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Introduction

Bone tissue engineering (BTE) aims to support the body’s 
own regenerative potential to restore structure and func-
tionality of damaged bone tissue by means of progenitor 
cells, osteoconductive matrices, and growth factors.1  
A promising cell candidate for this purpose is the abun-
dant human adipose tissue–derived mesenchymal stem 
cell (hAD-MSC).2 Factors may be incorporated into  
a matrix in order to direct mesenchymal stem cells 
(MSCs) toward osteogenic differentiation and ensure dif-
ferentiation following implantation.3 Previous studies 
have demonstrated enhanced osteogenic differentiation 
of MSCs when cultured in an extracellular matrix–like 
environment.4,5 Incorporation of factors into alginate 
hydrogel–coated titanium dioxide (TiO2) scaffolds, like  
simvastatin, was recently demonstrated to enhance  

osteogenic differentiation of both human osteoblasts 
(hOBs) and hAD-MSCs.6,7 Also incorporation of pro-
teins, like amelogenin, which is the major component of 
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enamel matrix derivative (EMD), has been demonstrated 
to enhance osteogenic differentiation of bone marrow–
derived MSCs.8

In this study, a TiO2 scaffold coated with an EMD-
enriched alginate hydrogel was designed. Previous studies 
have reported the TiO2 scaffold to have properties which 
may have potential for BTE purposes, such as porosity, 
interconnectivity, and compressive strength.9 EMD is 
commercially available, and in clinical use as Emdogain®, 
and contains extracellular matrix derivatives from embry-
onic porcine tooth enamel. It is used in periodontal regen-
eration where it facilitates formation of new cementum, 
periodontal ligament, and bone.10,11 Furthermore, it has 
been shown to enhance differentiation of osteoblasts.12,13 
Hence, primary hOBs can be used for proof of concept, to 
verify the osteogenic effect of EMD. The hypothesis of 
this study was that cells seeded on TiO2 scaffolds would 
demonstrate osteogenic differentiation when EMD was 
added to the subsequent alginate hydrogel coating.

The aim of the study was to assess the viability and 
osteogenic differentiation of hAD-MSCs and primary 
hOBs seeded on porous TiO2 scaffolds subsequently 
coated with an alginate hydrogel enriched with EMD.

Materials and methods

Scaffold production

Porous TiO2 scaffolds, 4 mm in height and 9 mm in diam-
eter, were produced by polymer sponge replication as pre-
viously described.9 The scaffolds were sterilized by 
autoclaving at 121°C for 20 min.

MSCs

The hAD-MSCs were isolated from liposuction material 
from abdominal regions of three healthy female donors 
(aged 36, 50, and 61 years). The donors provided informed 
consent and collection and storage of adipose tissue, and 
hAD-MSCs were approved by the regional ethics commit-
tee for medical research. The isolation and in vitro expan-
sion of hAD-MSCs were carried out as previously 
described.14 The hAD-MSCs were cultured in medium 
consisting of Dulbecco’s modified Eagle’s medium 
(DMEM)/F12 (Gibco/BRL, Carlsbad, CA, USA) supple-
mented with 10% human platelet lysate plasma (PLP),15 2 
IU/mL heparin (Wockhardt, Wrexham, UK), and 1% peni-
cillin/streptomycin. Cells were subcultured at confluence 
and expanded for 4–5 passages.

Characterization of hAD-MSCs by flow 
cytometry

The hAD-MSCs were validated as MSCs by flow cytom-
etry and differentiation assays as previously described.15 

The following fluorochrome-conjugated antibodies were 
used for cell surface marker staining: CD14/PE (Diatec, 
Oslo, Norway), CD19/APC (Diatec), CD45/PE (eBiosci-
ence, San Diego, CA, USA), CD105/APC (Diatec), 
HLA-DR/APC (Diatec), IgG/PE (Southern Biotech, 
Birmingham, AL, USA), CD34/APC (BD Biosciences, 
San Jose, CA, USA), CD73/PE, CD90/PE (BD 
Biosciences), and CD44/PE (Southern Biotech).

