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Summary

Single-particle cryogenic electron microscopy (cryo-EM) is a powerful tool for the study of 

macromolecular structures at high resolution. Classification allows multiple structural states to be 

extracted and reconstructed from the same sample. One classification approach is via the 

covariance matrix, which captures the correlation between every pair of voxels. Earlier approaches 

employ computing-intensive resampling and estimate only the eigenvectors of the matrix, which 

are then used in a separate fast classification step. We propose an iterative scheme to explicitly 

estimate the covariance matrix in its entirety. In our approach, the flexibility in choosing the 

solution domain allows us to examine a part of the molecule in greater detail. 3D covariance maps 

obtained in this way from experimental data (cryo-EM images of the eukaryotic pre-initiation 

complex) prove to be in excellent agreement with conclusions derived by using traditional 

approaches, revealing in addition the interdependencies of ligand bindings and structural changes.

Introduction

Recent developments of single-particle cryo-electron microscopy have attracted a great deal 

of attention in the structural biology community (Campbell, et al., 2012; Li, et al., 2013; Bai, 

et al., 2013), due to the ability of this technique to achieve near-atomic resolution for 

biological macromolecules that are imaged in a near-native environment. In the single-

particle method, two-dimensional (2D) noisy projections of macromolecules lying in 

random orientations are collected in the electron microscope (Frank, 2006). In many cases 

several conformations and binding states coexist. To deal with the resulting heterogeneity in 

the sample, several methods have been proposed, ranging from earlier approaches based on 
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clustering of 2D projections (e.g., (Van Heel & Frank, 1981)) to more recently developed 

three-dimensional (3D) approaches. Maximum-likelihood-based techniques assume a 

probability distribution over the projections, given a small and known number of discrete 

classes (Sigworth, et al., 2010; Scheres, 2010; Lee, et al., 2011; Wang, et al., 2013). 

Statistical bootstrapping methods (Simonetti, et al., 2008; Spahn & Penczeck, 2009; Liao & 

Frank, 2010; Penczek, et al., 2011) estimate the 3D covariance matrix of the underlying 

molecules indirectly. Following this approach, a large number of reconstructions are created 

from the data by resampling, and the projections are represented in a low-dimensional space 

spanned by the projections of the top eigenvolumes of the bootstrap reconstructions. That is, 

instead of the covariance matrix itself, bootstrapping methods estimate the top-ranking 

eigenvolumes, which are also the top eigenvectors of the covariance matrix. Typically, only 

a small number of eigenvectors are estimated (e.g., less than fifteen in the work by (Penczek, 

et. al. 2011)). In principle, the covariance matrix can be obtained by combining all the 

estimated eigenvector (or approximated by a subset of the dominant eigenvectors), weighted 

by their respective energies. However, due to the errors in the estimation, the covariance 

matrix may not be reliably and efficiently obtained in this way. Classification is then 

achieved by clustering the projections represented in the low-dimensional space. Other 

classification methods that have been proposed are based on graph-theory and common lines 

(Herman & Kalinowski, 2008; Shatsky, et al., 2010), as well as stochastic climbing (Tang, et 

al., 2007; Elmlund, et al., 2013).

All existing reference-free classification algorithms are highly computing-intensive. They do 

a good job at separating different conformations or binding states when those differences are 

large. However, this is not the case when the differences are small (e.g., presence versus 

absence of small ligands), due to the low signal-to-noise-ratio of the projection data, which 

in turn precludes an accurate determination of the projection angles, exacerbating the 

separation task. Hence, there is interest in studying the case of small and localized 

differences; and we believe this is where our approach can make a significant contribution. 

It should be pointed out that when the sample contains a continuous range of conformations, 

the assumption of a discrete number of classes (a tenet of all classification algorithms 

currently in use) is no longer adequate, leaving room for approaches, such as (Dashti, et al., 

2014), which is capable of mapping continuous conformational changes based on manifold 

embedding.

