vectorization

Permutation CV-ANOVA Permutation CV-ANOVA

Liver Unif. < 0.001 3.24 × 10−11 < 0.001 4.70 × 10−11

N = 24 GAI < 0.001 3.34 × 10−10 < 0.001 9.74 × 10−11

MEF Unif. < 0.001 3.56 × 10−10 < 0.001 1.73 × 10−9

N = 17 GAI < 0.001 1.37 × 10−9 < 0.001 2.34 × 10−9
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