Osteogenic differentiation

Osteogenic differentiation of hAD-MSCs was performed 
at passage 7 as follows. Cells were seeded at 3.5 × 104 cells 
per well in a 12-well plate and differentiated in a medium 
consisting of DMEM/F12 (Gibco) containing 10% PLP, 2 
IU/mL heparin and 1% penicillin/streptomycin, 10 mM β-
glycerophosphate, 10 nM dexamethasone, and 150 µM 
l-ascorbic acid-2-phosphate. The medium was changed 
every 3–4 days. Cells were harvested after 21 days of cul-
ture for use in quantitative reverse transcription polymer-
ase chain reaction (qRT-PCR) and staining. For alizarin 
red staining, the cells were washed with phosphate buff-
ered saline (PBS), fixed for 1 h with 1% paraformaldehyde 
(PFA), and rinsed with PBS. Mineralization was observed 
by staining with 40 mM Alizarin Red S (pH 4.2) for 5 min. 
The qRT-PCR was done for RUNX2 and ALPL (Table 1).

Adipogenic differentiation

Adipogenic differentiation of hAD-MSCs was performed 
at passage 7. Cells were seeded at 3.5 × 104 cells per well 
in a 12-well plate and cultured in DMEM/F12 (Gibco) 
containing 10% PLP, 2 IU/mL heparin and 1% penicillin/
streptomycin, 10 mg/mL insulin (Novo Nordisk, 
Bagsvaerd, Denmark), 0.5 mM 1-methyl-3 isobutylxan-
thine, 1 µM dexamethasone, and 100 µM indomethacin 
(Dumex-Alpharma, Copenhagen, Denmark). The medium 
was changed every 3–4 days. Cells were harvested after 21 
days of culture for use in qRT-PCR and Oil Red O staining. 
The qRT-PCR was done for PPARG (Table 1).

Chondrogenic differentiation

For chondrogenic differentiation, 1 × 106 cells were imbed-
ded in 100 µL alginate.15 Chondrogenic differentiation was 
induced by DMEM/F12 (Gibco) supplemented with 2.8 g/L 
glucose, 1 mM sodium pyruvate (Gibco), 0.1 mM ascorbic 
acid-2-phosphate, 0.1 µM dexamethasone, 1% ITS (insulin 
25 µg/mL, transferrin 25 µg/mL, and sodium selenite 25 ng/
mL), 1.25 mg/mL human serum albumin (Octapharma, 
Jessheim, Norway), 500 ng/mL bone morphogenic pro-
tein-2 (Wyeth Pharmaceuticals, Taplow, UK), 25 ng/mL 
recombinant human transforming growth factor-β1 (R&D 
Systems, Minneapolis, MN, USA), and 200 mg/mL insulin-
like growth factor 1 (IGF1; Sigma–Aldrich, St. Louis, MO, 
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USA). Medium was changed every 3–4 days. Cells were 
harvested after 21 days of culture for use in qRT-PCR. 
The qRT-PCR was done for SOX9, COL2A1, and ACAN 
(Table 1).

Alizarin red staining

For alizarin red staining, the cells were washed with PBS, 
fixed for 1 h with 1% PFA, and rinsed with PBS. 
Mineralization was observed by staining with 40 mM 
Alizarin Red S (pH 4.2) for 5 min.

Oil Red O staining

For Oil Red O staining, the cells were washed with PBS, 
fixed for 15 min with 4% PFA, and washed in 50% isopro-
panol. Lipid droplets were visualized by staining the cells 
for 10 min with Oil Red O, followed by washing with 
isopropanol.

Osteoblasts

The hOBs (Cambrex Bio Science, Walkersville, MD, 
USA) from three male donors (aged 10, 16, and 41 years), 
two from femur and one from tibia, were cultured in osteo-
blast culture medium supplemented with 10% fetal bovine 
serum, 0.1% gentamicin sulfate, amphotericin-B, and 
ascorbic acid (Lonza, Walkersville, MD, USA). The hOBs 
from the femur donors were subcultured till passages 6 and 
8, and the hOBs from tibia were propagated till passage 9.

