
Experimental comparison of parametric versus nonparametric 
analyses of data from the cold pressor test

Roi Treistera,b, Christopher S. Nielsenc, Audun Stubhaugd, John T. Farrare, Dorit Pudf, 
Shlomo Sawilowskyg, and Anne Louise Oaklandera,b,h

aDepartment of Neurology, Massachusetts General Hospital, Boston, MA, USA

bHarvard Medical School, Boston, MA, USA

cDivision of Mental Health, Norwegian Institute of Public Health, Norway

dDepartment of Pain Management and Research, Oslo University Hospital, Norway

eDepartment of Biostatistics and Epidemiology, Perelman School of Medicine, University of 
Pennsylvania, Philadelphia, PA, USA

fFaculty of Social Welfare and Health Sciences, University of Haifa, Israel.ci d H

gCollege of Education, Wayne State University, Detroit, MI, USA

hDepartment of Pathology (Neuropathology), Massachusetts General Hospital, Boston, MA, USA

Abstract

Parametric statistical methods are common in human pain research. They require normally 

distributed data, but this assumption is rarely tested. The current study analyzes the 

appropriateness of parametric testing for outcomes from the cold pressor test (CPT), a common 

human experimental-pain test. We systematically reviewed published CPT studies to quantify how 

often researchers test for normality and how often they use parametric vs. non-parametric tests. 

We then measured the normality of CPT data from 7 independent small-to-medium cohorts and 

one study of >10,000 subjects. We then examined the ability of two common mathematical 

transformations to normalize our skewed data-sets. Lastly, we performed Monte Carlo simulations 

on a representative dataset to compare the statistical power of the parametric t-test vs. the 

nonparametric Wilcoxon Mann Whitney (WMW) test. We found that only 39% of published CPT 

studies (47/122) mentioned checking data distribution, yet 72% (88/122) used parametric 

statistics. Furthermore, among our 8 data sets, CPT outcomes were virtually always non-normally 

distributed and mathematical transformations were largely ineffective in normalizing them. The 

simulations demonstrated that the non-parametric WMW test had greater statistical power than the 
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parametric t-test for all scenarios tested– for small effect sizes, the WMW had up to 300% more 

power.
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Introduction

Pain research is challenging because of the subjective nature of sensation, but during the last 

two decades pain research in humans has advanced dramatically due in part to the 

development and validation of multiple outcome measures.6,31 However, the statistical 

methods used to determine if differences in outcomes between two study groups are or are 

not significant have not been subject to rigorous evaluation. Even in well-designed and 

conducted studies, using the wrong statistical test to analyze outcomes can have major 

implications for the study’s power. Erroneous conclusions can derail the progress of a 

promising new pain treatment, or slow the pace of understanding pain mechanisms.

This study evaluates the prevalence and appropriateness of parametric vs. nonparametric 

statistical analyses in evaluating measured differences in the perception and severity of pain 

sensations between two groups of subjects. A fundamental principle of statistics is that 

parametric analyses such as the t-test and analysis of variance (ANOVA) are only accurate if 

the data being analyzed comes from a population in whom the outcome variable is normally 

distributed.24 Hence, researchers are supposed to check that their data are normally 

distributed before applying parametric analyses.

Contrary to the impressions of statistical pioneers such as Gauss and Galton,14 the normality 

of real-world distributions cannot be taken for granted. The largest study of psychometric 

and education measures found that none of the 440 data sets studied were normally 

distributed and only 3% remotely resembled a normal curve (i.e., symmetric with light 

tails).14 Studies from medical fields have generated similar conclusions. Perhaps closest to 

pain research is Colliver et al. study of in 68 cohorts comprising 1,326 patients undergoing 

general anesthesia where neither blood pH nor H+ measurements were normally 

distributed.5 However, distribution of the outcome data is often not mentioned in published 

manuscripts.22 Insofar as we know, only two previous pain related studies have compared 

the use of parametric vs. nonparametric analysis.33,27 Here we focus on the cold pressor test 

(CPT), a widely used human-pain experimental paradigm.12,15,34 In the CPT, subjects are 

asked to immerse one hand in a cold water bath and to keep it submerged for as long as 

possible up to a safety limit (normally 1–5 minutes). Three outcomes are commonly 

measured: Subjects indicate the time when the cold becomes painful (“cold pain 

threshold”), and when it becomes so painful that they must withdraw their hands from the 

water (“cold pain tolerance”). Subjects also rate their maximal pain intensity during 

immersion on a numerical pain scale at the end of the procedure (“cold pain intensity”).15 

Although developed for other purposes, the CPT is commonly used in experimental pain 
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research because it is simple to administer, reliable, inexpensive, and induces strong pain 

sensations.

