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Abstract

A vaccine formulation that would be effective against all strains of influenza virus has long been a
goal of vaccine developers, but antibodies after infection or vaccination were seen to be strain
specific and there was little evidence of cross-reactive antibodies that neutralized across subtypes.
Recently a number of broadly neutralizing monoclonal antibodies have been characterized. This
review describes the different classes of broadly neutralizing antibodies and discusses the potential
of their therapeutic use or for design of immunogens that induce a high proportion of broadly
neutralizing antibodies.

Introduction

Influenza vaccines have been used since the 1940s. They are safe but need to be multivalent
to protect against the multiple circulating viruses, and the components need to be updated
nearly every year in response to mutations of the virus. The holy grail for influenza vaccine
would be a single formulation that cross-protects against all current and future strains.
Recent discoveries of cross-reactive monoclonal antibodies have given hope that a universal
influenza vaccine may be possible.

This review covers recent work (approximately 2009 to 2014) to characterize neutralizing
antibodies against influenza with emphasis on those that show some level of cross-reactivity
between different subtypes.

Early observations

Human influenza virus was first isolated in 1933. Memories of the devastating death toll of
the 1918-1919 epidemic fuelled efforts to develop a vaccine, spurred even more by the
advent of the Second World War. By 1936 it had been recognized that influenza viruses are
antigenically diverse. Methods to inactivate the virus with formalin overcame the inherent
safety concerns of live virus vaccines and the vaccine given to troops in World War Il was
trivalent, containing A/PR/8/34, A/Weiss/43, and B/Lee/40. This vaccine was shown to
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provide protection against type A and B viruses until 1947, when it dramatically failed. The
1947 viruses were originally classified as “A prime” but eventually were grouped into the
H1N1 subtype, despite the marked change in antigenic properties. By 1954 there were two
fundamental questions on antigenic variation [1]. One was whether the virus mutates in
response to environment (such as infection of a new host, or presence of antibodies), versus
the ideas of G. K. Hirst and J. Y. Sugg that a pre-existing variant is selected out by
environmental pressure. The second question was whether there are a limited number of
variants of influenza virus that wax and wane in the human population (J. Salk, T. Francis),
or whether the virus is continually changing (F. L. Horsfall, F. M. Burnet). A finite number
of variants would imply that a vaccine containing all of them would be effective.
Unfortunately this is not the case, and we now know that influenza evolves linearly by
selection of escape mutants, usually by antibodies, from a small population of variants
generated by random mutation from the preceding virus. This means that development of a
universal influenza vaccine requires a strategy other than including all known strains.

Antigenic drift and shift, neutralizing antigens, current vaccine strategies

Influenza viruses are classified by serological cross-reactivity, or lack thereof. Types A, B
and C do not cross-react by any serological test. Type A viruses all share cross-reactivity of
internal proteins, nucleoprotein (NP) and matrix (M1), but the surface glycoproteins
hemagglutinin (HA, or H) and neuraminidase (NA or N) are divided into serological
subtypes H1 to H16 and N1 to N9 that do not cross-react with serum antibodies. Only H1,
H2 and H3 with N1 or N2 circulate in the human population. Recent influenza sequences
from bats proposed as H17, H18, N10 and N11 have functionally different glycoproteins and
the viruses have not yet been isolated [2]. A new subtype entering the human population is
described as antigenic shift, such as when H2N2 viruses replaced HIN1 in 1957 and H3N2
replaced H2N2 in 1968. Antigenic shift is facilitated by the large variety of influenza viruses
in bird populations and by the segmented nature of the genome that allows reassortment of
genes in a mixed infection. Following antigenic shift, the new virus undergoes progressive
changes due to antibody selection, known as antigenic drift.

All the genes of influenza virus undergo some degree of variation, all occurring by the same
basic mechanism. Influenza has an RNA genome that codes for its own RNA polymerase.
RNA polymerases in general lack the editing feature of DNA polymerases, an exonuclease
domain that removes a mismatched 3’ nucleotide before elongation can continue. Without
this exonuclease activity, the intrinsic error rate of RNA polymerases is relatively high.
Most of the resulting variants are lost in the population, but a few may be fixed by chance
(“random drift”). Some mutations are positively selected, for example, to escape from
antibody neutralization or for more efficient replication or better interaction with a specific
host protein, and these variants rapidly take over the population because they confer an
advantage. Changes in proteins selected for improved function may change their antigenic
properties. There is a marked distinction between antigenic selection (resistance to the
immune system) and antigenic change that is a consequence of some other selective
pressure.
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Definitions of “neutralizing” and “epitope”

Protection against influenza is mediated by innate systems and by T cells and antibodies.
The relative roles of these vary with the patient’s genetic profile and history of influenza,
but overall the most important contribution to protection is from neutralizing antibodies, and
current vaccines are measured by their power to induce neutralizing antibodies. The classical
definition of “neutralizing” is to block the ability of a virus to attach to a cell; i.e. to block
the first step in viral infection. Such antibodies sterically interfere with the receptor-binding
site on the hemagglutinin (HA) so it cannot bind to its sialic acid receptor on the cell
surface. However, there are antibodies that interfere in infection at later stages. While these
do not meet the classical definition, they effectively neutralize the infection and in
laboratory studies are equally protective.

