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Abstract In the present study, artificial neural network

(ANN) modelling coupled with particle swarm optimiza-

tion (PSO) algorithm was used to optimize the process

variables for enhanced low density polyethylene (LDPE)

degradation by Curvularia lunata SG1. In the non-linear

ANN model, temperature, pH, contact time and agitation

were used as input variables and polyethylene bio-degra-

dation as the output variable. Further, on application

of PSO to the ANN model, the optimum values of

the process parameters were as follows: pH = 7.6,

temperature = 37.97 �C, agitation rate = 190.48 rpm and

incubation time = 261.95 days. A comparison between the

model results and experimental data gave a high correlation

coefficient (R2
ANN ¼ 0:999). Significant enhancement of

LDPE bio-degradation using C. lunata SG1by about 48 %

was achieved under optimum conditions. Thus, the novelty

of the work lies in the application of combination of ANN–

PSO as optimization strategy to enhance the bio-degrada-

tion of LDPE.
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Introduction

Synthetic polymers like low-density polyethylene (LDPE)

are mostly inert towards microorganisms. In the initially

produced form, they undergo very slow biodegradation in

both stabilized and un-stabilized forms [1]. The long-term

properties of the synthetic and natural polymers have at-

tracted more interest during the last decade as environ-

mental concerns regarding the disposal of these commodity

plastics have increased. It is generally proposed that oxo-

biodegradation of LDPE films is initiated by UV irradiation

[1] or thermal exposure [2]. These treatments generate a

macro radical in the amorphous region of the polymer

substrate. The free radical is then rapidly oxidized through

a series of chain reactions to produce a carbonyl group [3,

4]. Microbial attack is started where the carboxylic acid

group is generated through Norrish Type I and II

mechanism during oxidation [5]. The microbiological

process, which leads to the degradation of natural polymers

such as starch, cellulose and proteins during exposure to

soil, is well understood. However for the commercialized

synthetic polymers there are conflicting claims concerning

their susceptibility to microbial attacks [3, 5, 6]. The

manner and rate are dependent on the mechanism of

degradation and on the acceleration of the process, re-

spectively. The mechanism consists of generation of ter-

minal carboxylic acid group, which then undergoes beta

oxidation. In most studies, fungi were considered for the

degradation of LDPE due to their ability to form hy-

drophobic proteins that can attach to the polymer surface

[7, 8], their generation of degrading enzymes that are well-

matched to the insoluble LDPE [9], the faster growth of

fungal biomass in soil compared to bacteria [10], and the

growth extension and penetration into other locations

through the distribution of hyphae. Also, fungi survive

environments with low nutrient, pH and moisture avail-

ability. However, there are still many unexplored areas of

research in the degradation of LDPE by fungi. Charac-

terization of LDPE degradation by solid waste-source fungi

is among these attractive topics because of their
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compatibility with a waste-rich environment (such as

landfill and composting) that contains a variety of dis-

carded polymers. Among various statistical optimization

techniques for media components along with environ-

mental parameters, response surface methodology (RSM)

has been extensively employed in the optimization of

various bio-processes. However, in some cases, complex

non-linear biological interactions cannot be completely

described by using second-order polynomial model based

on RSM [11, 12]. Hence, a more advanced modelling and

optimization technique such as artificial neural network

modelling coupled with genetic algorithm has been suc-

cessfully implemented to optimize multivariate non-linear

bio-processes [13, 14]. The merits of ANN based models

were discussed in earlier reports [13, 15]. Since genetic

algorithm suffers from one major shortcoming as it de-

stroys previous information between successive gen-

erations, a more robust algorithm that can deal with

relatively small population size and can help converge at

the optimal solutions very quickly while memorizing the

previously known good solutions between generations is in

great demand. Particle swarm optimization (PSO) is one

such population-based evolutionary algorithm that can be

more effectively used for solving a non-linear problem

involving multiple variables. The particles in PSO follow a

similar trend to share information among them and thereby,

develop an evolutionary advantage [16]. Constructive co-

operation, information sharing, inexpensive computation

(requires low memory and CPU speed requirements), and

easy implementation are few other attractive properties of

PSO [12, 17]. Owing to its robustness, PSO is now being

applied to solve various non-linear problems with multiple

variables in majority of engineering disciplines and has

gained the status of a potential competitor of frequently

used genetic algorithm [15]. Since there are no literatures

on the use of ANN–PSO optimization technique to enhance

LDPE bio-degradation, the present work is thus aimed at

optimizing the process parameters by ANN modelling

coupled with PSO algorithm to maximize LDPE bio-

degradation.

