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Abstract To model the Fåhræus–Lindqvist effect, Haynes’ marginal zone theory is
used, following previous works, i.e., a core layer of uniform red blood cells (RBCs)
is assumed to be surrounded by an annular plasma layer in which no RBCs are present.
A simplified trial-and-error solution procedure is provided to determine the size of the
core region and the hematocrit level in that zone in addition to the apparent viscosity,
given the (upstream) large vessel hematocrit level and the average hematocrit level in
the (downstream) small vessel. To test the model, a set of experimental data is selected
to provide not only apparent viscosity data but also the average hematocrit levels in
small tubes of different diameters. The results are found to support Haynes’ marginal
theory, with no fitting parameters used in the computations. Viscous dissipation is
determined. The use of the mechanical energy balance is found to lead to results that
are consistent with those based on the momentum balance, while leaving the average
hematocrit level undetermined and required by either experimental data or an additional
equation based on further theoretical work. The present analysis is used to model
bifurcation using published empirical correlations quantifying the Fåhræus effect and
phase separation. The model equations are extended to microvascular networks with
repeated bifurcations.

Keywords Fåhræus effect . Red blood cell . Axial accumulation . Viscous dissipation .

Blood viscosity . Bifurcation .Microvascular network . Arterioles . Cell depletion

1 Introduction

As blood flow occurs from a large vessel to a small-diameter one (less than about
0.3 mm), the hematocrit level decreases (Fåhræus effect) [1]. A decrease in the apparent
viscosity as the vessel diameter decreases also occurs (Fåhræus and Lindqvist effect)
[2].

A review of the Fåhræus and Fåhræus–Lindqvist effects is provided in [3–5], with a review
of the mechanisms in [5] and the progress of Fåhræus’ conceptions in cardiovascular
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physiology [4]; in particular the Fåhræus–Lindqvist effect was associated by Fåhræus and
Lindqvist of the accumulation of red blood cells (RBCs) [5] (shown schematically in Fig. 1),
leading to a decrease in the apparent viscosity. Most of the resistance to blood flow occurs in
the microvascular part, where the Fåhræus–Lindqvist effect reduces microvascular resistance
[5, 6]. With very small tube diameters, excluded in the present analysis (less than 4–6 μm), the
apparent viscosity increases drastically when the tube diameter decreases, as RBCs must
deform for flow to occur [3]. The present work extends previous investigations, based on
Haynes’marginal theory [7], i.e., blood flow in small diameter vessels is considered and a two-
layer model is considered: in the core layer, RBCs aggregate and in the outer one the plasma is
free from any RBCs (Fig. 2), consistent with the RBC axial accumulation mechanism given by
Fåhræus–Lindqvist for the reduction of apparent viscosity [5].

A review of microvascular network models can be found in [8, 9]. The Fåhræus and
Fåhræus–Lindqvist effects, along with phase-separation effects leading to disproportionate
distributions of hematocrit in daughter branches (in bifurcations), are considered in [10] using
empirical correlations. The RBC transport model in Pries et al. [10] is revisited in [9] using a
continuous (rather than discrete) RBC distribution for an efficient solution algorithm for
pressure, flow, and hematocrit distribution in large capillary networks. The migration of RBCs
in microvessels is considered in two and three dimensions in [11] and [12], respectively; a
large number of RBCs is considered as liquid capsules, allowing for the deformation of RBCs.
Mansour et al. [13] used the Quemada viscosity model [14], along with the Phillips model [15]
to account for shear-induced diffusion and hydrodynamic interactions while accounting for the
variation of the diffusion parameters with the tube hematocrit and dimensionless local radius to
account for RBC deformability. Bressloff et al. [16] used the Quemada viscosity model along
with diffusion in a cell migration model to study cell depletion and hematocrit distribution in a
side branch (bifurcation); the analysis shows relatively few RBCs attaining the side branch
from the main branch and little effect of the side branch angle.

Following the work of Fournier [3] based on Haynes’ marginal zone theory [4], the present
work provides a simple solution procedure and general results for the size of the core region,
the hematocrit level in the core region, and the ratio of apparent viscosity to blood flow
viscosity at a hematocrit level assumed to be 40% (as an example) at two temperatures: 37 and
20 °C, for different hematocrit levels in smaller vessels. Previous work by Sharan and Popel
[17] used Haynes’ marginal theory, while adopting the correlations in Pries et al. [8, 10]
quantifying the Fåhræus effect (in a modified form) and those quantifying the Fåhræus–Lindqvist
effect; the cell-free layer viscosity is considered different from the plasma’s viscosity due to
additional viscous effects caused by roughness of the interface between the core and annular
layers (determined numerically using a PDE finite element package). The normalized cell-free
layer viscosity is then determined as an unknown using the correlations referred to above.