At this point we would like to emphasize a property of the covariance matrix that goes 

beyond classification, which has received little attention: the determination of 

interdependencies in the study of molecules with multiple binding partners (ligands). An 

example is provided by the recent study of the eukaryotic pre-initiation complex (Hashem, 

et al., 2013) whose assembly involves the processive interaction between the 40S subunit, 

initiator tRNA and several initiation factors. Here the presence of a factor might be favored 

by the absence of another. Binding of a factor might induce the movement of a subunit 

domain. The study of all such contingencies is facilitated by computing relevant portions of 

the covariance matrix from a heterogeneous sample. By definition, the entry at row i and 

column j of the covariance matrix records the covariance between the values in two voxels 

with indices i and j, respectively. The i-th row of the matrix thus contains the covariances 
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between voxel i and all the voxels. These numbers can thus be arranged in 3D and visualized 

as a volume, which we refer to as the covariance map with respect to voxel i, and this voxel 

is referred to as the reference voxel for this map. A similar concept of the covariance map 

applies to images, by simply replacing the word “voxel” by “pixel” and “volume” by 

“image.” When the reference voxel lies inside a ligand, this map will indicate how strongly 

the presence of this ligand correlates with the presence of other ligands and with structural 

changes in the molecule the ligands are bound to. That is, all the interdependencies with a 

ligand are revealed in one single map. As a byproduct, the shape of the ligands and the trace 

of continuous conformational changes are also brought out.

When the assumption of a discrete number of classes is valid, Penczek et al. (Penczek, et al., 

2011) showed that the eigenvectors of the covariance matrix reveal the structures of the 

conformers. For example, in the simple case of two classes in which the only difference is 

that a small ligand is present within one but not the other, the first eigenvolume will be 

proportional to the density of this ligand only; i.e., the eigenvolume has high values in a 

region that has the shape of the ligand. In fact, the covariance matrix itself also reflects the 

structure of the ligand in this case: since the elements of this matrix record the covariance 

between every pair of voxels, the covariance between a voxel lying in one of the ligands and 

another voxel is respectively, positive, negative, or zero, depending on whether the second 

voxel is within the same ligand, within a different ligand, or in the remaining space. In 

contrast, when there is a continuous range of conformations in the sample, we will show 

below that the trajectory of this continuous change will be reflected in the covariance map 

but not in the eigenvolumes.

In this paper, we are concerned with estimating the covariance matrix in an efficient way. 

Katsevitch et al. (Katsevich, et al., 2014) proposed an elegant way of estimation in the 

Fourier domain. They computed the eigenvectors of the matrix in the Fourier domain, then 

Fourier-inverted them to get the eigenvectors back in real space, and finally proceeded with 

the classification step as in (Spahn & Penczeck, 2009; Penczek, et al., 2011). Resampling is 

thereby avoided; however, this approach has only been demonstrated on volumes of sizes up 

to 173. Nevertheless, unlike earlier works, the approach used in (Katsevich, et al., 2014) 

provides a guarantee that the estimated covariance matrix converges to the true covariance 

matrix in the limit of infinite number of projection images.

We estimate the whole covariance matrix (not just its eigenvectors) explicitly in real space, 

and within a domain of arbitrary shape, a feature that is not possible using approaches that 

solve in Fourier space. Hence, our approach avoids resampling and –more importantly– 

enables the analysis of the covariance in localized regions. The computational savings 

resulting from solving the matrix in a few small regions rather than the whole volume allows 

solutions with higher resolution. In our experiments, the 3D covariance maps are in 

excellent agreement with conclusions from traditional approaches, as the maps show the 

interdependencies of sub-stoichiometrically bound ligands and conformational changes they 

spawn.

In our approach, we solve a system of linear equations in which the unknowns are the entries 

of the 3D covariance matrix and the right hand side is composed of the covariances derived 
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from the projection data. Linear relationships between the former type of covariance (later 

referred to as “3D covariance”) and the latter type (later referred to as “2D covariance”) 

have already been established in (Katsevich, et al., 2014).

Results

Estimation of the covariance

We discretize the volume containing a macromolecule as having N3 voxels and model it as a 

N3-dimensional vector X. The 3D covariance matrix is defined as follows. If the 

heterogeneous set of macromolecules are brought into the same coordinate system and the 

volume containing them is represented by a 3D array of voxels, then the covariance between 

the values in two voxels x1 and x2 is defined as

(1)

where E(.) denotes the expected value. A positive (negative) covariance means that when the 

value in x1 is above E(x1), then the value in x2 tends to be above (below) E(x2). Given three 

voxels x1, x2 and x3, if cov(x1, x2) is greater than cov(x1, x3) in absolute value, then a change 

in the value of x1 implies a bigger change in the value of x2 than in the value of x3.