Methods

Substrate and Pre-treatment

Standard commercial polyethylene (grade-LD103) films

were procured from commercial market, Gunupur, India.

The average molecular weight (Mw) was about 100,000.

Raw material composition was 30 micron thickness, 132 �C
melting point, density 0.923 g/cm3, melt flow index 2 g/

10 min. They were cut in pieces of approximately

8 cm 9 2 cm size. All the chemicals were procured from

(HIMEDIA Laboratories, India). Photo and thermal oxida-

tion were used as pre-treatment steps of the pre-weighed

LDPE samples where one set of LDPE strips were thermally

pre-treated (TP) at 80 �C in an hot air oven (Sigma, USA) for

120 h. Another set of LDPE films were UV irradiated (UV)

under 20 Wultraviolet lamp (ZSZ-D, Changsha Guangming

Co. Ltd). The samples were placed 15 cm away from the

lamp, where the light intensity was measured using a UV

intensity meter (UV-I, Beijing Shida Ltd) at wavelength

(354 nm) for 50 h. The third set was the combined pre-

treatment of thermal and UV-irradiation (TP-UV).

Microorganism, Medium and Growth Conditions

The fungus Curvularia lunata SG1 isolated from soil

samples of garbage dumping site of Gunupur, India, was

cultured and maintained in Sabouraud’s broth (SB) [Dex-

trose-20, Peptone-10, pH -5.6 ± 0.2 (in g L-1)] at 37 �C
for 7 days for spore formation. Spores were harvested and

suspended in 1 % (v/v) Tween 80 (T-80). Spore suspension

was then centrifuged at 4000 rpm for 20 min. The spores

were suspended in distilled water to prepare a spore

inoculum of 1 9 107 spores/mL. About 10 % (v/v)

inoculum was developed in 250 mL of SB in 1 L Erlen-

meyer flask containing pre-treated LDPE and T-80 as

surfactant and incubated in an incubator shaker (Remi, RIS

24 BL) at 100 rpm and 37 �C for 90 days. Initial screening

of different media showed that SB supplemented with T-80

exhibited good LDPE degradation and hence SB was used

as medium for further studies. Flasks with the pure culture

but without the polymer films served as the biotic control.

Control was treated the same way as the test (samples and

fungus) samples. Samples were withdrawn every 15 days

under aseptic conditions, washed in sterile water and air-

dried before further analysis.

Study of Fungal Viability

The viability of the microorganism (live and dead cells)

present on the LDPE films were determined using Live/

Dead� FungaLightTM yeast viability Kit (Invitrogen, Ger-

many). The kit consists of SYTO9 and propidium iodide

(PI) dyes. These two dyes differ in their ability to stain the

fungal cells. SYTO9 (green colour) stains the live as well

as the dead cells and, PI (red colour) stains only the dead

cells. When the later is added it reduces the fluorescence of

SYTO9 by penetrating into the dead cells. Hence live cells

fluorescence green and dead cells fluorescence red [18].

LDPE films removed at regular time intervals were stained

with FungaLight, incubated for 10–15 min in the dark and

then the images were captured under a fluorescence mi-

croscope (Leica DM5000, Germany) with a blue filter at an

excitation of 475 nm.

260 Indian J Microbiol (July–Sept 2015) 55(3):258–268

123



Measurement of Biological Properties

The culture broth was harvested after fermentation and the

cells were separated by centrifuging at 10,000 rpm for

15 min. The supernatant was used to analyze the total

extracellular protein concentration using Bradford assay

[19] with Bovine serum albumin as the standard. Oxidase

activity was determined as reported method by Seong et al.

