
Functional Genomic Screening Approaches in Mechanistic 
Toxicology and Potential Future Applications of CRISPR-Cas9

Hua Shen*, Cliona M. McHale*, Martyn T Smith, and Luoping Zhang**

Superfund Research Program, Division of Environmental Health Sciences, School of Public 
Health, University of California, Berkeley, California 94720, USA

Abstract

Characterizing variability in the extent and nature of responses to environmental exposures is a 

critical aspect of human health risk assessment. Chemical toxicants act by many different 

mechanisms, however, and the genes involved in adverse outcome pathways (AOPs) and AOP 

networks are not yet characterized. Functional genomic approaches can reveal both toxicity 

pathways and susceptibility genes, through knockdown or knockout of all non-essential genes in a 

cell of interest, and identification of genes associated with a toxicity phenotype following toxicant 

exposure. Screening approaches in yeast and human near-haploid leukemic KBM7 cells, have 

identified roles for genes and pathways involved in response to many toxicants but are limited by 

partial homology among yeast and human genes and limited relevance to normal diploid cells. 

RNA interference (RNAi) suppresses mRNA expression level but is limited by off-target effects 

(OTEs) and incomplete knockdown. The recently developed gene editing approach called 

clustered regularly interspaced short palindrome repeats-associated nuclease (CRISPR)-Cas9, can 

precisely knock-out most regions of the genome at the DNA level with fewer OTEs than RNAi, in 

multiple human cell types, thus overcoming the limitations of the other approaches. It has been 

used to identify genes involved in the response to chemical and microbial toxicants in several 

human cell types and could readily be extended to the systematic screening of large numbers of 

environmental chemicals. CRISPR-Cas9 can also repress and activate gene expression, including 

that of non-coding RNA, with near-saturation, thus offering the potential to more fully 

characterize AOPs and AOP networks. Finally, CRISPR-Cas9 can generate complex animal 

models in which to conduct preclinical toxicity testing at the level of individual genotypes or 

haplotypes. Therefore, CRISPR-Cas9 is a powerful and flexible functional genomic screening 

approach that can be harnessed to provide unprecedented mechanistic insight in the field of 

modern toxicology.
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1. Introduction

1.1 Importance of understanding human susceptibility to chemical exposures

Humans vary in their susceptibility to toxicants. Current risk assessment approaches rely on 

uncertainty factors to account for inter-individual variation, which can greatly under- or 

over-estimate the risk for an individual or population. As genetic variation likely accounts 

for a significant proportion of these individual differences, an increased understanding of the 

genetic variability of toxicant response will enable more accurate chemical exposure risk 

assessment.

Currently, the main approaches to identifying gene-environment interactions in toxicant 

mediated disease are genome-wide association studies (GWAS) and candidate gene 

association studies, both of which have limitations. These methods examine associations 

between all variants in the human genome, or variants in sets of genes or pathways 

previously implicated in toxicant response, with a phenotypic outcome related to toxicant 

exposure. GWAS need to be conducted in large exposed and control populations in order to 

find significant associations among the large number of variants tested, which makes these 

studies expensive and often not feasible. The candidate gene association study approach, 

requires smaller study populations than GWAS, but is limited by incomplete understanding 

of modes of action, and thus relevant genes and pathways, for many toxicants. Thus, using 

existing techniques to identify all the chemical susceptibility genes will take many years; in 

the meantime, alternative approaches are needed to identify and prioritize genes for 

candidate gene association testing.

1.2 Identifying all toxicity pathways by functional genomics

In the contest of risk assessment, understanding mechanisms of action of toxicants in a 

broader systems biology context is important to understanding new information and 

adopting next generation risk assessment applications [1–7]. In the field of toxicology, 

mechanistic information is often described by simplified models called modes of action 

(MOAs) or adverse outcome pathways (AOPs), and by more complex models called AOP 

networks. The latter, called networks to indicate the interconnectedness of disease-causing 

AOPs, reflect the various biological pathways and mechanisms through which chemicals 

cause toxicity and disease. Elucidating these mechanisms and their inter-relatedness can be 

challenging. A genome-wide systems biology approach is needed to identify non-obvious 

pathways to toxicity and to understand how normal network function is altered following 

exposure to chemicals or stressors. Functional genomics offers just such an approach. 