A projection image from the data is modeled as a noisy approximation to the line integrals 

across the volume in a given direction, which we write as Y = RX, where R contains the 

orientation-dependent coefficients in the integrals. When X is random, so is Y; and it can be 

shown that their respective covariance matrices (after stacking the entries of a matrix to 

form a column vector) are related by the matrix-vector equation:

(2)

where CY is the covariance of the line integrals (to be referred to as “2D covariance”), CX is 

the unknown covariance (“3D covariance”), and the elements of W are products of elements 

of R (see Supplemental Information). In practice, many projections exist, and therefore one 

could concatenate all these equations and solve the entire system. However, for reasons of 

expediency, we group or bin the projections based on their similarity of orientations and 

create one equation like Equation 2 for each group (hence one W is given for each group). 

Our aim is to estimate the 3D covariance from the set of 2D covariances calculated from the 

projections. Going back to the definition of the covariance matrix: the diagonal entries of 

this matrix constitute the variance map (Liu & Frank, 1995), and one row (or column, since 

the matrix is symmetric) of the covariance matrix is referred to as the covariance map with 

respect to the voxel having that row number. Figure 1 illustrates the estimation principle.

Noise is an important consideration in the estimation. We assume that the noise is additive 

and statistically independent from structural heterogeneity, but we do not make any 

assumptions on the type of noise spectrum (Meyer & Kirkland, 1998; Shigematsu & 

Sigworth, 2013). To correct for the contributions by noise, we subtract the 2D covariance of 

a pure-noise projection from the corresponding measured 2D covariance (Supplemental 

Information, Figure S1). We normalize the images by setting the background to zero mean 
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and unit variance to compensate for data imperfections, such as those created by uneven ice 

thickness or uneven illumination. We assume that the data are correctly aligned and already 

corrected for the Contrast Transfer Function (CTF) (Frank, 2006).

From the point of view of achievable resolution, the orientation bin size is determined by the 

Shannon angle, which is defined as the ratio between the resolution (expressed as a distance 

in real space) and the diameter of the object. Binning, however, creates an unwanted extra 

variability, which nevertheless can be considerably reduced by subtracting the reprojection 

of a volume reconstructed from the normalized projection data (Supplemental Information). 

We found in our experiments that this variability is not significant if we use four degrees or 

less, which is approximately the Shannon angle corresponding to a volume size of 323, if we 

consider a resolution of two voxels and a diameter of 32 voxels.

Because the number of unknowns increases quadratically with the number of voxels, for 

faster computation we perform a preliminary reconstruction using a coarse sampling grid, 

then another reconstruction of only the region of interest possessing high variability, using a 

finer grid.

To solve the system of equations, we use an iterative algorithm known as block-ART 

((Herman, 1970; Censor & Zenios, 1997) and Supplemental Information). We found that 

usually twenty or fewer iterations are adequate to obtain a stable solution.

Proof of Principle

Simulated data of the 70S ribosome in two conformations—We first tested our 

approach on simulated data consisting of 10,000 noiseless 20×20 projections of an E. coli 

70S ribosome density map with either a P-site or an A-site tRNA (Figure 2), each of which 

generating 5,000 projections with an approximately even distribution of orientations. To 

keep the same orientation bin size throughout the experiments in this paper, we used bins of 

approximately four degrees, even though the Shannon angle is in this case 2/20 radians = 5.7 

degrees. As expected, we observe that (i) high variance occurs only at the places of both 

tRNAs, (ii) positive covariance between a voxel of high variance (black dot) and all the 

voxels of the tRNA containing it, and (iii) negative covariance between that same voxel and 

all the voxels of the other tRNA. Hence we see that the covariance map indicates the 

interdependency of the two tRNAs, and in particular, their shapes are revealed as well.

An analysis of continuous conformational change—When it is reasonable to 

assume that the sample consists of a few classes, both the covariance matrix and its 

eigenvectors give an insight into the structure of the conformers; this is not the case for 

continuous conformational changes, however. We show that, while the eigenvectors do not 

offer an immediate interpretation, useful information can still be reflected in the covariance 

matrix. To make this point, consider a one-dimensional “volume” (i.e., a vector) of size 11. 