[20]. The total carbohydrates were estimated as suggested

by Dubois et al. [21] with glucose as the standard. Fungal

biomass is a direct measure of its growth in the medium;

and its amount was estimated as per a reported method by

Trishul and Doble [22].

Polymer Characterization

In order to shed further light on the nature of bio-degraded

product, the product associated with fungal cells was

characterized by gravimetric weight loss, tensile strength

(TS), percentage elongation at break (EAB), contact angle

(CA), scanning electron microscopy (SEM) FT-IR and

XRD. The bio-degradation of LDPE films were evaluated

by their weight loss. The tensile properties of the samples

were measured as per the test method: ASTMD 882, speed:

50 mm/min, gauge length: 12 cm, type of test specimen:

rectangle (8 cm length–2 cm width) on a universal testing

machine (Instron 1195). The strips were subjected to TS

tests; where the TS was calculated by dividing the max-

imum load by the original cross sectional area and EAB

was calculated by dividing the elongation at the moment of

rupture of the specimen by the initial gauge length of the

specimen and multiplying by 100 according to Yabannavar

and Bartha [23].

The CA of the samples was analyzed using a Camtel

Goniometer (Royston, FT200). The surface morphologies

of bio-degraded samples were examined by SEM (Hitachi

S3400-N) operated at 200 kV accelerating voltage. FT-IR

(Nicolet Magna 460) spectrophotometer was used to study

the spectrum character of bio-degraded samples associated

with or without pre-treatment and fungal exposure. Mea-

surement range was 4000–500 cm-1, with a 4 cm-1

resolution, 0.475 cm-1/s scan speed and 32 scans. The

technique used was attenuated total reflectance (ATR) with

an Avantar multibounce HATR accessory with ZnSe

crystal at 45�. Also XRD of the bio-degraded samples were

performed to understand the progress of bio-degradation

using X-ray diffractometer (Phillips, PW-1710) and X-ray

generator (Philips, PW-1729) using Cu Ka (k = 1.542 Å).

The incident angle (2h) was taken between 10� and 60�.

Optimization of Bio-degradation in Batch

Ferrmentor

Statistical Experimental Design

LDPE degradation was carried out in a 3.7 L fermentor

(Model: KLF-2000; Make: Bio Engineering, Wald,

Switzerland) with a working volume of 2 L. Each degra-

dation experiment contained a mixture of pre-treated

LDPE, inoculum, SB and T-80. The range and the levels of

the four critical process variables, namely, pH, tem-

perature, incubation time and agitation are given in

Table 1. A central composite design (CCD) was employed

for four factors and the experimental design (Table S1) was

obtained by using Design Expert version 7.0. The process

parameters were varied on the basis of the experimental

design and controlled automatically. Sampling was done

every 30 days for bio-degradation analysis.

Artificial Neural Network (ANN) Modelling

Artificial neural network is a good inspiration of human

brain and nerve systems that are known for their extreme

ability to learn and classify data [24]. For this study, a feed

forward error back propagation network has been chosen as

it helps in training data in more accurate way. A feed

forward network with back propagation contains three

layers those are input layers, hidden layers and output

layers which altogether makes the model of network. Input

layers and output layers depends on the input data and

reason of the network, like if the network is used as a

regressor it will have one output or if it is used for clas-

sification it will have all classes as its output. Hidden layers

were chosen according to rules of thumb. According to one

of its rule, hidden layers will be less than twice of its input

layers. Feed forward network is trained using average

square error as performance index. During training, ANN

calculates the input weights, layer weights and biases to be

Table 1 Experimental range and levels of independent variables

Variables Component Level

-2 -1 0 ?1 ?2

A Temperature (�C) 37 45 50 55 60

B pH 4 5 6 7 8

C Incubation time (days) 0 30 60 90 120

D Agitation (rpm) 0 50 100 150 200

Indian J Microbiol (July–Sept 2015) 55(3):258–268 261

123



used for data set that is to be calculated by mean square

error (MSE).