In the current paper, we examined the consequences of applying parametric and non-

parametric analyses to these three measures in several ways. First we conducted a systematic 

critical review of published CPT studies to define how often data normality was examined, 

the use of transformations and whether parametric or non-parametric analyses had been 

used. Then we examined the normality of multiple sets of our own CPT data to assess how 

often real CPT data in normally distributed and we applied corrective mathematical 

transformations to evaluate the success of this procedure to normalize the data. Lastly, we 

performed a Monte Carlo simulation study13, based on the CPT datasets to compare the 

power of the parametric t-test against the non-parametric Wilcoxon Mann Whitney test 

(WMW).

Materials and Methods

Characterizing the statistical approaches used in published CPT studies

We searched the MEDLINE database on March 1st 2014 using the terms: ‘cold pressor test’ 

AND ‘tolerance’ AND ‘pain’. This identified 193 articles, of which we were able to obtain 

the full text from 141. Among them, 8 were excluded because cold-pain outcomes were not 

the dependent variable, 9 because cold-pain tolerance was not assessed using time to hand 

withdrawal, and 2 were reviews. Ultimately, 122 articles were analyzed.

Supplemental Table 1 in the Appendix summarizes the parameters we collected from each 

study: (1) PMID number (2) country of origin, (3) year of publication, (4) statistical 

approach (parametric versus non-parametric), (5) mention of the normality of the 

distribution (any mention, regardless of outcome), (6) use of mathematical transformations. 

Additional data collected but not shown in Table S1 included journal name, first author, 

number of subjects, group allocation (balanced or not), study design (between/within subject 

analysis), P-value, effect size (calculated, when possible), and approach for handling non-

normal distribution (if applicable and available). When assessing study design (between/

within subject analysis), studies were categorized as a ‘between-subject” analysis if cold 

pain tolerance was compared between groups at least once. We defined “balanced groups” 

as samples that differed in size (n value) by no more than 30%. In case inexact significant P-

values (i.e. P < 0.05, P < 0.01, P < 0.001) were reported (n=37), or when non-significant P-

values were not reported (i.e. ‘none significant’ was reported but with no P-value; n=20) P-

values were coded as missing data.. Forty four studies reported their mean values and 

standard deviations or standard errors and these used to calculate the effect sizes. In studies 

making multiple comparisons, the largest effect size was recorded.

Analysis of outcome data from different independent CPT studies

CPT data were analyzed from 648 healthy volunteers who served as subjects in 7 

independent pain research studies performed in the Human Experimental Pain Research 

Laboratory at the University of Haifa, Israel. All studies were conducted in the same 

laboratory, using the same methods and apparatus, and all subjects provided written 
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informed consent to a research protocol that had been approved by the university ethical 

committee. All subjects were student volunteers recruited through advertisements posted at 

local universities. Across all studies, subjects were eligible for enrollment if they were 

healthy and free from chronic pain, did not use medications other than oral contraceptives, 

and could understand the study’s purpose and instructions. Exclusion criteria were any type 

of medical or painful condition, pregnancy, use of medications, or history of drug abuse.

Haifa studies #1 (n=40, Pud 2010, unpublished data) and #6 (n=10918) had assessed the role 

of hand dominance in pain sensitivity; study #2 (n=48, Pud 2009, unpublished data) had 

studied the association between experimental pain outcomes and sleep-related measures; 

study #3 (n=62, unpublished data) had assessed the effects of virtual reality on experimental 

pain outcomes; study #4 (n=9117) had assessed the associations between experimental pain 

outcomes and personality dimensions; study #5 (n=10528) had assessed the effects of 

apomorphine on pain sensitivity; and study #7 (n=19329) had assessed the association 

between experimental pain and candidate genes. In cases where the study had assessed the 

effect of an intervention (studies #3 and #5), the baseline measures (before intervention) 

were analyzed.