Functional genomics uses omic data to describe gene (and protein) functions and 

interactions on a genome-wide scale using high-throughput methods.
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1.3 The role of functional genomics in toxicity testing: evolution of the technologies

In the context of toxicology, functional genomic screening involves systematic knockdown 

or knockout of non-essential genes or proteins on a pathway or genome-wide basis, in a cell 

of interest, and measurement of a toxicity phenotype, such as lethality, viability or fitness, 

following exposure to various doses of a toxic compound. As it directly measures the 

phenotype, it informs the association of a specific gene and its corresponding loss-of-

function in the cellular response to a compound [8, 9]. Thus, functional genomic screening 

has the potential to identify genes that confer resistance or susceptibility to toxicants and to 

reveal toxicity pathways, through pathway analysis. Through the application of now 

affordable high-throughput screening technologies, functional genomic screening provides a 

means to simultaneously and efficiently screen thousands of compounds in cell-based 

systems [10]. Thus, the approach will provide mechanistic insight across many genes, 

pathways and chemicals, supporting the definition of more specific in vitro toxicological 

endpoints and the development of targeted cell-based assays [11, 12], that ultimately will 

have better predictive power for adverse health effects in humans than do traditional animal 

toxicological studies.

Functional genomic screening has been conducted in budding and fission yeast, fruit flies, 

worms, and human cell lines using various techniques. In this review, we particularly 

discuss genomic screens using in vitro models such as yeast and haploid eukaryotes and 

tools such as RNA interference (RNAi) and the most recently developed clustered regularly 

interspaced short palindrome repeats-associated nuclease (CRISPR)-Cas9 gene editing 

system. This review aims to describe the main in vitro functional genomic screening 

approaches that have been developed and to discuss their advantages and limitations 

(summarized in Table 1) in the context of toxicity testing.

As discussed in detail in the following sections, each approach has its own “pros” and 

“cons”. For example, high-throughput yeast screening has been well established due to the 

availability of mutant clones for all non-essential yeast genes, but incomplete homology 

with mammalian genes and functions limits its relevance to human toxicity. To overcome 

this weakness, approaches using mammalian haploid cells such as the KBM7 human bone 

marrow cell line and mouse embryonic stem cells (ESCs), have been developed. However, 

the leukemic nature of KBM7 limits its relevance to toxicity in normal human cells. RNA 

interference (RNAi) and the most recently developed clustered regularly interspaced short 

palindrome repeats-associated nuclease (CRISPR)-Cas9 genome editing system overcome 

many of the limitations associated with the other previously developed approaches. They are 

both applicable to any transfectable cell type and organism, and CRISPR, in particular, is 

relatively easy to design and perform, is highly specific, efficient and well suited for high-

throughput and multiplexed gene editing, and can produce precisely targeted knock-out of 

most regions of the genome at the DNA level [13]. Broad application of this novel CRISPR-

Cas9 system has been recently proposed in many research areas, including gene-therapy, 

drug development, and understanding phenotype associated with genetic variations [14]. 

The goal of this review is to highlight the potential application of CRISPR-Cas9 application 

in toxicity screening of environmental toxicants and discovery of mechanism and 

susceptibility.
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2. Functional genomics in yeast

2.1 Yeast screening process

For several reasons, the eukaryotic budding (Saccharomyces cerevisiae) and fission 

(Schizosaccharomyces pombe) yeasts are ideal models in which to conduct functional 

genomic screening studies [15]. First, yeast is a well-established and widely used eukaryotic 

model for molecular and cellular biology studies [16]. Second, yeast is a unicellular non-

pathogenic organism with rapid and stable growth in both diploid and haploid status. Third, 

the genetic makeup of yeast is fully characterized and genetic manipulation is 

straightforward and easily implemented. In contrast to other higher eukaryotes, most of the 

yeast genes do not contain introns, which simplifies the process of computer-based gene 

identification when conducting genome-wide analyses [17]. Functional information is 

available for nearly every gene in yeast [15, 18]. Fourth, yeast genes are highly conserved in 

human cells and other higher eukaryotes. Nearly half of the human genes implicated in 

heritable diseases have yeast homologues [19]. Although yeast does not possess as many 

physiological mechanisms of response to cytotoxic compounds as do other organisms, many 

of the basic mechanisms in response to chemical and environmental stresses are apparently 

conserved between yeast and other higher eukaryotic organisms [20, 21].