MSE ¼ Observed value� Simulated valueð Þ2

n
ð1Þ

Feed forward error back propagation network will have to

train for some n number of times to reach the approximate

precision level. Functioning of neural network proceed in

two stages, viz., learning or training and testing or infer-

ences. Operation performed by the network during training

is to sum up the weights and inputs for a neuron with its

bias by some activation function. Input layer receives in-

formation from the external sources and passes this infor-

mation to the network for processing. Hidden layer accept

information from the input layer, does all the information

processing, output layer receives processed information

from the network, and sends the results out to an external

receptor. The input signals are modified by inter connection

weight known as weight factor (Wij), which represents the

interconnection of ith node of the first layer to jth node of

the second layer. The sum of modified signals (total acti-

vation) is then modified by a sigmoid transfer function.

Similarly, outputs signal of hidden layer are modified by

interconnection weight (Wij) of kth node of output layer to

jth node of hidden layer. All data are normalized in the

0.1–0.9 range to avoid the scaling effect of parameter

values. Therefore, all of the data (Xi) are converted to

normalized values. Where Xi is ith input or output variable

X. More details regarding construction of ANN can be

found in the quoted Refs [25–28].

Zj ¼
X

WijXi

� �
þ bj ð2Þ

Wij weights from input layer i to hidden layer j, Xi input, bj
bias to hidden layer, Zj activation function.

The choice of optimal neural network architecture and

topology is vital for successful application of ANN [11].

Hence, various network topologies were investigated for

their predictability. The ANN model developed was used

as fitness function in PSO algorithm to identify the optimal

set of input conditions that can yield maximum LDPE

degradation.

Particle Swarm Optimization

This technique uses population of particles that evolves

during its search for best fit condition. PSO process ran-

domly initialises the system and the particles in the system

move through multi-dimensional search space with a certain

velocity associated with each particle. Every particle moves

through the entire search space and keeps track of its best

value. This best value associated with each particle is known

as their personal best. Apart from its own personal best value

it also has information about the overall best value or the

global best value of the objective function or fitness func-

tion. Each particle updates its velocity and position ac-

cording to its most successful neighbouring particles to

follow their successful positions or the particle will move

back to its previous best value position if it is found to be the

global best value position. Following Eqs. (3, 4) are equated

for updating velocity and position respectively.

Vk
i ¼ Wk�1Vk�1

i þ C1R1 Lk�1
i � Pk�1

i

� �

þ C2R2 Gk�1
i � Pk�1

i

� �
ð3Þ

Pk
i ¼ Pk�1

i � Vk�1
i ð4Þ

k current iteration, C1, C2 learning factors, R1, R2 uni-

formly distributed random variables range from [0–1]. Li
k-1

local best solution of particle, Gi
k-1 global best solution of

system, Wk-1 inertia weights, Vi
k-1 velocity of particle i at

k-1 iteration, Pi
k-1 position of particle i at k-1 iteration.

At last each particle will be accumulated at an optimum

value for the system.

Results and Discussion

Biological Properties

The initial abiotic step involves the oxidation of the

polymer chain which leads to the formation of carbonyl

groups. Carbonyl group decreases during microbial inte-

gration. Microorganisms secrete catalytic agents (i.e. en-

zymes and free radicals) able to cleave polymeric

molecules reducing progressively their molecular weight.

This process generates oligomers, dimers and monomers.

Microorganisms act by mechanical, chemical and/or en-

zymatic means [29]. Growth of C. lunata SG1 secretes

oxidase enzyme which leads to removal of two carbon

fragments, acetyl CoA. The highest production (478 U/

mL) of oxidase was seen with TP-UV treated followed by

UV-treated (345 U/mL) and TP LDPE (197 U/mL) with C.

lunata SG1 for 90 days. These extracellular enzymes

convert polymer into oligomers, dimmer and monomer,

which can enter the cell and then be utilized as the energy

source.