Assuming that we have a sample with 20 such volumes: ten of them having a “ligand” in the 

first “voxel” and nothing in the remaining ten voxels; and each one of the other ten volumes 

contains nothing except a ligand at voxel i, for 2 ≤ i ≤ 11 (see Figure 3 left). With this 

sample containing 11 classes, we now attempt to approximate a sample whose members 

have either a ligand, named A, in the first voxel or a ligand, named B, moving continuously 
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anywhere (fractions allowed) between the second and the last voxel; and both ligands never 

appear simultaneously.

The interdependency of the ligands is clearly mirrored in the covariance matrix (Figure 3 

middle): we see a strong negative covariance (−0.5) between the first voxel and any of the 

remaining ones, and a weaker covariance (−0.05) among the voxels 2 to 11. Each row of the 

covariance matrix is a covariance map with respect to the voxel with that row number. In 

order for the map to reveal the “structure,” there has to be a voxel (other than in the diagonal 

position) with a prominent value. In the example, all the maps corresponding to voxels 2 to 

11 highlight the ligand A (at voxel 1). That is, the maps show the structure of ligand A. In 

contrast, the map corresponding to voxel 1 is uniform across voxels 2 to 11, which means 

that the map is capturing the trajectory of the ligand B but not its shape. This 11×11 

covariance matrix has eigenvalues 5.5, 1, and 0. Because of the multiplicity of eigenvalues, 

the eigenvectors are not unique, and hence individually they are not informative of this 

trajectory (Figure 3 right).

Based on this simple example, we conclude that if the shape of a ligand can be identified in 

the covariance map with respect to a voxel not within the ligand, then there is no continuous 

motion of the ligand. This is because if there were a continuous motion, a “spreading” of the 

ligand will be produced, as illustrated in this example.

Covariance maps of a 43S ribosomal pre-initiation complex

Following the encouraging results on simulated data, we next tested our method on 

experimental data containing 29,000 projections of the mammalian 43S ribosomal pre-

initiation complex (Hashem, et al., 2013) (see Figure S2). Pre-initiation complex formation 

is a key step on the path of translation regulation in eukaryotes. First, the initiator tRNA 

(Met-tRNAi
Met), eukaryotic initiation factor (eIF) 2, and guanosine triphosphate form a 

ternary complex (TC). The TC, eIF3, eIF1, and eIF1A cooperatively bind to the 40S subunit, 

yielding the 43S complex, ready to attach to mRNA and scan to the AUG start codon. In 

addition, the complex was formed in the presence of DHX29, a DExH-box protein that also 

binds directly to the 40S subunit, required for scanning on structured mRNAs.

The data set was acquired using an FEI Tecnai F20 electron microscope (FEI, Eindhoven) 

operated at 120 kV with a magnification of 51,570× on a 4k × 4k Gatan Ultrascan 4000 

CCD camera with a physical pixel size of 15 μm (thus making the pixel size 2.245 Å). 

Additional details of sample preparation, data collection and preprocessing can be found 

below or in ref. (Hashem, et al., 2013). The data were preprocessed using pySPIDER 

(Robert Langlois and Joachim Frank, unpublished data), yielding a total of ~650,000 

particles. Those particles were classified with RELION (Scheres, 2012) and a class of 

29,000 particles with all the factors present was isolated.

We chose this data set because we had characterized its structure and wished to see the 

residual (i.e., after RELION classification) variability in small, localized regions, rather than 

in large regions. Since the former case tends to be more challenging for most existing 

classification algorithms, residual variability is likely to be in small regions, and analysis of 

the covariance enabled by our approach is a promising complementary tool. We found that 
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the covariance maps reveal not only the structure of factors but also their interdependencies. 

Some results obtained are expected and in excellent agreement with conclusions derived 

using traditional approaches, and some others are completely new, which opens the door to 

further investigation.