The Heto CBN 8–30 Lab cold pressor apparatus (Allerod, Denmark) was used for all Haifa 

studies. This temperature-controlled water bath is continuously stirred by a pump. Subjects 

placed their right hands with fingers spread into the water bath, whose temperature was 

maintained at 1°C. A stopwatch measured the thresholds of cold pain and cold pain 

tolerance. A 180 s cut-off time was used for safety, and the pain tolerance for subjects who 

did not withdraw their hands for the entire 180 s was recorded as 180 s. immediately after 

hand withdrawal, subjects verbally rated their maximal pain intensity using a 0–100 

numerical pain score (NPS).

To evaluate very large datasets, we also analyzed CPT data collected at Tromsø University, 

Norway. Data were available from 10,486 individuals, 51.5 % women, age 30–87 years. 

Participants had been recruited from the general population of the Tromsø municipality in 

northern Norway (for details see11). All subjects had provided written informed consent to a 

protocol approved by the regional ethical committee. The response rate was 65.7%. 

Participants had been excluded from CPT if they reported previous health problems in 

connection with cold-exposure (e.g. cold-allergy, Reynaud’s phenomenon) or if they were 

unable understand instructions. No other exclusion criteria were applied.

The Tromsø apparatus consisted of a refrigerated water bath FP40HE (Julabo Lobortechnik 

GmbH, Germany) connected to an external 13L Plexiglas container. Water had been 

circulated at 13L/min to maintain water temperature at 3 °C as measured in the external 

container. Participants had placed their dominant hand and wrist in the water and maintained 

it there as long as possible, up to a maximum of 106 s. Numeric pain ratings (0–10) had 

been obtained at 4 seconds and every 9 seconds thereafter until hand withdrawal; the cold-

pain tolerance time had been recorded by a stopwatch.

Although visual inspection of the data histograms clearly demonstrated non-normal 

distributions, statistical assessment of normality was additionally performed for descriptive 
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reasons using the SPSS for Windows version 19 statistical package (SPSS, Inc., Chicago, 

IL). The Shapiro-Wilk test (SW) and Kolmogorov-Smirnov tests (KS) were used to assess 

the normality of raw and the transformed data. Data was judged to be normally distributed if 

p>0.05 on either the SW or KS tests.

Monte Carlo simulations for comparing statistical power of the Wilcoxon Mann Whitney 
test (WMW) and the t-test in assessing CPT outcomes

We performed Monte Carlo simulations using all three CPT outcomes (intensity, tolerance, 

and threshold) obtained from all cohorts. Simulation results based on the baseline measures 

of dataset number 5 are described in detail. To demonstrate that these results are not cohort 

specific, examples of simulation results from the Tromsø (n=10,486), smallest Haifa (cohort 

#1, n=40), and the largest (cohort #7, n=193) cohorts are described.

A program was written for R (64 bit version 3.02 (2013-09-25). The CPT dataset was 

sampled with replacement. The independent-samples t-test and the WMW test were 

conducted assuming homoscedasticity. The number of repetitions per experiment was 

1,000,000. Nominal α was set at 0.05, 0.01, and 0.001. For each CPT outcome, 16 

simulations with different n scenarios were conducted as follows: (n1, n2) = (20,20), (15,25), 

(25,15), (30,30), (15,45), (45,15), (45,45), (60,30), (30,60), (60,60), (45,90), (90,45), 

(120,120), (150,90), (90,150), and (240,240). n1 and n2 values were randomly sampled with 

replacement from the data set. To model a “difference in location” parameter, a specific 

effect size (i.e., fraction or multiple of the data set’s standard deviation) was added to n2 for 

each iteration of an experiment. The added effect sizes to model a treatment in shift in 

location parameters were d = 0.2σ, 0.5σ, and 0.8 σ, which Cohen defined as small, medium 

and large, respectively4; and 1.2σ and 2.0σ, defined by Sawilowsky as very large and huge, 

respectively, where σ defined as the population standard deviation of data set #523. One- and 

two-tailed Type I error rates of the WMW and the t-test are presented below:

One Tailed Test—The t-test’s Type I errors for data sampled from the intensity and 

tolerance datasets were within sampling error of nominal α. However, the t-test’s Type I 

errors for data sampled from the threshold dataset for nominal α = 0.05 was .0470, for α = 

0.01 was .0075, and for α = 0.001 was .0005. Although these results met Bradley’s (1978)2 

liberal definition of robustness at 0.5α ≤ Type I error ≤ 1.5α, they did not meet Bradley’s 

conservative definition of robustness at 0.9α ≤ Type I error ≤ 1.1α. The WMW test, being 

nonparametric, produced correct Type I errors within sampling errors.

Two Tailed Test—Type I errors for data sampled from the intensity and tolerance datasets 

for the non-directional layout also yielded results within the sampling error of nominal α. 

The t-tests results for the threshold data, however, were non-robust. With nominal α = 0.05, 

the expected Type I error rates are 0.025 at each tail, but the obtained rejection rates were 

conservative at 0.0208 and 0.0230, respectively. Similarly, the lower tail rejection rates for 

nominal α = 0.01 (0.005 expected) and .001 (0.0005 expected) were .0069 and .0002, 

respectively.
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Results

Assessment of statistical approach used in published CPT studies

The 122 articles analyzed (see Table S1 in the appendix) were published between 1977 and 

2013. The mean number of subjects per study was 71.9 ± 80 (range = 4 – 613, with plus 

articles with n > 10,000 excluded to avoid enlarging the mean). The mean reported P-value 

was 0.0516 ± 0.12 (range P=0.001 to P=0.61). 17.2% (21) of studies reported non-

significant differences. We were able to calculate effect sizes for 44 studies and among them 

the mean effect size was 0.69 ± 0.54 (range 0.04 to 2.89). In 72% effect sizes were less than 

0.8, meaning small or moderate.

Overall, 72.1% of the studies (88/122) used parametric analyses and 27.9% (34/122) used 

non-parametric analyses. 71.3% (87) used between-subjects comparisons and among them, 

74.7% (65) used parametric analyses and 25.3% used non-parametric analyses. Group sizes 

were balanced in 77.9 % of studies and unbalanced in 22.1%. In 61.5% of the studies (75) 

no information about normality of the data distribution was provided. Among the 38.5% of 

studies that mentioned testing for normality, 82.1% found that cold-pain tolerance was non-

normally distributed; among them 44.2% used logarithmic (34.1%) or other (10.1%) 

transformations to try and improve the normality of their datasets, and 37.9% used non-

parametric analyses.

One cannot conclude that a given study used the appropriate parametric/non-parametric 

analysis without inspection of its raw data distribution. However, we can conclude that 37% 

(45/122) of the reviewed study’s conclusions might be at risk since in these studies: (1) data 

normality was not tested; (2) between subject design was used and (3) parametric analysis 

was applied.

Outcome data from different independent CPT studies

Table 1 summarizes the analyses of the 7 Haifa cohorts plus all the Haifa cohorts combined 

(n = 648). 95.8% (23/24) of the CPT outcomes were non-normal with only cold-pain 

threshold in the smallest cohort (#1) being normally distributed based on the Shapiro-Wilk 

test but not on the Kolmogorov-Smirnov test. Figure 1 depicts the distributions of the three 

CPT outcome measures in the combined Haifa cohort to visually demonstrate that all three 

CPT outcomes deviate significantly from the normal ‘bell-shaped’ curve.

Analysis of the very large Tromsø study yielded the same conclusion. Table 2 shows that 

none of its CPT outcomes were normally distributed. Figure 2 depicts the distribution of 

cold pain tolerance and cold pain intensity. Among its 10,486 subjects, 7,157 (68.3%) 

endured the entire 106 s immersion. The resulting frequency distribution is therefore 

severely right censored, as expected with an upper time limit cutoff. However, it is highly 

unlikely that extending this limit would significantly normalize the dataset, since pain 

ratings do not increase noticeably after the first 60s, and for some participants they actually 

decrease (data not shown).
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Efficacy of mathematical transformations for improving normality of CPT data