The amount of total carbohydrates in terms of reducing

sugars (such as glucose) increased throughout the study

period. The highest carbohydrate was observed in TP-UV

treated LDPE with C. lunata SG1. It is higher in thermally

treated samples when compared to untreated samples. The

carbohydrate in the medium in the presence of the polymer

was higher than in its absence (-ve control) indicating that

the polymer was used by the organisms for their growth.

Starch provides higher oxygen permeability as it is con-

sumed by microorganism. Highest permeability helps in
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the release of degradation products from the samples, thus

making the matrix hollow, increasing the surface to volume

ratio [30].

Fungal biomass is a direct measure of the growth of the

strains in the medium and it will contain live and dead cells.

There is an increase in the biomass as a function of time

(direct measurement of fungal biomass is hampered because

fungi penetrate into and bind themselves tightly to the solid-

substrate particles. Biomass measured based on the content

of certain cell components like chitin). The formation of a

biofilm on the polymer surface is the first crucial step prior to

the onset of bio-degradation. Since the bio-degradation

proceeds at a slow rate, the biofilm on the surface should

remain active having live microorganisms for a long period

of time. After 90 days of treatment with C. lunata SG1, both

live and dead organismswere observed on the LDPE surface.

More live organismswere observed on TP-UV treated LDPE

surface when compared to that on the TP or untreated LDPE

surface. Similar results showing highest biomass was ob-

served in supernatant of TP-UV treated LDPEwithC. lunata

SG1 after 90 days (60 mg/L). Biomass produced by the

fungal strain was significantly influenced by the pre-treat-

ment strategy. Pre-treatments of the polymer lead to its

oxidation and subsequent breakdown assisting in the easy

assimilation by the fungus. Hence UV or thermal treatment

can be effectively used as a strategy before subjecting the

polymer to bio-degradation [22, 31]. Hence the biomass

content is high in the pre-treated samples than in the un-

pretreated samples.

Bio-degraded Sample Characterization

Bio-deterioration Analyses

To quantify LDPE degradation byC. lunata SG1, weight loss

of the pre-treated LDPE films were measured at different

time intervals. The results (Fig. 1a) showed a time dependent

and effect of pre-treatment on weight loss of LDPE films. A

decrease in weight loss was observed in the pre-treated LDPE

films after they were exposed to C. lunata SG1 in SB, T-80

medium at 100 rpm and 37 �C and this decrease over a

90 days period was highest (48.40 %) with combined TP-

UV pre-treated samples, while less (43.76 %) and least

(36.20 %) with individual photo and thermal pre-treatment

respectively (Fig. 1a). However, no weight loss was evident

in the control experiment where in incubation was carried out

at the same temperature for a similar length of time but

without C. lunata SG1 (data not shown). 6.2 % weight loss

was reported for UV irradiation of 60 h. as compared to

untreated LDPE with Bravebacillus brostelensis for 30 days

[32]. UV irradiation for 500 h. increased the biodegradation

of polyethylene by 25 % using Penicillium simlicissimum

YK [33]. A 17 % weight loss was observed with TP LDPE

exposed to Bacillus sphericus, GC subgroup IV (Alt) in

6 months, while the weight loss was only 10 % with un-

treated LDPE [34]. The weight loss of the LDPE films can be

attributed to the breakdown of carbon backbone due to en-

zymatic degradation by the fungus. Taken together, the

above results indicate that C. lunata SG1 is capable of de-

grading LDPE. The TS of the pre-treated LDPE films de-

creased from 47.5 ± 0.0003 to 15.2 ± 0.00011 Mpa in

90 days (Fig. 1b). This may be due to a combination of bio-

degradation and bio-deterioration. Bio-degradation brings

about chemical changes in the substrate due to action of

micro and macro fouling whereas bio-deterioration is more

of a physical change in terms of changes in the integrity of

the substrate surface. Similar reports were also seen that after

12 months exposure of polypropylene to mixed soil culture,

the TS of the films decreased from 23 to 17.3 Mpa in UV

treated and from 32 to 18.8 Mpa in thermal treated during the

study period [35]. Thermal and photo-treatment was found to

be working in synergy with biotic treatment resulting in

higher % weight loss and higher decrease in TS during the

study period. Figure 2b shows the changes in % crystallinity

of the pre-treated LDPE samples as a function of time.