We first computed the 3D covariance within a sphere inscribed in a cube of 163 voxels. We 

determined regions of relatively high variance, whose boundaries were then smoothed and 

used as a new solution domain for recomputing the covariance at higher resolution (of 323 

voxels; Figure S3). The Shannon angle in this case is 2/32 radians = 3.6 degrees. The data 

were grouped using SPIDER command VO EA (Shaikh, et al., 2008) into bins of 

approximately four degrees, resulting in 1,069 orientation groups, from which we selected 

the top-620 largest groups. (This cut-off was based on the population size in a bin, which 

was 12.) We obtained very similar results when we used bin size of approximately 3.3 

degrees and 425 largest groups. Computing time was about 4 hours using 12 cores on a 16-

core 2.4 GHz AMD Opteron.

The covariance map corresponding to a selected reference voxel in DHX29 (green square, 

Figure 4 c and d) is seen to capture the structure/shape of the protein itself (green mesh). 

Since no meaningful negative correlation was observed, the DHX29 molecule in its entirety 

is likely either present or absent in the class examined. The covariance map corresponding to 

a voxel (purple square, Figure 4 c and d) in a peripheral subunit of eIF3, unassigned to any 

specific subunit in our previous work (Hashem, et al., 2013), also captures the shape of the 

entire subunit. At the same threshold level, it shows a positive correlation with some parts of 

DHX29. More importantly, both covariance maps show strong positive correlation with a 

feature corresponding in shape, size and location to eIF3b (Fig. 4 c and d, dashed red oval), 

consistent with the structure of the complex.

Figure 5 shows the two maps separately, as well as another map (orange mesh) with respect 

to a reference voxel in the eIF2-ternary complex (TC, orange square), which reveals the 

shape of the TC. The map corresponding to DHX29 exhibits a positive correlation with the 

core of DHX29 (pink arrow) and with the initiator tRNA anti-codon stem-loop (blue arrow). 

Meanwhile, the map corresponding to TC displays a positive correlation with ribosomal 

protein S6e (orange arrow). The last two correlations are new findings with potentially 

important biological implications; thus, additional experiments are required for their 

elucidations.

The nature of the positive correlation between ternary complex and eS6 is unclear. It is 

known that eS6 plays an important role in translation regulation by phosphorylation in 

response to a wide variety of stimuli on five evolutionarily conserved serine residues. 

Indeed, eS6 is phosphorylated in yeast and humans and is a target of the mTOR (mammalian 

target of rapamycin) pathway (Meyuhas, 2008). Phosphorylation in response to mTOR 

signaling occurs at conserved serines near the C-terminus of the protein (Meyuhas, 2008). 

The role of this phosphorylation is not well understood but it might be involved in fine-

tuning protein translation. Interestingly, the ternary complex can also be phosphorylated on 

eIF2-α subunit in response to stress --see (Baird & Wek, 2012) for review on eIF2 

phosphorylation. The eIF2 phosphorylation regulation pathway is cross-regulated with other 
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regulation pathways such as mTOR. Thus, we hypothesize that the observed correlation 

between eS6 and the ternary complex may reflect the cross-regulation of phophorylation in 

response to stress.

We note that in all cases the shapes of the ligands were delineated in the 3D covariance. 

Hence, no continuous motion was observed.

Discussion

In single-particle cryo-EM data, heterogeneity is an important resolution-limiting factor. 

One way of studying heterogeneity is via the covariance matrix, which shows regions of 

high variability (the variance map), as well as the way the value in a given voxel correlates 

with the remaining ones. While it is mathematically straightforward to estimate this matrix 

from the covariance of the projections, the rapidly growing number of unknowns as the 

volume size increases constitutes a big hurdle. This is the reason why solutions have been 

obtained to date for only relatively small volumes, or strongly decimated versions of larger 

volumes. In contrast, the flexibility in choosing the size and shape of the solution domain in 

our approach allows us to deal with volumes in less decimated or undecimated form.

Since the data are not perfect, any type of covariance other than that due to structure 

variability will be reflected in the results. Therefore, to obtain correct maps, the undesired 

variability needs to be removed or reduced by proper spatial alignment of the data, statistical 

considerations, and data normalization. Everything else being equal, we think the signal-to-

noise ratio of the data is key to a successful high-resolution estimation of the maps.