What are the targets of neutralizing antibodies that do not block attachment to sialic acid?
While antibodies can be raised that block various viral activities (RNA-dependent RNA
polymerase, assembly of nucleoprotein complexes or of the viral matrix protein), these
antibodies are not neutralizing or protective because they cannot access their targets during
the normal course of infection. Neutralization targets are those outside the viral membrane
and so exposed on the virus; the surface proteins HA, neuraminidase (NA) and M2 ion
channel. The HA’s first function is to bind sialic acid receptors, but after internalization, in
the low pH environment of the endosome, the HA undergoes a conformational change to
enable a fusion activity that allows release of the viral genome. So antibodies that efficiently
block either binding to receptor, conformational change or the fusion function will also be
neutralizing.

Antibodies can only neutralize if they block a function. It follows that they bind to native
proteins. Typically they bind to multiple segments of the polypeptide chain that may be
dispersed in the primary sequence but come together in the three-dimensional structure.
Therefore most neutralizing antibodies bind to a so-called “conformational” epitope, that is
lost if the protein is denatured or even partially unfolded.

Mapping antibody epitopes

For this review, an epitope is defined as the amino acids on the antigen that make contact
with antibody. Some of the interactions of antibody with antigen are more important than
others. The critical contacts, with highest interaction energy, can be identified by selection
of escape mutants, or by exhaustive mutagenesis, or by hydrogen exchange methods. These
studies only give a partial view of the epitope, albeit the most energetically important view.
Full descriptions of epitopes can be made from X-ray crystal structures of the antigen-
antibody complex; this is currently the only available method that shows all the atomic
interactions between antigen and antibody. An excellent discussion of broadly neutralizing
epitopes characterized by X-ray crystallography is given by Lee and Wilson [3].

How polyclonal is human serum?

Much of our knowledge of neutralizing epitopes comes from studies with monoclonal
antibodies (mAbs), that allow selection of escape mutants that can be attributed to a single
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selecting antibody. A monoclonal antibody also allows complexes of antigen and antibody
to be crystallized for structural analysis. The human response is, of course, polyclonal,
raising questions about the applicability of monoclonal studies (usually mouse) to human
protection. Mouse monoclonal antibodies were used to map broad antigenic regions on the
HA of H3N2 and H1N1 viruses by using competition assays and cross-reactivities of the
mAbs with escape mutants selected by other mAbs. Five sites were found on the H3 HA
(sites A through E, [4,5]) and four on H1 HA (Sa, Sh, Ca, Cb, [6]). An antibody that
recognizes a change in Site A, for example, did not recognize changes in sites B-E. The
deduction is that changes in all antigenic sites would be needed for a virus to escape the
human immune system and begin a new epidemic. For some antigenic drift strains of H3N2
viruses this was the case, but more commonly, especially more recently, only one or two
changes are found between epidemic viruses. It has been noted for some time that human
H3N2 viruses show a changing pattern of immunodominance and it appears that for any
given virus, the human response does not cover all antigenic sites and vaccine failure can be
due to one or two mutations in the HA [7].

Broadly neutralizing monoclonal antibodies

The N-terminal ectodomain of the M2 ion channel protein is quite highly conserved, and
immunization with recombinant M2 generates mAbs with considerable cross-reactivity
between subtypes. These antibodies are rare in infected humans but they might be protective
if they could be induced by recombinant M2, or amplified in vitro and given therapeutically.
Both approaches have been tested and shown to be effective in animal models [8-10]. There
is one report of a Phase 2 clinical trial of antibody TCN-032 which showed some reduction
in symptoms but no protection from infection in volunteers challenged with influenza virus
[11]. On the whole, the M2 approach has not yet shown efficacy; the neutralizing power of
antibodies directed against M2 may be inherently low compared to those against HA.

There are recent reports of antibodies that have broad reactivity against NA. One epitope is
within a conserved linear sequence in the active site of all type A subtypes and type B NA,
but protection is less than 50% [12,13]. Others target a conformational epitope shared by
seasonal HIN1, pandemic HIN1 and H5N1 viruses and show prophylactic activity [14].
Antibodies against NA do not block infection but they do block release of virus and so
ameliorate disease (reviewed in [15]). The most effective neutralizing antibodies are against
the HA.