During the 90 days period, EAB decreased from 143 ± 3 to

75 ± 3 %. CA is an indication of the hydrophobicity or

wettability of the surface, higher the CA higher is the hy-

drophobicity. The increasing oxidation of pre-treated LDPE

was also shown by the change in the wettability of the surface

of the LDPE samples. The initial CA of the untreated LDPE

film was 85.4 ± 3.5� (Fig. 1ci), which decreased to

34.8 ± 3.5� as a result of combined thermal and UV-pre-

treatment and incubation with C. lunata SG1 for a period of

90 days. Analysis of the thermal and UV-pre-treated LDPE

films exposed to C. lunata SG1 for 30, 60 and 90 days

showed that the wetability and the associated hydrophilicity

of the polymer surface increased further, with the CA de-

creasing to 65.7 ± 2.5�, 45.3 ± 1.5� and 34.8 ± 3.5� re-

spectively (Fig. 1cii–iv). Previous studies account the ability

of the fungal strains (Fusarium sp. AF4, Aspergillus terreus

AF5 and Penicillum sp. AF6) to form biofilm on poly-

ethylene was attributed to the gradual decline in hydropho-

bicity of its surface [36]. There was, however, no such

decrease in the CA for the control set of sample. In the earlier

studies, biodegradation of starch and metal ions blended pre-

treated polypropylene by P. chrysosporium NCIM 1170 and

E. album MTP09 for 1 year showed a decrease in CA of the

polymer by 10� [37].

Spectral Analyses

A comparison of FT-IR spectra of pre-treated LDPE incu-

bated with C. lunata SG1 may provide further information
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Fig. 1 a Percentage weight loss

of the pre-treated and untreated

LDPE incubated with C. lunata

SG1. b Changes in tensile

strength and EAB of LDPE

c contact angle: (i) 85.4� (ii)
65.7� (iii) 45.3� (iv) 34.8�
d FTIR of pre-treated LDPE

films exposed to Curvularia

lunata SGI for 90 days e XRD

of pre-treated LDPE films

exposed to Curvularia lunata

SGI for (i) 30 day, (ii) 60 day

(iii) 90 day
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about the nature of possible interaction of functional groups