Cell seeding and coating

Cell seeding was performed using an agitated seeding 
method in order to ensure a homogeneous cell distribution 
throughout the scaffold.16 Scaffolds were presoaked in cul-
ture medium and placed in 24-well plates, after which 1 
mL cell suspension was added at a density of 2 × 105 cells/
mL. After seeding, the plates were agitated on an orbital 
shaker at 200 r/min for 6 h at 37°C in humid conditions. 
Following agitation, the cell-seeded scaffolds were trans-
ferred to new culture plates in 1 mL culture medium and 
incubated overnight for 18 h at 37°C in a humidified 
atmosphere of 5% CO2. The next day, the cell-seeded scaf-
folds were coated with EMD alginate (EMD group) using 
a self-gelling alginate system.17 Scaffolds were washed 
twice in a 4.6% d-Mannitol solution and subsequently cen-
trifuged at 300 × g for 1 min to remove excess 4.6% 
d-Mannitol. Scaffolds were then immersed in a freshly 
made solution consisting of three parts: 1% (w/v) Pronova 
ultrapure (UP) low viscosity, high-G sodium alginate 
(LVG) sodium alginate (FMC BioPolymer, Sandvika, 
Norway) in 4.6% d-Mannitol, 2% (w/v) Novamatrix cal-
cium-oligoG-alginate (FMC BioPolymer), and 50 µg/mL 
EMD (Lot number: EMD 9121; Institut Straumann, Basel, 

Switzerland) in 0.003% (w/v) acetic acid in 4.6% d-Man-
nitol. The scaffolds were left to incubate at room tempera-
ture for 10 min to allow the alginate solution to gel. 
Subsequently, the scaffolds were centrifuged at 300 × g for 
1 min to remove excess alginate solution. The alginate-
coated scaffolds were stabilized in a 50 mM CaCl2 solu-
tion and transferred to new culture plates in 1 mL culture 
medium and maintained at 37°C in a humidified atmos-
phere of 5% CO2 for up to 21 days. To assess the effect of 
EMD and alginate coating, two more groups were included. 
One group of scaffolds was coated with alginate without 
EMD (alginate group). The other control group was 
washed twice in 4.6% d-Mannitol, centrifuged at 300 × g 
for 1 min, as for the other groups, and subsequently trans-
ferred to new culture plates in 1 mL culture medium (con-
trol group). Triplicates of each donor, each treatment, and 
for two harvest time points were included, rendering a 
total of 108 cell-seeded scaffolds (54 hOBs and 54 hAD-
MSCs). The culture medium was changed every second 
day and collected for analyses. The cells in scaffolds were 
harvested after 14 and 21 days of culture for use in 
qRT-PCR.

Visualization of cells and alginate coating

The alginate coating was visualized by periodic acid–Schiff 
(PAS) staining. Scaffolds were cut in half and fixed in 4% 
PFA/4.6% d-Mannitol for 15 min prior to staining. Fixed 
scaffolds were washed with distilled water and oxidized in 
1% periodic acid solution (Sigma–Aldrich) for 5 min. 
Then, scaffolds were rinsed with distilled water and placed 
into Schiff reagent (Sigma–Aldrich) for 15 min. 
Subsequently, scaffolds were incubated in PBS containing 
1.25% bovine serum albumin (BSA) and 0.2% Triton 
X-100 for 30 min followed by incubation with mouse 

Table 1.  List of TaqMan probes used in qRT-PCR.

Gene symbol Gene name TaqMan assay no.

GAPDH Plyceraldehyde-3-
phosphate dehydrogenase

Hs99999905_m1

COL1A1 Collagen type I alpha 1 Hs00164004_m1
TNFRSF11B Osteoprotegerin Hs00900360_m1
SPP1 Osteopontin Hs00959010_m1
BGLAP Osteocalcin Hs01587814_g1
PPARG Peroxisome proliferator-

activated receptor gamma
Hs01115513_m1

SOX9 SRY (sex determining 
region Y)-box 9

Hs00165814_m1

COL2A1 Collagen type II alpha 1 Hs00264051_m1
ACAN Aggrecan Hs00202071_m1
RUNX2 Runt-related transcription 