Initial attempts to raise antibodies against conserved regions of the HA used small peptides
as immunogens. The resulting antibodies were cross-reactive, but usually bound only to
denatured HA and so were not neutralizing, reviewed in [16]. A mouse mAb designated
C179 was shown in 1993 to neutralize viruses of the H1 and H2 subtypes, and partial
mapping showed that the epitope was located on the stem of the HA, later fully mapped by
X-ray crystallography [17,18]. Sixteen years later two reports appeared describing broadly
neutralizing antibodies directed against the stem region of the HA, fully characterized by X-
ray crystallography of HA-antibody complexes [19,20]. Many such stem-binding mAbs
were reported in the next few years. There have also been descriptions of broadly
neutralizing antibodies recognizing the receptor binding region of the HA head [21-23].
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It has now become clear that there are varying definitions of “broadly neutralizing”
antibodies. In influenza studies the traditional term was “cross-reactive” and it meant
binding to more than one subtype of influenza. “Broadly neutralizing” has been applied to
mAbs that neutralize multiple subtypes, but is also used by some authors to describe
neutralization of more than one strain within a subtype. So one investigator’s “broadly
neutralizing” mAb may bind only some clades of H5 HAs while another’s may bind
representatives of all 16 HA subtypes. Table 1 shows the well-characterized epitopes of
antibodies that bind to several strains of influenza virus published up to December 2014.
The entries are sorted from most cross-reactive (14 of 16 subtypes of influenza A and
influenza B), through those that bind more than one subtype within the phylogenetically-
defined HA Group 1 (H1, H2, H5, H6, H8, H9, H11, H12, H13, H16) or Group 2 (H3, H4,
H7, H10, H14, H15), to those that bind multiple viruses of a single subtype. It should be
noted that testing may not have included all subtypes so the sorting is only approximate.
However, it does show that the most cross-reactive antibodies (e.g. CR9114, F16, F10,
CR6261) bind to the stem of the HA while receptor site binding antibodies are more
selective (e.g. S139/1 and CO05). Antibodies that bind within a single subtype all have
epitopes on the HA globular head, perhaps reflecting higher neutralizing power on the head
domain but limited by higher sequence variation due to antigenic drift and shift.

The binding sites for representative mAbs that bind to the stem and receptor binding
domains are shown in Figure 1. Note that although the stem antibodies bind in the same
general region, the binding sites vary up and down and around the stem and in the angle of
the antibody Fab relative to the HA. The antibodies that bind to conserved elements of the
receptor binding site similarly vary in placement of the Fab [24]. Antibodies that are not
cross-reactive bind to variable loops that surround the receptor binding pocket [25] while
those with intra-subunit cross-reactivity show binding to somewhat conserved epitopes on
the globular HA head [26,27].

The structural studies have also shown that antibodies can bind across the canonical
antigenic sites A — E of H3 and Sa — Sb of H1. This is the case with broadly neutralizing
antibodies that bind around the receptor binding site (Table 1) but also with some of the
original mouse mAbs made against Aichi/68 H3 that are more specific (see structures
referenced in [25]).

Conclusions and Future Prospects

For many years investigators searched for broadly-neutralizing antibodies in sera and did not
find significant evidence, suggesting they are rare. There are several reports that breadth of
the response can be widened by changing the immunization route or by using adjuvant, but
the protective effect in humans is not clear. The recent advances in mAb technology,
particularly in making human mAbs have resulted in many examples of antibodies that are
truly broadly neutralizing, and these can be enriched in serum of mice by immunization with
“headless” HA constructs [28,29] or by using HAs with different head domains for prime
and boost [30,31].
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The broadly-neutralizing mAbs are also of potential use therapeutically. Antibodies CR8020
and CR6261 completed Phase 1 clinical trials but a small challenge study did not show
efficacy and a phase 2 trial was halted before enrollment. Another mAD called V1S410 is
currently in Phase 1 trial but its epitope has not been published, at least not under that name
(www.clinicaltrials.gov).

At this time there is a lot of activity to develop broadly neutralizing antibody technology
against the variable influenza viruses, but challenges remain. Vaccines could be further
refined to induce anti-stem antibodies but the neutralizing power when fusion is blocked
may be inherently lower than that of antibodies that block receptor binding, as seen in the
lack of efficacy in the challenge study. However, mAb technology allows engineering to
improve avidity of antibodies and that may be a path to successful therapeutic cross-reactive
mADbs.
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Figure 1.
Binding sites of representative broadly neutralizing antibodies on HA seen in X-ray crystal

structures. The HA is shown as the trimer in approximately the same orientation in all
panels. Monomer 1 colors are magenta (HA1) and yellow (HA2); monomer 2 are wheat
(HAZY) and gray (HA2); monomer 3 are green (HA1) and cyan (HA2). In all cases there are
three antibody Fabs bound per HA trimer although the third is hidden from view in some
cases. The antibody Heavy chain is colored purple and the Light chain is sky blue. The two
stem-binding antibodies (F16 and CR8020, see Table 1) bind at different sites on the stem
(PDB IDs 3ZTJ and 3SDY respectively). The antibodies that bind to the receptor binding
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region (S139/1 and F045-092) bind at different angles (PDB IDs 4GMS and 4058
respectively). The figures were made using PyMOL Molecular Graphics System,
Schrédinger, LLC.
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