of LDPE and biomass. The main band of 2914 cm-1 was

indicative of the C–H stretch and 1454 cm-1 of CH2

asymmetric bending and CH2 rocking at 718 cm-1

(Fig. 1d). From the IR spectroscopy it can be stated that the

fungal contamination leads to a substantial decrease in the

C–H stretch band of the polyethylene at 2914 cm-1. The

increase in carbonyl absorption band at 1624 cm-1 region

was primarily due to the formation of carbonyl bond through

oxidation of the polyethylene moieties during the thermal

and photo treatment. Typical degradation of PE and for-

mation of bands at 1620–1640 and 840–880 cm-1 was also

reported by Onodera et al. [38], attributed to oxidation of

polyethylene. Generally, polyethylene degradation is a

combined photo- and bio-degradation process. First, either

by abiotic oxidation (UV light exposure) or heat treatment,

necessary abiotic precursors are obtained. Secondly, selected

microorganisms degrade the low molar mass oxidation

products to complete the biodegradation [2]. Several reports

state that the fungal action may cause a decrease in the

carbonyl absorption band [24]. Appearance of bands in be-

tween 1662 and 1550 cm-1 is attributed to NH bending of

primary and secondary amide from the peptide bond coupled

with COO anion [36]. As observed, the broad absorption

bands appeared at *3500 and 3269 cm-1 are respectively

attributed to OH and NH stretching modes of polysaccha-

rides and proteins. Similar stretching has also been reported

by Dhal et al. [39]. A strong peak at 1078 cm-1 corresponds

to stretching vibration of C=O bond of polysaccharides. The

absorbance at 1376 cm-1 is due to the methyl group and in

the present study its intensity decreases as a function of time,

which indicates that the oxidation takes place at the primary

position of the polymer chain which can further decompose

to produce ketones and esters [40]. More insight into the

nature of bio-degraded product was obtained from XRD

analysis. XRD patterns of the untreated and pre-treated

LDPE films incubated with C. Lunata SG1 in SB T-80

medium after 90 days (Fig. 1e) showed distinguished peaks

at 9.8 and 29.2 of the angular position 2h. A decrease in

percentage crystallinity is observed in LDPE films after they

are exposed to C. lunata SG1 and this decrease over a

90 days period is higher with thermally and UV pre-treated

LDPE films (Fig. 1e). There were no significant differences

in degree of crystalinity between corresponding films incu-

bated in the absence of C. Lunata SG1. The obtained data

coincide with the results indicating that crystalinity and the

crystal sizes for UV-irradiated films decreased during the

process with the selected microorganisms [41].

Microscopic Analyses

The surfaces of the untreated LDPE films are smooth

without cracks and free from any defects (Fig. 2a). Ex-

pansion of hyphae (Fig. 2b) and formation of bio-films of

C. lunata SG1 (Fig. 2c) was evident on the surface and was

considered to be a result of the surface moistness. Water

could spread smoothly on the surface of thermal and photo-

oxidised LDPE films because the surface had been mod-

ified to be hydrophilic. Therefore, microorganisms could

also expand their colonies over the surface and form a

fungal bio-film. These findings are consistent with the re-

sults of Shah et al. [9]. Such colonization and adhesion by

microorganisms are a fundamental pre-requisite for bio-

degradation of the polymer. Pits were observed on the

surface, suggesting that the fungi penetrate into the LDPE

matrix during degradation. Figure 2d indicates penetration

of fungal hyphae into the LDPE matrix and presence of

surface deformation after bio-film removal. The samples

possessed pitted and eroded surfaces (Fig. 2e). The surface

of the polymer after biological attack was physically weak

and readily disintegrated under mild pressure. Also the

extent of colonization on TP-UV treated are more than on

UV treated LDPE films. The colonization is more on UV

treated than on TP LDPE. These results indicate that pre-

treatment induces oxidation and, hence, the polymer be-

comes brittle, which eventually leads to cracks due to the

action of fungi. Microorganisms that colonize the polymer

surface can probably adhere by means of extracellular

polymeric substances, which mainly constitutes of

polysaccharides. This forms a sheath that is bonded to the

polymer. This plays an important role in transporting the

depolymerising enzymes to its surface [42]. These changes

are probably due to surface degradation. Earlier studies

have suggested that the fungal strain, especially Fusarium

Fig. 2 SEM micrographs of LDPE films before and after incubation

with Curvularia lunata SG1 for 90 days. a Control (no pre-treatment,

no incubation), b after pre-treatment and incubation with C. lunata

(expansion of hyphae on the LDPE matrix), c after pre-treatment and

incubation with C. lunata (biofilm formation on LDPE matrix),

d erosion on the LDPE surface, e disintegratiom of LDPE film
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sp. AF4, was able to adhere to the surface of LDPE and can

cause surface damage [43]. In a study by Bonhomme et al.

[5], SEM evidence confirmed that microorganisms (fungi)

build up on the surface of the polymer (polyethylene) and

after removal of the microorganisms; the surface became

physically pitted and eroded.

Prediction of LDPE Bio-degradation Using ANN–

PSO Optimization

For ANN–PSO optimization our experimental data has to

be first passed onto ANN training algorithm to create a

model and then this model will be passed as a fitness

function to PSO to calculate the optimum values for each

parameter that has been trained. Thus, the experimental

data that were obtained by performing CCD (Table S1)

were used to develop an ANN model by splitting the 19

data into three sets (70 % for training, 15 % for testing and

15 % for validating). Purpose of training is to achieve a

model with low value for mean square error and higher

value for determinant coefficient (R2). While evaluating the

best model it is possible that our model may show higher

value for determinant coefficient and also has high MSE

value, this case should not be considered. Evaluation

should be done carefully by either increasing the number of

hidden layers or by increasing the iterations for training.