Phenotype-based analysis in mutant strains is a powerful way to determine the role of genes 

in response to a toxicant on a gene-by-gene or genome-wide basis. Many approaches to 

generating mutant strains have been developed including genetic footprinting [22] random 

mutagenesis [23] and polymerase chain reaction (PCR) based gene disruption [24]. Genetic 

footprinting and random mutagenesis are both untargeted and the process of matching 

phenotypes to genes is slow. A novel PCR-based gene disruption strategy was developed to 

generate a deletion (null mutation) in each of the open reading frames (ORFs) in the yeast 

genome [24]. Each yeast gene can be deleted in a directed manner by replacing an individual 

ORF with a selectable marker (e.g. antibiotic resistance) linked to a 20-base molecular tag 

(or barcode) that functions as a unique strain identifier [25]. The use of molecular tags 

allows the mutant strains to be pooled and assayed for the phenotypes in parallel in a process 

called parallel deletion analysis (PDA) [26, 27].

2.2 Parallel deletion analysis (PDA)

The screening process is outlined in Figure 1 of North and Vulpe’s review [27]. Tagged 

(barcoded) strains are pooled and grown together in the presence (treatment) or absence 

(control) of a compound. After treatment, the molecular barcodes from all strains present in 

a pooled culture are amplified simultaneously in a single PCR reaction (using a pair of PCR 

primers that anneal to the common regions flanking the inserted barcodes that are present in 

all strains). PCR products of barcodes can be hybridized to microarrays containing probe 

sequences complementary to the barcodes, and the hybridization signal is proportional to the 

number of cells of that strain in the pooled culture. A fitness score is generated by 

comparing the hybridization signal of a treated strain to that of a control strain.

HTS technologies have also been used to quantify barcodes in pooled strains. One such 

method, Bar-seq, had improved dynamic range and throughput compared with microarray 
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[28]. As next-generation sequencing technologies become more affordable, they will 

predominate. Following barcode quantification, deletion strains whose growth is 

significantly influenced by the compound treatment can be identified [25, 29]. The deleted 

genes may be direct targets, or be involved in modifications or pathways that enable the 

compound’s cytotoxic action [30, 31]. Application of suitable bioinformatics tools, such as 

Gene Ontology, network analysis and ortholog identification reveal further information 

about function and pathways in yeast and other organisms [27].

Four different Yeast Knockout mutant collections were created by a consortium of European 

and North American groups [26] containing homozygous and heterozygous diploid strains 

corresponding to deletions of 5,916 genes (including 1,159 essential genes) and one haploid 

strain of each mating type for every non-essential gene (4,757 genes). Each knockout strain 

is marked by two unique 20-bp barcodes, allowing quantitative and qualitative identification 

[32].

Screening of yeast deletion mutant collections in many published studies has revealed genes 

involved in response to toxicants and stressors, including toxic metal ions and pesticides, as 

reviewed by [15]. We and others have published data on genes involved in resistance to 

toxic metabolites of arsenic [33], benzene [34], and benzo[a]pyrene [35], formaldehyde [36, 

37] as well as mechanisms of toxicity associated with these chemicals. In follow up studies, 

we validated the roles of human orthologs of some of the yeast genes associated with 

benzene [38–40] and arsenic [41, 42] toxicity in mammalian cell lines using RNAi-based in 

vitro knockdown approaches.

2.3 Limitations of screening in yeast

Although yeast functional genomic screening is a powerful tool to identify conserved 

cellular components required for sensitivity or tolerance to a toxicant treatment, it has 

certain limitations. First, yeast can tolerate higher level of toxicants than can human cells 

and thus is not an accurate indicator of toxic doses relevant to humans [33]. Second, 

information on organ or tissue-specific toxicity and cell-cell signaling is absent. Third, while 

many genes are conserved between yeast and human, some yeast genes have many human 

orthologs, making confirmatory experiments challenging. In order to address these issues, 

similar functional genomic screening technologies are now being developed in higher 

eukaryotic systems and are discussed in the following sections.