Table 3 summarizes the results of our analysis of the usefulness of the two most common 

transformations used in attempt to normalize skewed datasets (logarithmic (Log) and square 

root (SqR) transformations)30 such as the skewed CPT data from the Haifa datasets depicted 

in Figure 1. For cold pain threshold, Log transformation normalized 50% (4/8) of the 

datasets as assessed by the Shapiro-Wilk test but only 12.5% (1/8) of the datasets as 

assessed by the Kolmogorov-Smirnov test. The SqR transformation only normalized one 

(12.5%) dataset (#1) as measured by both Shapiro-Wilk and Kolmogorov-Smirnov tests. For 

cold-pain tolerance, Log transformation normalized 25% (2/8) of the Haifa datasets as 

analyzed by the Shapiro-Wilk test, and 62.5% (5/8) of datasets by the Kolmogorov-Smirnov 

test. The SqR transformation was unable to normalize any of the cold-pain tolerance 

datasets. For pain intensity, both the Log and the SqR transformations were able to 

normalize data from one data set (based only on the Kolmogorov-Smirnov test). Similarly, 

following Log and SQR transformations the Tromsø Study data remained non-normally 

distributed (Table 4). Overall, for both cold-threshold and the cold-tolerance data, the 

Tromsø data could be normalized 22% (7/32) of the time. Only 6% (2/32) of the attempts to 

normalize cold-pain intensity data were successful.

Monte Carlo simulations for comparing power of the Wilcoxon Mann Whitney (WMW) and 
the t-test

Examples of the results of Monte Carlo simulations from the #5 Haifa cohort are presented 

in Table 5. The left side of the table reports the power of the t-test, for 5 different effect sizes 

(0.2, 0.5, 0.8, 1.2, & 2.0) assuming a treatment modeled as a shift in location parameter, 

with nominal α set at three different levels (0.05, 0.01, and 0.001). The right side of the table 

reports the power of WMW test under the same study conditions. For the entire spectrum of 

effect sizes, the WMW was found to be much more powerful than the t-test. The results in 

this table simulate balanced layouts of n=60 (30 participants in each group). Similar results, 

demonstrating the superiority of the WMW test for all other study conditions (48 tables per 

cohort) are not shown but can be requested from S. Sawilowsky.

Figure 3 summarizes the results of simulation to compare the average power of the t-test and 

the WMW across all 16 sample sizes studied with α set at 0.05 and evaluating power over 

the full range of effect sizes. This revealed that for all three CPT measures and for small 

(0.2), medium (0.5) and large (0.8) effect sizes, the WMW was superior to the t-test. For 

example, for α = 0.05, using the pain threshold and an effect size of 0.2, the power of the 

WMW (0.50) averaged 2.5 times larger than the power of the t-test (0.21). For medium 

effect size, power of the WMW (0.78) was 18% higher than the power of the t-test (0.66), 

while for large effect size the power of the WMW (0.97) was 9% greater than for the t-test 

(0.89). The only situation in which the power of the t-test approached that of the WMW was 

for huge effect sizes (1.2 and 2).

Similarly, for pain tolerance outcomes, α=0.05, and simulation based on effect size of 0.2, 

the average power of the WMW (0.50) was 2.5 times larger than the t-test (0.20). For 

medium effects the WMW (0.87) had 36% more power than the t-test (0.64), and for large 
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effects the WMW (0.97) had 9% greater than the t-test (0.89). The only situation in which 

the power of the t-test approached that of the WMW was for huge effect sizes (1.2 and 2).

For pain intensity outcomes and effect size of 0.2, average power of the WMW (0.57) was 

almost three times larger than for the t-test (0.21). For medium effects, the power of the 

WMW (0.87) was 34% higher than the t-test power (0.65), and for large effect size the 

WMW (0.98) was 10% more powerful than for the t-test (0.89). The WMW and t-test had 

similar power only for huge effect sizes (1.2 and 2), because above an effect size of 1.2 they 

both reach a maximum plateau at power of 1. For α = 0.01 and 0.001, the superior power of 

the WMW was even greater as sample sizes increased.

To assess the possible role of sample size on the power of WMW and the t-test, the average 

power across all effect sizes was calculated and plotted (Figures 4) with sample size on the 

horizontal axis (α level= 0.05). This demonstrates that the WMW is more powerful than the 

t-test for all simulated sample sizes.