factor 2
Hs00231692_m1

ALPL Alkaline phosphatase Hs00758162_m1

qRT-PCR: quantitative reverse transcription polymerase chain reaction.
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anti-human Pan-Cadherin (1:2000, I-8H5; MP Biomedicals, 
Santa Ana, CA, USA) for 1 h at room temperature. After 
washing in PBS containing 2.5% BSA and 0.05% Tween 
20, the scaffolds were incubated in secondary antibody, 
Alexa Fluor 488 rabbit anti-goat IgG (1:250) (Invitrogen 
Life Technologies, Paisley, UK), for 30 min at room 
temperature. Finally, scaffolds were incubated in PBS 
containing 4′,6-diamidino-2-phenylindole (DAPI) at a con-
centration of 5 mg/mL for nuclear labeling. Stained scaf-
folds were placed on a coverslip and covered with Dako 
fluorescent mounting medium (Dako, Glostrup, Denmark). 
Confocal laser scanning microscopy (CLSM) was per-
formed on a FluoView 1000 (Olympus, Center Valley, PA, 
USA). Alexa Fluor 488 and DAPI were detected using spe-
cific filters for the respective fluorophores, and the PAS 
staining was detected with a filter for Alexa-546.18 For 
macroscopic evaluation of PAS staining, scaffolds were 
photographed using a SONY NEX-5N camera (Sony, 
Tokyo, Japan).

Lactate dehydrogenase activity in culture 
medium and acridine orange/ethidium bromide 
staining for viability assessment

The cytotoxicity was estimated based on the lactate dehy-
drogenase (LDH) activity in the culture medium collected 
every second day up to 14 days with a cytotoxicity detec-
tion kit (Roche Diagnostics, Mannheim, Germany) accord-
ing to the manufacturer’s instructions. The absorbance was 
measured in a plate reader (Biochrom Asys Expert 96 
Microplate Reader; Biochrom, Holliston, MA, USA).

Viability of hAD-MSCs was evaluated by acridine 
orange/ethidium bromide (AO/EB) staining at day 2 after 
alginate coating. Scaffolds were cut in half to reveal the 
center of the scaffold and incubated with AO/EB staining 
solution in culture medium (1:10) for 5 min. Fluorescence 
images were captured using CLSM. The AO and EB were 
both excited using a 488-nm laser. The emitted fluores-
cence for AO was acquired at 500–560 nm, and for EB, the 
emission was acquired at 600–700 nm using a virtual 
channel setting.19 The scaffold surfaces were visualized 
using CLSM in reflection mode.

Analysis of messenger RNA expression

Total RNA was isolated from scaffolds using Qiagen RNA 
mini-kit (Qiagen, Hilden, Germany) according to the man-
ufacturer’s protocols. The complementary DNA (cDNA) 
was synthesized with RevertAid First Strand cDNA 
Synthesis Kit (Fermentas, St. Leon-Rot, Germany) using 
random primers. The qRT-PCR was performed in the 
Applied Biosystems 7300 Real-Time System (Life 
Technologies) with TaqMan Universal PCR Master Mix 
and TaqMan Gene Expression Assays (Applied Biosystems, 
Paisley, UK). The qRT-PCR was done for GAPDH, 

COL1A1, TNFRSF11B, SPP1, and BGLAP. List of probes 
used in qRT-PCR is provided in Table 1. The qRT-PCR 
analysis was performed in duplicate for EMD and control 
groups at days 14 and 21. Relative messenger RNA 
(mRNA) levels were calculated by the comparative CT 
method.20

Quantification of secreted proteins

Multianalyte profiling of protein levels in culture medium 
was performed on the Luminex 200 system (Luminex, 
Austin, TX, USA) employing xMAP technology. Acquired 
fluorescence data were analyzed by xPONENT 3.1 soft-
ware (Luminex). The amount of osteoprotegerin (OPG), 
osteopontin (OPN), and osteocalcin (OC) in the culture 
medium was measured using the human bone panel kit 
(Millipore, Billerica, MA, USA) in triplicates after 2 and 
14 days for hAD-MSCs and hOBs, and after 21 days in 
triplicates for hAD-MSCs and duplicates for hOBs. All 
analyses were performed according to the manufacturer’s 
protocols.