3. Functional genomics in haploid mammalian cells

Mammalian-based screening systems have the potential to generate results that are more 

directly relevant to toxicity and disease in humans. However, mammals are somewhat 

tolerant of partial loss of a gene function and inactivation of one gene copy rarely leads to 

severe changes in phenotype due to the fact that chromosomes are typically diploid in 

mammals. Therefore, utilization of haploid cells in mammalian screens is necessary. 

Haploid screening has been established in both human and mouse cells.
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3.1 Screening in near-haploid human KBM7 cells

Near-haploid karyotypes have been reported in rare human tumors and leukemias [43] and a 

heterogeneous (mixed ploidy) cell line (KBM7) was established from the bone marrow of a 

patient with a near-haploid chronic myeloid leukemia [44]. Although around half of the cells 

in the initial cultures were near-haploid (apart from disomy of chromosome 8), cells with a 

diploid or greater DNA content tended to outgrow them with continuous passage, rendering 

this cell line initially unsuitable for somatic cell genetics. Two years later, this hurdle was 

overcome when Kotecki et al. reported the derivation of a KBM7 sub-clone (P1-55) that 

stably remained near-haploid for at least 12 weeks [45].

Carette et al. developed a screening method to generate null alleles for genes on all 

chromosomes except chromosome 8 using retrovirally-mediated insertional mutagenesis, in 

the karyotypically stable near-haploid KBM7 sub-clone [46]. Using this approach, they 

identified host factors essential for infection with influenza and genes involved in cytotoxic 

response to three bacterial toxins. Using the same approach, Reiling et al identified a key 

mediator in the response to tunicamycin, a bacterial protein that induces endoplasm 

reticulum (ER) stress and the unfolded protein response [47]. The original method 

developed by Carrette et al. was labor-intensive, and required isolation and expansion of 

individual clones, followed by DNA extraction, inverse-PCR and Sanger sequencing to map 

gene-trap insertions. More recently, they incorporated deep sequencing into their screening 

protocol, facilitating the analysis of millions of mutant alleles in parallel and more accurate 

assignment of genes to phenotypes [48]. Further, they increased improved genome-wide 

coverage by increasing the number of cells transfected and the transfection efficiency. 

Applying this improved approach, they identified 12 human genes important for intoxication 

by four different cytolethal distending toxins [48] and host factors required for entry of 

Ebola virus into human cells [49]. The latter was performed in a derivative KBM7 cell line 

called HAP1, which was generated through a failed attempt to induce pluripotency. HAP1 

cells grow adherently, do not express hematopoietic markers and are haploid for all 

chromosomes including chromosome 8. Importantly, unlike KBM7 cells, HAP1 cells are 

susceptible to rVSV-GP-EboV, the virus used to test for Ebola-related host factors in the 

study. Through the inclusion of a unique DNA barcode in each gene-trap vector, 

Burckstrummer and colleagues subcloned individual gene trap–containing cells, creating a 

library of isogenic cell lines with mutations in individual genes, enabling more efficient and 

systematic pooled screens [50]. So far, clones covering 3,396 genes, almost one-third of the 

expressed genome, have been established [50].

Lehner’s group published two papers illustrating the potential of near-haploid screening to 

delineate the genes involved in pathogen manipulation of host immune response. First they 

conducted a forward genetic screen to identify genes required for the function of the 

Kaposi’s sarcoma herpevirus gene product K5, a ubiquitin ligase that downgreulates major 

histocompatibility complex-1 (MHC-1) and other immunoreceptors [51]. They identified 

proteolipid 2 (PLP2), a protein of unknown function, as essential for K5 activity and showed 

that loss of PLP2 traps the viral ligase in the ER, rendering it inactive. Comparison of the 

plasma proteome of K5-expressing KBM7 cells with and without PLP2, revealed novel 

targets of downregulation by K5. In a more recent study, Lehner’s group conducted a 
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forward genetic screen to identify components of the ER-associated degradation (ERAD) 

pathway targeted by the US11 gene product of human cytomegalovirus, to promote viral 

immune evasion [52]. They identified TMEM129, a previously uncharacterized membrane 

protein, as a novel ERAD E3 ubiquitin ligase and central component of a novel ERAD 

complex that is essential for US11-mediated MHC-1 degradation.