Vein (HD) Artery (HF) Intermediate 
vessel (HT) 

Fig. 1 Schematic figure of the Fåhræus effect using the notations for the hematocrit level changes in [3] from HF

in the arterial end to HD in the venous end and HT in the intermediate vessel
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In the first part of the present investigation, no fitting parameter is used and the Fåhræus
effect is obtained from experimental data [18], whereas the Fåhræus–Lindqvist effect is
estimated with the results compared with Azelvandre and Oiknine’s experimental data [18]
at a hematocrit level of 35% (large tube) and a temperature of 20 °C. In addition, viscous
dissipation effects are considered, including the impact of the size of the core region on friction
losses. The governing equations are presented first, followed by the solution procedure and
results. In the second part, the model equations needed to solve microvascular network blood
and erythrocyte flow problems (where repeated bifurcations occur) are presented, using the
experimentally determined correlations by Pries et al. [8, 10] for the Fåhræus effect and the
phase separation effect (leading to disproportionate distributions of blood flow and total
hematocrit between the daughter branches in the case of bifurcation).

2 Governing equations

The present model is built upon Haynes’ marginal theory [7], in which two layers for flow are
considered. The governing equations based on the momentum and mass balances [3] are
reviewed and the solution is presented with the final results compared with those in [3].
Viscous dissipation effects are considered along with the mechanical energy balance.

2.1 Velocity profiles

The boundary conditions are: continuity of the velocity and shear rates at the interface r=r∗

between the two layers [3, 19]:

B:C:1 at r ¼ r*; vc ¼ va ð1Þ

B:C:2 at r ¼ r*; μc
dvc
dr

¼ μa
dva
dr

ð2Þ

The other two conditions are finite shear stress at r=0 and the no-slip boundary condition at
the capillary wall.

B:C:3 atr ¼ 0; μc
dvc
dr

¼ finite ð3Þ

B:C:4 atr ¼ R; va ¼ 0 ð4Þ
The annular region is assumed to be free from any RBCs and the core region is assumed to

have a uniform hematocrit level, HT. Applying the momentum balance to the core and annular

Intermediate 
vessel 

Fig. 2 Schematic figure of Haynes’ model [4] showing an annular region without RBCs (plasma) and a core
layer assumed to have a uniform concentration of RBCs
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zones, respectively, while using Eqs. (2) and (3), yields

�μc
dvc
dr

¼ C
r

2
ð5Þ

�μa
dva
dr

¼ C
r

2
ð6Þ

in which μc and μa represent the core and annular (RBC-free) layer viscosities, respectively,
and C is the pressure gradient

C ¼ p0 � pL
L

ð7Þ

where L is the capillary length. Integration leads to

vc ¼ �C
r2

4μc
þ vm ð8Þ

where vm is the maximum velocity reached at the centerline. For the annular region, the
velocity profile is given by

va ¼ C

4μa
R2 � r2
� �

: ð9Þ

The use of Eq. (1) provides the following expression for vm

vm ¼ C

4

r*2

μc
þ R2 � r*2

μa

� �
: ð10Þ

The volume flow rates are determined by applying the above-determined velocity profiles
using

Qa ¼
Z R

r*
2πvardr ¼ πC

8μa
R2−r*2
� �2 ð11Þ

Qc ¼
Z r*

0
2πvcrdr ¼ πCr*2

8

r*2

μc
þ 2 R2 � r*2
� �

μa

� �
ð12Þ

The total flow rate is the sum of Qa and Qc,

Q ¼ πC
8

r*4

μc
þ R4 � r*4

μa

� �
: ð13Þ

2.2 Relation between hematocrit and apparent viscosity

The conservation of mass provides the following relation:

Q HD ¼ Qc HC: ð14Þ
Using the above equation, along with the following relation relating the average RBC

volume fraction in the small capillary HT to the volume fraction in the core layer HC [3]