Statistics

The data obtained by gene expression and protein secre-
tion analyses were compared groupwise using the Holm–
Sidak test following a parametric one-way analysis of 
variance (ANOVA). Whenever the equal variance and/or 
the normality test failed, a Kruskal–Wallis one-way 
ANOVA on ranks was performed (SigmaPlot 12.0; Systat 
Software, San Jose, CA, USA). A probability of ⩽0.05 
was considered significant.

Results

Characterization of hAD-MSCs

Surface antigen profiles obtained at passage 5 were con-
current with those of hAD-MSCs. Furthermore, cells dif-
ferentiated into adipogenic and osteogenic lineages at 
passage 7 as verified by extensive staining of lipid droplets 
(Oil Red O) and calcium deposits (Alizarin Red) as well as 
by up-regulation of PPARG (adipogenic) and RUNX2 and 
ALPL (osteogenic) expression by real-time RT-PCR analy-
sis. Cells also differentiated into the chondrogenic lineage 
with up-regulation of the chondrogenic markers (SOX9, 
COL2A1, ACAN) (Figure 1).

Characterization of cell-seeded and alginate-
coated scaffolds

PAS/Pan-Cadherin double staining revealed that the algi-
nate coating left an even distribution of alginate hydrogel 
throughout the scaffolds (Figure 2). Confocal microscopy 
further confirmed that cells as well as alginate were 
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attached to the struts leaving the pores in the scaffolds 
unplugged (Figure 2).

Cell viability

The LDH activity in the culture medium from hAD-MSC 
cultures did not change during the initial culture period for 
either EMD or alginate groups. However, a 10% higher 

activity was detected at day 12 in the medium from EMD 
group when compared to control group (Figure 2). In the 
medium from hOB-seeded scaffolds, a lower LDH activity 
was observed for both EMD and alginate groups compared 
to control group at days 2 and 4 (Figure 2). The low cyto-
toxicity was verified by live/dead staining demonstrating 
that the majority of cells were viable at day 2 after alginate 
coating (Figure 2).

Figure 1.  (a) Surface marker profiles of hAD-MSCs as measured by flow cytometry before differentiation (passage 5). (b) 
Light microscopy pictures of stained osteogenic and adipogenic differentiated hAD-MSCs on day 21: upper panel—adipogenic 
differentiated cells stained with Oil Red O; lower panel—osteogenic differentiation of hAD-MSCs stained with Alizarin Red. (c) 
Real-time RT-PCR analysis of RUNX2 and ALPL expression in osteogenic differentiated cells, PPARG in adipogenic differentiated cells, 
and SOX9, COL2A1, and ACAN in chondrogenic differentiated cells after 0 and 21 days of inductive culture.
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Figure 2.  PAS/Pan-cadherin double staining of (a) hAD-MSC-seeded uncoated and (b and c) alginate-coated scaffolds. The alginate 
is distributed throughout the scaffold as visualized by the PAS staining (red) depicted in the cross–sectional view (b). The alginate 
(arrowheads) coats the struts (S) without filling the pores (P), and pancadherin (yellow) stained cells (arrows) attach to the scaffold 
struts (S). The images are representative of the respective groups. (d) AO/EB staining of hAD-MSCs 2 days after alginate coating. 
The majority of cells are viable (green), and only few necrotic cells (N) and cells undergoing apoptosis (AP) are present. The image 
is representative of the respective group. LDH activity measured in culture medium from (e) hAD-MSCs and (f) hOBs cultured 
on (e) EMD (EMD) and alginate (Alginate) scaffolds. The result is presented in percentage of control, uncoated scaffold. Values 
represent the mean of three donors (six parallels per donor) + SD.
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Figure 3.  The effect of EMD on relative mRNA expression levels for COL1A1, TNFRSF11B, SPP1, and BGLAP after 14 and 21 
days of culture for hAD-MSCs and hOBs on scaffolds. The result is presented in percentage of control, alginate group, normalized 
to reference gene GAPDH, and shown for each individual hAD-MSC and hOB donor, respectively (D1, D2, D3). Horizontal lines 
indicate the average mRNA expression of three donors (one parallel per donor). (a) indicates significant (p ⩽ 0.05) difference 
compared to alginate group.
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Analysis of mRNA expression

Relative quantification of the mRNA expression in hAD-
MSCs showed no significant differences between groups at 
any time points (Figure 2). For hOB-seeded scaffolds, 
COL1A1 and TNFRSF11B expression was significantly up-
regulated in EMD group after 14 days of culture compared 
to alginate group (p = 0.011 and p = 0.013, respectively). 
Also, the expression of BGLAP was significantly higher in 
the EMD group after 14 (p = 0.004) and 21 (p = 0.006) days 

of culture when compared to the alginate group. No signifi-
cant differences were observed in the expression of SPP1 
mRNA at any of the time points when comparing the exper-
imental groups (Figure 3).