We were able to efficiently estimate the covariance matrix and perform a covariance 

analysis of a 43S pre-initiation complex with DHX29 bound. Images like the ones we used, 

which correspond to ribosomal complexes imaged under FEI Tecnai electron microscopes 

and CCD camera, were shown to have a signal-to-noise ratio of approximately 0.1 (Baxter, 

et al., 2009). Thus, our technique works for this signal-to-noise ratio or higher. With the 

improved detectors (Campbell, et al., 2012; Li, et al., 2013; Bai, et al., 2013), however, 

analysis of lighter-weight macromolecules should be feasible, as long as the region of 

analysis is not too small compared to a voxel (to be safe, the size should be at least 2×2×2 

voxels).

Using a coarse sampling grid followed by a finer grid focused on smaller regions of interest 

has the potential danger that some regions of high variability may be too small to be 

detected by the initial coarse-grid solution. In this case, an alternative way of locating these 

small regions is needed prior to the fine-grid computation.

Here we chose to solve the estimation problem iteratively and purely in the image domain. 

Even though we are not taking advantage of the central slice theorem and applying the fast 

Fourier transform, we can impose linear or nonlinear constraints directly on the solution, and 

we could also employ a solution domain of arbitrary shape and size in order to reduce the 

number of unknowns. Without a proper adjustment of the 2D covariance, however, this 

strategy implicitly assumes that the variance outside the domain is negligible. If this is not 

the case, one could tessellate the outside region using larger voxels and include them in the 
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solution domain. We are currently experimenting with these variants, as well as with 

different types of constraints on the solution, such as smoothness and sparsity.

We are currently developing a python-based software package that implements our proposed 

technique, which we expect to release it in a couple of months.

Experimental Procedures

Preparation of the 43S Ribosomal Pre-initiation Complex and Its Structure Determination

The complex was prepared as previously described in (Hashem, et al., 2013). In brief, the 

sample was frozen and applied holey carbon grids (carbon-coated Quantifoil 2/4 grid, 

Quantifoil Micro Tools GmbH) containing an additional continuous thin layer of carbon 

(Grassucci, et al., 2007). Grids were blotted and vitrified by rapidly plunging into liquid 

ethane at −180°C with a Vitrobot (FEI) (Dubochet, et al., 1988; Wagenknecht, et al., 1988). 

Data acquisition was done under low-dose conditions (12 e−/Å2) on a FEI Tecnai F20 

electron microscope (FEI, Eindhoven) operating at 120 kV with a Gatan 914 side-entry 

cryo-holder. The data set was collected with the automated data collection system Leginon 

(Suloway, et al., 2005) at a calibrated magnification of 51,5703 on a 4k × 4k Gatan 

Ultrascan 4000 CCD camera with a physical pixel size of 15mm, thus making the pixel size 

2.245 Å on the object scale.

The data were preprocessed using pySPIDER within the Arachnid software package (Robert 

Langlois and Joachim Frank, unpublished). PySIPDER is a Python-encapsulated version of 

SPIDER (Leith, et al., 2012; Shaikh, et al., 2008), replacing its batch files with Python 

scripts. It also contains procedures such as Autopicker (Langlois, et al., 2014), which was 

used for the automated particle selection, yielding a total number of particles of 650,000. 

Those particles were classified with RELION (Scheres, 2012) and a class of 29,000 particles 

with all factors present was isolated. This class was further refined to a resolution of 11.6 Å, 

as estimated following the “gold-standard” protocol, with a cutoff Fourier shell correlation 

(FSC) = 0.143 (Henderson, et al., 2012; Scheres, 2012).

3D Covariance Estimation

3D covariance was estimated from the 2D covariances using Equation 2 (see also Figure 1). 

To estimate the 2D covariances (see Figure S1), we first adjusted the projection images by 

normalizing them (i.e., setting the background to zero mean and unit variance) and 

subtracting the reprojection of a volume reconstructed from the normalized data. With the 

alignment parameters from RELION, we grouped the adjusted data based on their similarity 

of orientations (with bin size of approximately four degrees) and estimated the covariance 

for each group. A similar procedure was used to estimate the covariance of noise-only data. 

Noise-only projections were obtained by shifting each projection by one-half of its size in 

both vertical and horizontal direction. For each group, the difference between the two 

covariances is the estimated 2D covariance.