HT

HC
¼ σ2 ð15Þ

316 R. Chebbi



leads to
HT

HD
¼ Q

Qc
σ2 ð16Þ

where σ = r∗/R.
Substituting for the flow rates gives

HT

HD
¼ σ2 1þ 1� σ2ð Þ2

σ2 2−2σ2 þ σ2
μa

μc

� �
2
664

3
775 ð17Þ

consistent with the treatment in [3].
The apparent viscosity is defined using the Hagen–Poiseuille equation

μapp ¼
πC R4

8Q
: ð18Þ

Using Eq. (13) leads to

μa

μapp
¼ 1þ σ4 μa

μc
� 1

� �
: ð19Þ

Following Fournier [3], Eq. (20) is used to obtain blood viscosity as a function of
hematocrit H [20] as

μa

μ
¼ 1� αH ð20Þ

where α is a function of H and T in Kelvin, given by

α ¼ 0:070 exp 2:49 H þ 1107

T
exp �1:69 Hð Þ

� �
; ð21Þ

with H up to 0.6.
Using Eq. (19) along with Eq. (20) leads to

μapp

μF
¼ 1� αFH F

1� σ4αCHC
ð22Þ

as in [3].

2.3 Viscous dissipation

The rates of viscous dissipation per unit length are obtained from the velocity gradients,
through integration in the core and annular layers:

ϕc ¼
Z r*

0
2πμc

dvc
dr

� �2
rdr ¼ πC2r*4

8μc
ð23Þ

ϕa ¼
Z R

r*
2πμa

dva
dr

� �2
rdr ¼ πC2

8μa
R4 � r*

4
� 	

ð24Þ
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The total viscous dissipation is given by the sum of both terms

ϕ ¼ ϕc þ ϕa ¼
πC2

8

r*
4

μc
þ R4 � r*

4

μa

 !
: ð25Þ

Substituting for μc using Eqs. (15) and (20) gives

ϕ ¼ πC2R4

8μa
1� αCHC

HT

HC

� �2
" #

: ð26Þ

The wall shear stress is obtained from the velocity gradient, using Eq. (10)

τw ¼ CR

2
: ð27Þ

Applying the momentum balance yields

p0 � pLð ÞπR2 ¼ 2πRLτw ð28Þ
which leads to Eq. (7).

Application of the mechanical energy balance leads to

pL � p0
ρ

¼ �F ð29Þ

where F is the friction loss per unit mass of fluid given by

F ¼ L

ρQ
ϕ ð30Þ

leading to

p0 � pL ¼ L

Q
ϕ: ð31Þ

Combining Eqs. (7) and (31) leads to

ϕ
Q

¼ C: ð32Þ

Dividing the terms in Eqs. (13) and (25) also provides Eq. (32).

3 Solution procedure and results

Substituting Eqs. (15) and (20) into Eq. (17) yields

HT

HD
� HT

HC
1þ

1� HT
HC

� 	2
HT

HC
2� 2

HT

HC
þ HT

HC
1� αCHCð Þ

� �
2
664

3
775 ¼ 0 ð33Þ

where αC is given by Eq. (21) as a function of HC and T. Given values of HT, HD=HF and T,
Eq. (33) can be solved, using Eq. (21), to obtain HC and αC. Then, substituting for HC into
Eqs. (20) and (21) yields μC/μa and σ = r∗/R, respectively. Finally, Eq. (22) provides μapp/μF after
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substituting for HC, αC and σ. The results are shown in Figs. 3, 4 and 5 for HF=40% at
temperatures 20 and 37 °C. As seen in Fig. 3, HC increases as HT decreases (i.e., as the small
vessel diameter decreases: Fåhræus effect); as a result, μC/μa also increases. On the other
hand, the core-layer size decreases as HT decreases (Fig. 4), which is expected for a fixed HF

as HC increases. The Fåhræus–Lindqvist effect is clear in Fig. 6, with a decrease in apparent
viscosity as HT decreases (smaller vessel diameter). One effect of temperature decrease is a
slight increase of HC (Fig. 3), resulting in a slight decrease in the relative size of the core
region σ (Fig. 5). The other effect of lower temperature is an increase in the core region

HT
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Fig. 3 Variation of core zone hematocrit level with HT
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Fig. 4 Variation of the ratio of the core zone viscosity to the free RBC layer viscosity with HT

Dynamics of blood flow: modeling of the Fåhræus-Lindqvist effect 319



viscosity (Fig. 4) and the apparent viscosity (enhanced at a smaller vessel diameter as seen in
Fig. 6). Relevant experiments are summarized in [3, 21]. Ref. [18] provides data for both HT