We also examined the role of group allocation, by comparing simulation results of the 

balanced vs. unbalanced group allocations of the WMW and the t-test (Figure S1). For small 

effect sizes, unbalanced allocation result in a 0.1–0.2 power loss in both tests.

Additional simulation studies, based on all other cohorts revealed similar or even higher 

power advantage. For example, when simulation (n1=30, n2=30, alpha=0.05) used data from 

the Tromsø cohort (n=10,486), the WMW enjoyed an enormous power advantage of over 

five times the comparative statistical power than the t-test (t-test power=0.1914, WMW 

power=0.9961) for the tolerance dataset, and twice as powerful (t-test power=0.1944, 

WMW power=0.3892) for the pain intensity dataset.

When simulating (n1=30, n2=30, alpha=0.05) using data from Haifa smallest cohort (cohort 

#1, n=40), the WMW conveyed a huge power advantage for tolerance (t-test power=0.1913, 

WMW power=0.8338) and intensity data (t-test power=0.1915, WMW power=0.3532). 

However, there was only a slight benefit for data sampled from the threshold dataset (t-test 

power=0.1922, WMW power=0.1960), Similarly, when simulating (n1=30, n2=30, 

alpha=0.05) using the biggest Haifa cohort (#7, n=193), analysis of the tolerance (t-test 

power=0.2059, WMW power=0.6613) and intensity data (t-test power=0.1928, WMW 

power=0.3375) data demonstrated large power advantages, whereas negligible differences 

was found for threshold data (t-test power=0.2135, WMW power=0.2000).

Discussion

These results show that although the vast majority (72%) of published CPT studies used 

parametric statistics, only 39% even mentioned testing for normality, and among them, only 

18% found cold-pain tolerance to be normally distributed. Pain researchers may not be fully 

aware of the implication of this and manuscript reviews may not sufficiently emphasize it. 

Secondly, our analysis of raw data from multiple independent small, medium, and very large 

CPT datasets reveals that CPT outcomes are only rarely normally distributed and most often 

mathematical transformations are ineffective in normalizing non-normal sets of CPT data. 

The results also suggest that when considering transformations of non-normal cold 

Treister et al. Page 8

J Pain. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



thresholds, Log transformation, followed by Shapiro-Wilk test for normality is preferable, 

whereas for cold tolerance data, Log transformation followed by Kolmogorov-Smirnov test 

is preferable. Other statistical tests may be better for other pain measures. For example, 

survival analysis may be preferable for tolerance data.26

Thirdly, Monte Carlo simulations based on multiple CPT datasets established that the non-

parametric WMW test is almost always more statistically powerful than the t-test, meaning 

that applying t-tests to non-normal CPT data sets might compromise study conclusions and 

lead to false negative conclusions. The power superiority of non-parametric methods for 

non-normal data sets is most relevant for between-group comparisons when the treatment is 

modeled as a shift in location (along the x axis) of the data curve. In contrast, within-group 

comparisons (i.e. cross-over, a.k.a. before vs. after design) are more powerful to begin with 

(given the reduction in error variance associated with individual differences), thus non-

parametric approaches offer little power advantage under these conditions.3 Among the 

reviewed studies, the most relevant to our discussion are those with between-subject-design, 

but 75% of these used parametric analyses. Taken together, these results suggest that 

parametric analyses should not be the primary statistical method for analyzing CPT data as 

they currently are. As previously reported,, several common misconceptions may lead 

researchers to choose parametric approaches when non-parametric statistics are more 

appropriate.22 False statements are common, such as “Wilcoxon should only be used when 

the data is originally in the form of ranks”, or “in small samples studies”, or that “that is 

more powerful”.

The greater power of nonparametric tests for between-group studies means that using them 

can reduce the number of subjects needed for adequate power. For instance, our pain 

tolerance data show that when comparing treatment and control groups containing 30 

subjects each, the power of the WMW test is 0.3195 for detecting a typical small (0.20) 

treatment effect, whereas analysis by t-test would require 120 subjects per group for 

comparable power (.3401). It is commonly stated that the WMW test should be used only 

for small samples, but Sawilowsky refuted this assumption.22 For instance, in analyzing 

cold-pain intensity, if α = 0.001, effect size = 0.2, and sample size = 240 per group, the one-

tailed power for the WMW was .92 whereas power of the t-test was only 0.14. To achieve 

similar power for t-test analysis, group size would have to be 1,011. Thus, nonparametric 

statistics can save time, effort, risk to subjects, and cost.