Several groups have utilized near-haploid screening to identify genes and mechanisms of 

drug toxicity or mechanism of action. Birsoy et al. sought to identify resistance mechanisms 

to 3-bromopyruvate (3-BrPA), a drug candidate and glycolysis inhibitor [53]. 

Monocarboxylate transporter 1 (MCT1) was revealed to be a 3-BrPA transporter and key 

determinant of sensitivity. Further, MCT1 mRNA levels were shown to be predictive of 3-

BrPA sensitivity in glycolytic cancer cells, thus representing a potential biomarker of 

responsive tumors. Reiling et al. performed a near-haploid screen to identify genes involved 

in apoptosis induced by brefeldin A (BFA), a lead chemotherapeutic compound that is toxic 

to ER-golgi [54]. A genome-wide haploid genetic screen led to the identification of the 

small G protein ADP-ribosylation factor 4 (ARF4) that protects against BFA toxicity in a 

signaling cascade that requires the CREB3 transcription factor. Further, the CREB3-ARF4 

pathway was shown to be part of a generalized Golgi stress response. Chen et al. performed 

a genome-wide genetic screen in haploid human cells to identify genes that confer resistance 

to severe electron transport chain (ETC) dysfunction when inactivated with a mitochondrial 

complex III inhibitor, antimycin [55]. Loss of ATP Synthase Mitochondrial F1 Complex 

Assembly Factor 1 was found to strongly protect KBM7 and other cell types against 

antimycin-induced, and other forms of ETC dysfunction, and antimycin-induced cell death 

by facilitating maintenance of mitochondrial membrane potential. In a fourth study, the 

mechanism by which the genotoxic chemotherapeutic agent YM155 causes DNA damage 

toxicity was investigated [56]. A requirement for the drug-transporter solute carrier family 

member 35 F2 (SLC35F2) for YM-155-induced DNA intercalation was discovered and 

SLC35F2 expression and YM155 sensitivity were correlated across several cancer cell lines.

Though most human haploid screens have involved the selection of mutants resistant to an 

otherwise lethal agent, thus using cell death or survival as the outcome phenotype, KBM7 

screening studies utilizing non-lethality endpoints have been published. Duncan et al. used 

fluorescence activated-cell sorting to identify genes involved in MHC (major 

histocompatibility complex) class I antigen presentation, by sorting for mutants that were 

defective in surface expression of MHC-1 [57]. More recently, Lee et al. used a 

transcriptional reporter to screen KBM7 cells for constitutive inhibitors of NF-κB and 

identified previously unknown inhibitors [58].

3.2 Screening in haploid mouse embryonic stem cells

Several groups [59–62] have successfully generated mouse haploid embryonic stem cells 

(ESC) that can stably grow after multiple passages, be efficiently subcloned, differentiate at 

similar kinetics as diploid ESCs, and remain in haploid karyotype through initiation of 

differentiation. Availability of these cells facilitates the application of functional genomics 

to study the effects of toxicant exposure in normal stem cells and to mimic early-life 

exposures.
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Applying a transposon-based mutagenesis protocol with near genome-wide coverage, Elling 

et al. identified genes responsible for ricin toxicity [59]. Leeb and Wutz demonstrated and 

conducted a pilot genetic screen for mismatch repair genes involved in toxicity of 2-

amino-6-mercaptopurine [63] and Pettitt et al. identified a gene that mediates olaparib 

toxicity [64]. These studies demonstrate the potential of functional genetic screening in 

mouse haploid ESCs and expand the possibility of screening in multiple cell types and 

developmental pathways [63]. However, mouse ESC are more challenging to culture than 

human KBM7 cells. Recently, haploid ESC have also been derived from monkey [65] and 

rat embryos [66].

3.3 Limitations of screening in haploid mammalian cells

One potential disadvantage of KBM7 is that the cells are not completely haploid, having 

disomy of chromosome 8. Though the KBM7-derivative HAP1, described above, lacks the 

second copy of chromosome 8, it retains two copies of a fragment of chromosome 15, one of 

which is fused to chromosome 19 [49]. Very recently, Burckstummer’s group used CRISPR/

Cas9-based genome engineering to excise this chromosomal fragment and to derive a truly 

haploid cell line called eHAP (engineered-HAPloid) [67].