(solid curved line fit in Fig. 4 in [18]) and apparent viscosity (Fig. 5 in [18]) with μF given in
Fig. 3 [18] at HF=35% and a temperature of 20 °C. The results (obtained with HF=35% and
T=20 °C) based on Haynes’marginal zone theory, are found to compare favorably with the
experimental data (Fig. 7).
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Fig. 5 Variation of the core zone size with HT
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Fig. 6 Variation of the ratio of the apparent small vessel viscosity to the upstream large vessel viscosity with HT
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4 Bifurcation and network

4.1 General network case

Bifurcation occurs repeatedly in arteriole networks and results in splitting of the flow at each
bifurcation. A schematic of one bifurcation is shown in Fig. 8. Different diameters are found to
have different values of HC, HT, and σ as seen from the results presented above.

The network consists of different capillaries and nodes. The models in [10, 22] rely on the
Hagen–Poiseuille equation applied to each capillary and the mass balance to each node. The
splitting of the flow and RBCs between the two branches is disproportionate (phase separation)

Present Work

Experimental (Azelvandre and Oiknine, 1976)

Diameter D, μm 
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Experimental (Azelvandre and Oiknine, 1976)

Theoretical results (marginal zone theory)

T=20oC

HF=35%

Fig. 7 Comparison of Haynes’ marginal zone theory apparent viscosity results with Azelvandre and Oiknine’s
experimental data at HF=35% and T=20 °C [18]

Daughter 
branch 2  

Daughter
branch 1 

Feeding 
vessel 

Fig. 8 Schematic of a bifurcation showing the feeding vessel and the daughter branches 1 and 2
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[10]. Using the same notations in [10] for conductance J=Q/ΔP, we have

Q1 þ Q2 ¼ Q ð34Þ
which gives

J 1ΔP1 þ J 2ΔP2 ¼ JΔP: ð35Þ
The conductances are obtained from the Hagen–Poiseuille equation, Eq. (18), in each

capillary (including the mother branch) as

J i ¼ πR4
i

8Liμapp;i
: ð36Þ

Extending the analysis presented earlier yields the relative apparent viscosity as a function
of capillary diameter, temperature and feed hematocrit level HD. Combining Eqs. (19) and (20)
while using Eq. (15) yields for each daughter branch

μa

μapp;i
¼ 1� αC;iHC;i

HT ;i

HC;i

� �2

i ¼ 1; 2ð Þ ð37Þ

To solve for HT,i the following equation can be used

HT ;i

HDλi

.
ηi

� 	 ¼ HDλi

.
ηi

� 	
þ 1� HDλi

.
ηi

� 	h i
1þ 1:7 e−0:35Di � 0:6 e�0:01Di
� �

i ¼ 1; 2ð Þ

ð38Þ
as an application of the correlation in Pries et al. [8] for HT, where HD is changed to HDλi/ηi,
equal to the erythrocyte flow passing through capillary i, QHDλi, divided by the blood flow
rate in the same capillary, Qηi. To solve for HC,i in Eq. (37), the following equation extending
Eq. (33) to the bifurcation case, is required

HT ;i

HDλi

.
ηi

� HT ;i

HC;i
1þ

1� HT ;i

HC;i

� 	2
HT ;i

HC;i
2� 2

HT ;i

HC;i
þ HT ;i

HC;i
1� αC;iHC;i

� �� �
2
664

3
775 ¼ 0 ð39Þ

Solving the system of equations obtained for each node, Eq. (35), is by trial and error, using
the conductance expression, Eq. (36), and the apparent viscosity expression, Eq. (37), for each
capillary. The split flow ratios (blood flow fractions), needed in Eq. (39), are obtained as

ηi ¼
Qi

Q
¼ J iΔPi

JΔP
i ¼ 1; 2ð Þ ð40Þ

with

η1 þ η2 ¼ 1: ð41Þ
The split ratio for the hematocrit (erythrocyte flow fraction) in branch 1 is acquired from the

experimentally determined expressions in [10] combined in a compact form as

ln
λ1

1−λ1

� �
¼ � 6:96

D
ln

D1

D2

� �
þ 1þ 6:98

1� HD

D

� �
ln

η1 � X 0

1� 2X 0

1−
η1 � X 0

1� 2X 0

0
BB@

1
CCA;X 0 ¼ 0:4

D
ð42Þ
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where X0 is the minimum blood flow split ratio required to bring RBCs inside the branch. The
RBC mass balance yields