Quantification of secreted proteins

Few and inconsistent differences were observed between 
the EMD and alginate groups in the hAD-MSC cultures 
when comparing the average content of OPG, OPN, and 

Figure 4.  Secretion of OPG, OPN, and OC to culture medium from hAD-MSCs and hOBs cultured on EMD scaffolds at days 
2, 14, and 21. The result is presented in percentage of control, alginate group, and shown for each individual hAD-MSC and hOB 
donor, respectively (D1, D2, D3). (a) indicates significant (p ⩽ 0.05) difference compared to alginate group.
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OC in the culture medium from the three donors (Figure 
4). In donor 1, OC was significantly higher in the EMD 
group at day 2 as compared to the alginate group (0 = 
0.009), but at day 14 the opposite was found (p = 0.02). No 
differences were observed for OPN, and for OPG, a differ-
ence was only found in donor 3 at day 21 where the con-
centration was lower in the EMD group (p = 0.01).

In the hOBs, the average content of OPN in the culture 
medium of the EMD group was significantly increased at 
days 2 (p = 0.01, p = 0.002) and 14 (p = 0.007, p = 0.02) 
for both donors 1 and 3, respectively. For donor 2, how-
ever, the alginate group demonstrated a higher level of 
OPN in the cell medium at day 2 only (p = 0.03). No fur-
ther significant differences were observed between EMD 
and alginate groups when comparing the average content 
of OPG and OC in the culture medium from the hOB cul-
tures. The content of OC in the culture medium from the 
hOB cultures was not detected at a high enough level to 
allow for quantification. The low level of detectable OC in 
the medium was most likely caused by repeated freeze 
thaw cycles during storage.

Variations were seen in the content of proteins in the 
culture medium when comparing the effect of EMD on the 
various donors (Figure 4). Significant donor differences 
were observed for hAD-MSCs in the secretion of OPG 
between donor 1 and donor 3 at day 21 (p = 0.01) and in 
the secretion of OC between donor 1 and donor 3 at days 2 
(p = 0.03) and 14 (p = 0.04). However, donor differences 
were also observed for the hOBs in the secretion of OPG at 
day 14 between donor 2 and donor 3 (p = 0.004) and in the 
secretion of OPN between donor 2 and 3 at days 2 (p = 
0.03) and 14 (p = 0.04).

Discussion

The alginate hydrogel coating of the cell-seeded TiO2 scaf-
folds did not induce a cytotoxic response. The expression 
of the osteoblast markers COL1A1, TNFRSF11B, and 
BGLAP and the secretion of OPN were significantly higher 
in hOBs when cultured on scaffolds with EMD-enriched 
alginate, whereas the hAD-MSCs seemed unaffected by 
the EMD.

With an average pore size of 400 µm and an intercon-
nectivity of more than 90% through 200 µm connec-
tions,9,21 the TiO2 scaffold may have sufficient space for 
coating applications. A subtle coating without compromis-
ing porosity is desired to allow capillary ingrowth, suffi-
cient cell nutrients, and oxygen supply. Insufficient oxygen 
delivery to the center of three-dimensional scaffolds may 
inhibit cell survival,22 and hypoxia has furthermore dem-
onstrated to reduce osteogenic differentiation of adipose-
derived mesenchymal cells.23 Except for the first time 
points, negligible differences were observed across groups 
with respect to the LDH activity in the medium. This indi-
cates that the open-pore scaffold structure was sufficiently 

preserved by the alginate hydrogel and the EMD. Larsen et 
al.24 recently demonstrated the impact of the distance 
between cells immobilized in alginate to the cell medium 
interface in terms of oxygen diffusion. The findings from 
this study suggested that the distance between the immobi-
lized cells to the cell medium interface was small enough 
to maintain viability. This is in agreement with a previous 
study reporting high cell viability in alginate hydrogel for 
21 days.25