Though this is an important breakthrough, KBM7 and eHAP, as leukemic cell lines from 

bone marrow, might not reflect the responses of normal cells or other cell types. Carette and 

colleagues successfully reprogrammed KBM7 cells into induced pluripotent stem cells 

(iPSC) by infecting the cells with retroviruses carrying four transcription factors [68]. 

Though the cells retained the BCR-ABL gene fusion, they lost dependency on its signaling 

for survival and became resistant to imatinib. While KBM7-iPSC have potential as 

pluripotent cells, they retain other features of the leukemia cells from which they originate. 

In contrast, haploid mouse ESC are fully haploid and have a largely normal genome. The 

random mutagenesis approach to generate mutants for haploid screening using gene-trap 

retroviruses has limitations, including difficulty in reaching genome-wide coverage due to 

hot and cold spots, and a strong genomic integration bias of retroviruses. Further, it is 

difficult and time consuming. Targeted, gene-specific approaches such as RNAi and 

nuclease-mediated editing are required to systematically knockout or knockdown genes in 

mammalian cells.

4. Functional genomics by RNA interference (RNAi)

4.1 Discovery and application of RNAi

RNAi is an endogenous cellular process, conserved in most eukaryotic species, that involves 

targeted transcript cleavage and degradation after binding of a sequence-specific short-

interfering RNA (siRNA) [69]. This natural process has been exploited as a research tool to 

target mRNA transcripts by introducing into cells homologous synthetic siRNAs, siRNA 

precursors such as short-hairpin RNAs (shRNAs), or double stranded RNA (dsRNA) [70–

72]. Delivery methods include lipid-based transfection, electroporation and viral 

transduction with retroviruses and lentiviruses [73]. As some mammalian cell types are 

resistant to transfection with synthetic siRNAs, they may be alternatively transduced with 

viruses (e.g. lentivirus) carrying expression vectors (normally plasmid) that encode shRNAs 
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to express gene-specific siRNAs within the targeted cells, which can achieve stable and 

highly effective gene suppression in a variety of mammalian cell types [74–76]. Various 

aspects of RNAi approaches, technical limitations and improvements have been reviewed 

recently [77].

RNAi has been widely used to study explore the effects of knocking out single genes in 

functional validation studies. As mentioned in Section 2.2., we used RNAi to knockdown 

and validate the functional roles of human orthologs of genes identified in yeast screens 

associated with benzene [38–40] and arsenic [41, 42] in mammalian cell lines. The 

flexibility of the approach has allowed RNAi to become one of the most powerful tools for 

genome-wide characterization of gene functions and it is adaptable to HTS. RNAi screens 

can be conducted in a pooled or arrayed manner (for illustration see Figure 1 in Willingham 

et al. [78]). In a pooled format, cells are transfected with a siRNA or shRNA library en 

masse and selected by phenotype following exposure to the agent of interest by microarray 

or sequencing. The phenotype may be viability or a cell marker selected by fluorescent 

activated cell sorting. In the arrayed format, cells are transfected with individual siRNAs or 

shRNAs in separate wells, exposed, and assayed in parallel by a variety of methods, 

including high-content microscopy or viability screening, or reporter assays [73]. In HCS, 

cells are labeled with multiple fluorescent markers, which can be measured in multiple 

channels in a highly automated manner [77].

Vector libraries, such as The RNAi Consortium lentiviral library, which contains shRNAs 

with unique barcodes targeting 17,200 humans genes [79], have enabled a pooled high-

throughput RNAi screening approach called shRNA barcode screening. Individual shRNAs 

conferring cells with a specific phenotype under the conditions of toxicant treatment can be 

efficiently identified by PCR amplification of barcodes followed by detection by microarray 

or sequencing. The magnitude of the effect can be determined by measuring the abundance 

of identified shRNAs in treated relative to untreated cells. shRNA barcode screening is very 

effective at identifying genes whose knockdown confers resistance to the test conditions, 

and has been successfully applied to find genes whose inactivation play a role in breast 

cancer progression [80]. Most RNAi screens have been based on cell lines or cells with 

genetic modifications predisposing to certain phenotypes and they have identified genes and 

gene networks involved in biological processes, drug resistance and pathogen response [72, 