Strengths of our study include the fact that we analyzed multiple independent datasets from 

different countries, covering the full range of sample sizes used for CPT pain research (n = 

40 – 10,468). Importantly, although our 7 Haifa cohorts included only healthy young 

students, our findings can be generalized to the general population since the very large 

Tromsø study sampled unscreened healthy and unhealthy participant alike who are 

physically able to make it to the study site. 32% of the Tromsø cohort reported having 

chronic pain, a prevalence not elevated from that in the normal population in Norway1 or the 

U.S.8

Our Monte Carlo simulations also spanned the full gamut of sub-sample sizes (40 – 480) as 

well as a wide range of group allocation scenarios. Group allocation is important because if 
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poor results are found under balanced layout, this will be exacerbated for unbalanced 

layouts. Another strength is that we applied multiple methods (review of published studies, 

data re-analyses, and Monte Carlo simulation) all of which supported the conclusions that 

non-parametric statistics should be used to analyze CPT data.

A limitation is that we only analyzed CPT, one specific type of pain dataset. However, our 

results may have clinical implications because CPT is increasingly being used as a clinical 

tool due to the growing emphasis on mechanism-based pain diagnosis and the use of 

quantitative sensory testing. In addition, we propose that our conclusions likely apply to 

other types of human experimental pain research because many are designed with safety 

limits or artificial cut points that produce skewed distributions with one tail truncated. 

Measuring pain intensity using strong nociceptive stimuli also generates a skewed 

distribution with mostly high values and a truncated right tail and weak stimuli similarly 

produce truncated left tails. Only stimuli that elicit midrange responses avoid this. Findings 

from other scientific fields conclusively demonstrate the superiority of non-parametric 

approaches when the normality assumption is violated for treatments inducing shifts in 

location along the x axis of the dependent variable.16, 19, 20, 25

These results are relevant for clinical trials of new pain treatments which often compare 

outcomes between two groups (treatment vs. control), that are likely to be non normally 

distributed. Most trials of pain therapies only include patients with pain intensities ≥4/10,31 

increasing the probability of non-normal distribution. Moreover, changes in pain intensity 

are commonly used as outcomes. Based on the fact that only some patients respond,7,8,32 

skewed distributions can be expected. From our experience, patient reported outcome (PRO) 

data collected from studies of medical conditions is only rarely completely normal. 

Although they are often analyzed with parametric statistics, they can equally well be 

analyzed using non-parametric statistics which require fewer assumptions about the 

structure of the data and are equally efficient in most real data circumstance. “Since at the 

design stage of a clinical study we cannot be certain of the distribution of the outcome data, 

it seems prudent to assume non normality and design the analyses accordingly.

Another limitation is that we only compared the WMW and t-test, thus we cannot generalize 

to all parametric vs. non-parametric analyses. We know of only two prior pain-related 

studies, one comparing the power of WMW vs. analysis of covariance (ANCOVA) in a 

simulation based on headache and shoulder-pain trials.33 Post-treatment scores were 

compared between groups using baseline score as covariant for ANCOVA. This 

demonstrated that ANCOVA is better for moderate but not for extremely non-normal 

distributions, but as Sawilowky noted, there are no good nonparametric equivalents to 

ANCOVA.24 Torrence et al.27 compared the power of ANOVA, t-tests, Kruskall–Wallis, 

Mann–Whitney U-tests, and evaluated bootstrapping and Log transformation for analyzing 

skewed results of SF-36 questionnaire (the Medical Outcomes Study 36 Item Short-Form), a 

very common secondary outcome measure in pain trials.2 They concluded that the statistical 

tests were equivalent, but they only studied a very large cohort (n~3,000) with very high 

power, thus their conclusions cannot be applied to studies of hundreds or tens of subjects, or 

when small effect sizes are anticipated.
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Another limitation deserves notice: Given the large number of subjects pooled in the current 

study, assessing relations between demographic characteristics and pain measures 

distribution is possible, but it is beyond the scope of the current paper.