We have used 4-7-1 model (Fig.S1.a supplementary) fol-

lowing the rule of thumb as discussed. By training this

model several numbers of times, at a point the value of

MSE was observed to be equal to the error goal with (R2)

Fig. 3 a Performance profile of

epochs and b regression of

experimental data with ANN

predicted data
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values for the model to be 0.99967 (Fig.S1.b supplemen-

tary) and hence this model was considered for our study.

Figure 3 a shows that at epoch value zero the MSE value

was less than 0.06 which has come down linearly to

achieve the error goal at epoch value 1 and remained

constant thereafter. Figure 3 b depicts the (R2) values for

each part of training and overall training with their corre-

sponding values for (R2) with no over fitting of data.

As it is obvious that there is no part with value\0.999

for (R2), it can be concluded that there is no chance of over

fitting of data. Just by looking into any one value at the

regression plot will not give us good result. Training will

update the initial weights, layer weights and biases value at

each iteration which is the important factor for PSO. This

model is fitness function for PSO optimization. We have

used a PSO toolbox provided by MATLAB. For PSO there

are two important factors: the representation of solution

and the fitness function. Unlike GA it takes real numbers as

input. Optimization is considered for population of 40 with

maximum number of iteration of 500, no changes has been

made to the toolbox parameters besides the two mentioned.

Fitness function to be included is the model that has been

tested to its best precision value. Equation 5 is the fitness

function for PSO:

Y ¼ LWj � IWij � Xi

� �
þ Bt

j

� �
þ Bp ð5Þ

Y optimization output, LWj layer weights from hidden to

output, IWij initial weights from input layer i to hidden

layer j, Xj input to ANN model, Bj
t bias value for hidden

layer j for tangent-sigmoid function (t), Bp bias used for

purelin function.

This fitness function when passed into optimizer it dis-

plays a wait bar with the global best value on the top of it.

By observing wait bar it can be seen that it takes less than

half iterations to find a stable global best value. Global best

value achieved by PSO toolbox was -521.1571.

Conclusions

This study has demonstrated that the cells of C. lunata

SG1, successfully applied for bio-degradation of LDPE

films. From these results it could be indicated that the

oxidase produced from C. lunata SG1 may act as a

promising tool in the treatment process of these LDPE

films due to its bioactivity and thermo-stability. Moreover,

this enzyme may be used for further investigations as im-

mobilized form to ensure the bio-degradability of these

LDPE films in environment. Temperature, pH, agitation

and contact time closely affected the bio-degradation ca-

pacity of C. lunata SG1. Bio-degradation kinetic data were

successfully described with ANN because of the lowest

MSE and the highest determination of coefficient values

between network prediction and corresponding ex-

perimental data. PSO gives a unique model to calculate

bio-degradation percentage by C. lunata SG1 under studied

conditions to describe both kinetic and equilibrium data.

Results of this model showed that contact time was the

most efficient parameter, followed by pH for the bio-

degradation process. Bio-degradation of LDPE indicated a

great potential to remove waste plastic as an eco-friendly

process, which was well described by PSO and ANN. It has

been previously reported that a glucoamylase from C. lu-

nata is able to hydrolyze the terminal 1,2-linked rhamnosyl

residues of carbon chains at C-3 position of steroidal

saponins. Cytochrome P450 enzymes (CYPs) have a

function with the conversion of hydrophobic intermediates

of metabolisms and the detoxification of natural and en-

vironmental pollutants [44] With a broader knowledge of

Curvularia genetics and enzymatic activities, sophisticated

molecular breeding can produce strains and biotechno-

logical processes, which could eliminate many types of

contaminants in a cheap and environmentally friendly

manner.
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