81]. For example, in vitro screens have identified genes involved in mitotic arrest and 

ceramide metabolism as determinants of resistance to chemotherapeutic drugs in different 

cancer cell types [82] and genes involved in resistance to docetaxel in triple-negative breast 

cancer cells [83]. RNAi screening has also been applied to understand the functional 

genomics of both normal and malignant hematopoietic stem cells (HSC) and has uncovered 

factors regulating differentiation, targets for ex-vivo expansion, tumor suppressor genes 

associated with hematopoietic cancers and potential therapeutic targets [84, 85]. The 

GenomeRNAi database (http://www.genomernai.org) curates RNAi phenotype data from the 

literature for human and Drosophila [86], and contained data on 194 RNAi screens human 

in its 2014 release (in June, Volume 13).
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4.2 Limitations of RNAi screening

Like other functional genomics tools, RNAi screening has limitations. It is limited by the 

incomplete target gene suppression and confounding OTEs on other mRNA that contain 

partial sequence homology to the reagent dsRNAs/siRNAs/shRNAs [87–91]. Bioinformatic 

tools, chemical modification to the seed region, and inclusion of experimental controls can 

reduce OTEs [72]. Reliable results may require use of more than one dsRNA/siRNA/shRNA 

targeting different parts of the target mRNA and determination of the silencing efficiency 

[92]. Functional redundancy exists in protein-coding genes and combinatorial screens 

targeting two or more genes or a single gene against a genetically sensitized background can 

be more informative. Aggregate analysis of the data, through pathway or ontology analyses, 

and integration of the RNAi data with complementary omics data such as transcriptomics 

can further leverage the power to reveal mechanistic information.

5. Functional genomics by CRISPR-Cas9

5.1 CRISPR-Cas9: Breakthrough genome editing technology

Each of the functional genomic approaches discussed above has strengths and weaknesses 

but they are all limited in their ability to knock out gene activity on a genome-wide basis in 

diploid mammalian cells. The recent development of CRISPR-Cas9 technology has 

provided an effective way of genome editing in a variety of cell types [93–95]. In 

comparison to RNAi, this RNA-guided technology can generate permanent mutations in the 

genome, resulting in either a loss or gain of function [95]. CRISPR-Cas9 is a cost-effective, 

fast, and efficient way to screen many genes. Two other genome editing nuclease 

technologies preceded CRISPR, zinc-finger nucleases and transcription activator-like 

effector nucleases (TALENs) [96, 97]. They use protein-DNA interactions for targeting and 

in contrast with CRISPR, they are more expensive, time-consuming and technically 

challenging to apply and scale up for screening [98].

CRISPR-Cas9 functions as an adaptive immune system in many bacteria and most archaea 

by cleaving foreign nucleic acids (e.g. viruses or plasmids) [93, 99]. There are three 

CRISPR-Cas systems and the simplest, type II CRISPR from Streptoccus pyogenes, utilizes 

a single Cas9 endonuclease to cleave the DNA and is guided by a 20 nucleotide sequence 

within an endogenous CRISPR transcribed RNA, and a transacting cRNA. In 2013, George 

Church’s group demonstrated the potential of the CRISPR-Cas9 system for targeting human 

cells [100] and four papers were published within a year applying pooled CRISPR screens to 

target multiple genes within mammalian cells [94, 101–103]. In these approaches, Cas9 is 

directed by a single-guide RNA (sgRNA) to induce double-strand DNA breaks (DSB) at 

specific genomic loci. Recognition of cleavage sites and thus target specificity is determined 

by sgRNA-DNA homology over 20 base pairs and an adjacent protospacer-adjacent motif 

(PAM), a three nucleotide NGG sequence (where N is any nucleotide) [104]. Web-based 

tools that facilitate the identification of potential CRISPR target sites in genes of interest are 

available, e.g., the ZiFiT Targeter software (http://zifit.partners.org/) [105, 106] and the 

CRISPR Design Tool 51 (http://crispr.mit.edu/) [107]. DSBs are repaired by either the Non-

Homologous End Joining (NHEJ) DNA repair pathway or the Homology Directed Repair 

(HDR) pathway (Figure 1). NHEJ repair yields inserts/deletions (indels) at the DSB site 
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leading to frame shifts and/or premature stop codons, resulting in gene knockout. The HDR 

pathway incorporates a repair template (donor DNA) into the DSB, introducing specific 

nucleotide changes into a targeted gene [13, 100, 104]. One limitation is that the NHEJ/HDR 

ratio is difficult to predict in a given cell type.