Current approaches to evaluating normality of datasets include the classical Lilliefor’s test, 

(an adjustment to the Kolmogorov-Smirnov test), the Shapiro-Wilk’s test, the Anderson-

Darling test, and the D’Agostino-Pearson test. An alternative is visual inspection of plotting, 

such as a Q-Q plot. However both approaches constitute multiple comparisons and thus 

increase the probability of Type I error and require corrections such as Bonferroni’s.21 

Therefore, if the data are not known to be normally distributed, or suspected to be non-

normally distributed, then the parametric test should be avoided.

Our results suggest that the current automatic application of parametric analyses to CPT 

studies should change, and require demonstrating the normality of outcome data. For the 

vast majority of CPT studies with non-normal data, the nonparametric Wilcoxon Mann 

Whitney test is much more powerful than the parametric t-test. Although statistical 

textbooks recommend nonparametric analyses for non-normally distributed data, and we 

have demonstrated that normal distributions are rare in CPT data as in biomedical research 

in general,10, 14, 22 parametric analysis is still routinely used CPT studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Perspective

These results demonstrate that parametric analyses of CPT data are routine but incorrect, 

and that they likely increase chances of failing-to-detect significant between-group 

differences. They suggest that non-parametric analyses become standard for CPT studies, 

and that assumptions of normality be routinely tested for other types of pain outcomes as 

well.
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Highlights

• The appropriateness of using parametric analysis on cold pressor data was 

studied

• In most previously published studies data distribution was not mentioned

• However, vast majority of these studies used parametric analyses

• CPT measures collected at 8 independent studies were not normally distributed

• Monte Carlo simulations reveal that non-parametric approach is more 

appropriate
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Figure 1. 
Distribution of (A) cold-pain threshold, (B) cold-pain tolerance and (C) cold-pain intensity 

in the combined Haifa cohort (n=648).

Treister et al. Page 16

J Pain. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Distribution of (A) cold-pain tolerance and (B) cold-pain intensity in the Tromsø Study 

cohort.
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Figure 3. 
Average power of the Independent Samples t-test and the Wilcoxon Mann Whitney across 

all effect size scenarios (α level= 0.05). (A) For cold threshold scores (B) For cold tolerance 

scores; (C) For pain intensity scores.

Treister et al. Page 18

J Pain. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Average power of the Independent Samples t-test and the Wilcoxon Mann Whitney across 

all number of subjects scenarios (α level= 0.05). (A) Cold threshold scores (B) Cold 

tolerance scores; (C) Pain intensity scores.
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Table 2

Statistics of cold pain tolerance and pain intensity in the large population-based study cohort from Tromsø.

The Tromsø cohort

n 10,486

% Female 0.515

Age range 30–87

Tolerance Mean 88.17

Mode 106

Median 106

Range 5.4–106

Skewness, Kurtosis −1.26, −0.39

SW test (P-value) P<0.001

KS test (P-value) P<0.001

Pain Intensity Mean 7.84

Mode 10

Median 8

Range 0–10

Skewness, Kurtosis −1.01, 0.49

SW test (P-value) P<0.001

KS test (P-value) P<0.001
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Table 4

Results of the Shapiro-Wilk and Kolmogorov-Smirnov test performed on the transformed variables from the 

Tromsø study.

The Tromsø cohort

LOG Tolerance

 Skewness, Kurtosis −1.81, 2.697

 SW test (P-value) P<0.001

 KS test (P-value) P<0.001

SqR Tolerance

 Skewness, Kurtosis −1.45, 0.75

 SW test (P-value) P<0.001

 KS test (P-value) P<0.001

LOG Intensity

 Skewness, Kurtosis −2.16, 6.42

 SW test (P-value) P<0.001

 KS test (P-value) P<0.001

SqR Intensity

 Skewness, Kurtosis −1.89, 5.66

 SW test (P-value) P<0.001

 KS test (P-value) P<0.001

SW = Shapiro-Wilk test; KS = Kolmogorov-Smirnov test (KS).
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