An initial decline of LDH activity was observed in the 
medium from the hOBs, but not from the hAD-MSCs. The 
centrifugation steps in conjunction with the coating proce-
dure may have contributed to the removal of loosely 
adhered cells. The authors cannot soundly explain why 
this seemed to affect only one cell type. However, no dif-
ferences were observed between the groups for the hOBs 
at day 6 onward.

Neither gene expression nor protein analysis indicated 
that EMD influenced the osteogenic differentiation of 
hAD-MSCs. This is in agreement with a previous study 
that evaluated mRNA expression of human umbilical cord 
MSCs at early time points.13 In that study, EMD was 
shown to up-regulate osteogenic markers only when osteo-
genic supplements were present in the culture media. 
Recently, the impact of donor age on the differentiation 
potential of hAD-MSCs was demonstrated.26 The effect of 
donor age was described to mainly influence chondrogenic 
differentiation. Differences in donor age could explain 
some of the large donor variations observed in this study, 
especially when it comes to the chondrogenic differentia-
tion. The lack of osteogenic response in the hAD-MSCs, 
when cultured on scaffolds with EMD, may also in part be 
attributed to the relatively high donor age. However, there 
was no trend of age-related changes in expression and 
secretion in either cell type.

In contrast to the hAD-MSCs, the hOBs cultured on 
scaffolds with EMD did significantly up-regulate the 
expression of the early osteoblast markers (COL1A1, 
TNFRS11B) after 14 days of culture and the late osteoblast 
marker BGLAP after both 14 and 21 days. EMD stimu-
lated the secretion of OPN to the culture medium at early 
time points for donors 1 and 3, whereas an increase was 
observed for donor 2 at a much later time point. The stimu-
latory effects of EMD on osteoblast differentiation are in 
agreement with previous reports.12,27

The finding that EMD incorporated in the alginate 
hydrogel could enhance the osteogenic expression sug-
gests a potential for the TiO2 scaffold and the alginate 
hydrogel coating in BTE. As previously demonstrated for 
simvastatin,6,7 the results of this study indicate that also 
substantially larger proteins such as EMD may exert cel-
lular effects when included in an alginate hydrogel. Based 
on our data, care must be taken when interpreting results 
from studies based on cells from only one donor and with 
a narrow window of observations. The huge variation in 
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differentiation potential between primary cells from 
donors may lead to contradictory results.

The alginate hydrogel may have potential as a vehicle for 
in situ delivery of factors involved in cell differentiation. 
The clinical potential of the method described, in vitro cell 
expansion on the TiO2 scaffold followed by alginate hydro-
gel coating prior to implantation, enables differentiation fac-
tors to act in situ. Few previous studies have attempted to 
modify osteogenic differentiation of cells adhered to a scaf-
fold by encapsulation of an alginate hydrogel. Although the 
hypothesized effect of EMD was not accomplished for the 
hAD-MSCs in this study, other factors may be added to the 
alginate hydrogel to regulate differentiation of cells. Recent 
studies have demonstrated effects of peptides,25,28 statins,9 
proteins,29 and biomaterials30 on cell differentiation in algi-
nate hydrogels. Further in vitro studies need to be conducted 
in order to find the most appropriate factor for MSC differ-
entiation in conjunction with TiO2 scaffolds and alginate 
hydrogel. Future studies should include more donors and 
samples in order to more fully elucidate the impact of donor 
variation and differentiation.

In conclusion, low cytotoxicity and significant up-regu-
lation of the osteoblast markers COL1A1, TNFRSF11B, 
and BGLAP and secretion of OPN in hOBs demonstrated 
that the post-seeding alginate hydrogel coating was toler-
ated by the cells and functioned as a vehicle for in situ 
delivery of proteins such as EMD. Hence, the alginate 
coating procedure may have a potential for local delivery 
of factors to enhance osteogenic differentiation of cells in 
a porous scaffold.
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