λ1 þ λ2 ¼ 1 ð43Þ
where λ1 and λ2 are the hematocrit split ratios in branches 1 and 2. Finally, the core size in
each branch is obtained from Eq. (15) as σi=(HT,i/HC,i)

1/2 (i=1, 2).
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Fig. 9 Variation of the blood flow split ratio η1 and hematocrit split ratio λ1, with D1 (smaller branch diameter)

D1 (m)

100 150 200 400 600 800 1000 1500

σ 1,
σ 2

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

37oC

HF=40%

Bifurcation Case

D2=DF=1000m

σ1

σ2

Fig. 10 Variation of the relative core regions sizes σ1 and σ2 with diameter D1
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4.2 Solution in the case of a given pressure gradient ratio in daughter branches

Pressures at the different nodes are obtained by trial-and-error solutions for the whole network
as discussed above. However it is possible to obtain a solution in a given bifurcation, once the
ratio of the pressure gradient is selected as shown below.

Using Eqs. (36) and (37) gives

Qi ¼
πCiR4

i

8μa
1� αC;iHC;i

HT ;i

HC;i

� �2
" #

i ¼ 1; 2ð Þ ð44Þ

Using Eq. (44) yields the ratio

η2
η1

¼ C2R4
2

C1R4
1

1� αC;2HC;2
HT ;2

HC;2

� 	2� �

1� αC;1HC;1
HT ;1

HC;1

� 	2� � : ð45Þ

Making use of Eq. (41) then gives

ηi ¼
CiR4

i 1� αC;iHC;i
HT ; i

HC; i

� 	2� �
X2
k¼1

CkR4
k 1� αC;kHC;k

HT ;k

HC;k

� 	2� � i ¼ 1; 2ð Þ ð46Þ

In the following, we assume the same pressure gradient, i.e., C1=C2, as an example, which
discards the effect of pressure gradient when comparing blood and erythrocyte flows in
branches 1 and 2. The diameters are assumed to be D2=D=1,000 μm, D1 is varied from
70–1,000 μm and HD=HF=40% with T taken as 37 °C. The solution is by trial and error. To
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Fig. 11 Variation of the core layer hematocrit volume fractions HC1 and HC2 with D1
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start calculations, a guessed value of η1=1.5 X0 is used. The value of λ1 is then calculated
using Eq. (42). Using Eq. (38) leads to HT1 and HT2. Equation (39) can then be solved using
the regula falsi method to obtain HC1 and HC2. Substituting into Eq. (46) with C1=C2 provides
a new guess for η1. The procedure is repeated until convergence is reached. η2 and λ2 are
obviously given by Eqs. (41) and (43), respectively, and σi (i=1, 2) are obtained from Eq. (15)
as mentioned earlier. The results for the blood flow and erythrocyte split ratios in the smaller
branch (of diameter D1) are shown in Fig. 9, showing a phase separation effect at smaller
values of D1. For the case considered, Eq. (42) yields a minimum blood flow split ratio (at
which no RBCs pass through the branch) of X0=0.4/D=(0.4/1,000), occurring at D1 slightly
below 130 μm as seen from Fig. 9. The relative core region size in the smaller branch σ1 is
seen to increase and reaches a value of 1 at large diameter values (Fåhræus effect), whereas σ2
is obviously equal to 1 as perceived from Fig. 10. The core layer hematocrit volume fraction
HC1 increases with diameter and reaches HC2 as the diameters become equal (Fig. 11).

5 Conclusions

The results for the apparent viscosity in smaller vessels show a reduction in the apparent
viscosity as the vessel diameter decreases (Fåhræus–Lindqvist effect) and are found to support
Haynes’ marginal theory (with deviations from experimental data [18] within 4.6–15.1%)
without the use of any fitting parameter in the computations. The decrease in apparent
viscosity has physiological effects as it lowers microvascular resistance to blood flow and
results in lower blood pressures [5]. The proposed solution procedure provides the core region
size along with the core region hematocrit level and viscosity of this layer. Viscous dissipation
is found. The use of the mechanical energy balance provides results that are consistent with
those based on the momentum balance, leaving the average hematocrit level (HT) reduction
(Fåhræus effect) undetermined. Using Haynes’ marginal zone theory, as extended in [3, 17]
and in the present analysis, and the equations in Pries et al. [8, 10] for HT and erythrocyte flow
ratio, a model is provided for microvascular networks with repetitive bifurcations.
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