For the simulated data, we computed the 3D covariance within a sphere inscribed in a cube 

of 203 voxels (Figure 2). For the 43S ribosomal data (Figure S2), the resolution was first 163 

voxels. We then determined regions of relatively high variance, whose boundaries were then 
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smoothed and used as a new solution domain (Figure S3) for recomputing the 3D covariance 

at a resolution of 323 voxels (Figures 4 and 5).

The computations were implemented primarily in MATLAB and SPIDER. We pre-

calculated and stored the coefficients of the system of Equation S4. SPIDER was used for 

the normalization, volume reconstruction, and reprojection (see Equation S1). The 

remaining steps were implemented in MATLAB and run on a 16-core 2.4 GHz AMD 

Opteron with 120 Gb memory. The most time-consuming step is to solve Equation S4, 

which has not been parallelized. A GPU implementation of this step should speed up the 

estimation process considerably.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Principle of 3D covariance estimation. The 3D covariance, which is of size N3×N3 where N3 

is the size of the volume, is estimated from all the 2D covariances – of size N2×N2 – at 

different angles (θ,ϕ,ψ). First, the 2D covariances are calculated; each row of a 2D 

covariance matrix can be depicted as a 2D covariance map (with respect to the pixel with 

that row number in the covariance matrix), which resembles the red-blue map at the bottom 

left. Once the 3D covariance is estimated, the row of the matrix corresponding to a voxel of 

interest can be extracted and represented as a volume like the red-blue map at the center top. 

In our example, the simulated data consist of identical ribosomes (depicted as green 

transparent density map) with a ligand bound in one of the two positions (red and blue).
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Figure 2. 
3D Covariance estimation for simulated data. Application of the estimation to a simulated 

dataset generated from 70S E. coli ribosomes bound with either a P-site tRNA (green) or an 

A-site tRNA (pink). The panel shows the phantom with the two tRNAs, the calculated 

variance map, and the covariance map with respect to a voxel of high variance (black dot). 

Blue (red) color denotes positive (negative) values.
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Figure 3. 
Covariance estimation in the case of approximated continuous conformational change. Left: 

20 “volumes” comprising 11 classes. The first class has 10 identical structures has a 

“ligand” (black square) in the first (left-most) voxel, and the remaining classes (one 

structure per class) have another ligand at voxel i, for i=2,…,11. Middle: the covariance 

matrix of these 20 volumes shows a strong negative covariance between voxel 1 and the rest 

of the voxels. The negative correlation between any two of the remaining voxels is weaker. 

Each row is the covariance map with respect to the voxel with that row number. Right: each 

row is an eigenvector of the covariance matrix.
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Figure 4. 
Covariance analysis of the DHX29-bound 43S Pre-initiation complex (Hashem, et al., 

2013). Two covariance maps are shown superimposed with the whole complex. (a) and (b), 

segmented density map of the DHX29-bound 43S Preinitiation complex. (C) and (d), 

overlays of covariance maps corresponding to two reference voxels chosen in DHX29 and 

an unassigned peripheral subunit of eIF3, respectively, showing the DHX29 protein in its 

entirety (green mesh) and the unassigned peripheral subunit of eIF3 (gray arrow on purple 

mesh). The latter exhibits positive correlation with parts of DHX29, as demonstrated by the 

overlapping regions with the map of DHX29. See text.
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Figure 5. 
Covariance maps corresponding to voxels in DHX29, a peripheral subunit of eIF3 and eIF2-

ternary complex. (a) and (b), the covariance map (purple mesh) of a voxel from the 

peripheral subunit of eIF3, seen from the solvent side and the front, respectively. The 

covariance displays clear positive correlation with DHX29 as exemplified by the 

overlapping of the map with the location of the core of DHX29 (green arrow). (c) and (d), 

covariance map (green mesh) of a voxel from DHX29, seen from the solvent side and the 

front, respectively. The covariance map reflects perfectly the shape of DHX29 including its 

intersubunit domain (pink arrow). Furthermore, the map reveals strong correlation with two 

regions of the 43S complex corresponding to the location of the initiator tRNA anti-codon 
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stem-loop (panel d, blue arrow). (e) and (f), covariance map (orange mesh) of a voxel from 

the eIF2-ternary complex (TC), seen from the solvent side and the front, respectively. The 

covariance reflects the shape of the TC and shows strong positive correlation with the 

ribosomal protein S6e (panel e and f, orange arrow).
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