Use of two gRNAs coupled with Cas9 can efficiently create DNA deletions of up to 10 kb in 

the presence of a linear homologous repair donor [108]. Interrogation of gene function on a 

genome-wide scale can be facilitated by large scale oligonucleotide synthesis of guide 

sequences [109]. In contrast to shRNA libraries, which mediate only gene knockdown, 

gRNA libraries can be used with Cas9 nuclease to generate libraries of cells with knockout 

mutations. As reviewed in Sander et al., electroporation, nucleofection and Lipofectamine-

mediated transfection have been used to transiently express Cas9 and gRNAs from plasmid 

DNA in cultured mammalian cells, and lentiviral vectors have been used to constitutively 

express Cas9 and/or gRNAs in cultured human and mouse cells [98].

Depending on the number of cells and type of cell lines used for screening, a two- or one-

vector system to deliver Cas9 and sgRNA is chosen (Figure 2). In the two-vector system, 

cells are initially transduced with Cas9, after which clones are selected and expanded and 

subsequently transduced with a sgRNA library. Sabatini and Lander’s group developed a 

two-vector system, with a library consisting of 73,151 sgRNA plasmids that cover a total of 

7,114 human genes with 100 non-targeting controls [101]. The library has been separated 

into distinct enriched sub libraries for gene targets of known function (e.g. kinases, cell 

cycle proteins, nuclear proteins, and ribosomal proteins) and genes of unknown function. 

Using the one-vector system, a large number of cells are transduced with both Cas9 and the 

sgRNA in a single vector. Such a system was developed by Zhang’s group [94], using a 

single lentiviral vector to deliver Cas9, a sgRNA, and a puromycin selection marker into 

target cells. They initially developed a genome-scale CRISPR-Cas9 knockout human library 

(GeCKOv1) consisting of 64,751 unique guide sequences targeting 18,080 human genes and 

more recently developed an improved library with 123,411 sgRNAs targeting 19,050 genes 

(GeCKOv2) [110]. Improvements in the latter library include the ability to target ~1000 

additional genes; inclusion of a uniform number (6) of sgRNAs per gene, with three per 

each of two sublibraries; minimized off-target effects; and sgRNAs that inactivate miRNAs 

by generating mutations in pre-miRNA hairpin structures. Genome-wide mouse lentiviral 

sgRNA libraries consisting, of 87,897 unique sgRNA plasmids targeting 19,150 protein-

coding regions was developed by Koike-Yusa et al. [102] and with 130,209 sgRNAs 

targeting 20,611 genes by Zhang’s group [110].

5.2 Application of CRISPR-Cas9 screening in functional genomics

Availability of these libraries has enabled genome-wide screening in various mammalian 

cell lines. In four CRISPR studies using pooled mutant libraries, the first three in human 

cells and the last in mouse cells, cell death or survival was used as the selection phenotype 

after exposing the cells to a toxicant and next-generation sequencing was used to identify 

genes responsible for resistance to each toxicant: nucleotide analog 6-thioguanine and the 

chemotherapeutic agent etoposide in KBM7 and HL60 cells [101], the protein kinase 

inhibitor vemurafenib in A375 melanoma cells and HUES62 ESC [94], anthrax and 
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diphtheria toxin in a focused screen in HeLa cells [103], and Clostridium septicum alpha 

toxin and 6-thioguanine in mouse ESC [102]. Each study used multiple sgRNAs per gene 

and statistical tests of enrichment and discovered previously known and novel genes. Genes 

involved in resistance to vermurafenib correlated well with hits in a previous shRNA screen 

[94]. Wang and Koike-Yusa identified similar mismatch repair genes involved in 6-

thioguanine toxicity in both human and mouse [101, 102].

As well as functional genomic screens, CRISPR-Cas9 is useful for generating genetic 

models of disease. For example, Heckl et al. used the technology to modify up to 5 genes in 

a single mouse HSC, leading to clonal outgrowth and myeloid malignancy [111]. Torres et 

al. generated human cell lines and hematopoietic mesenchymal and stem cells that included 

chromosomal translocations associated with acute myeloid leukaemia and Ewing’s sarcoma 

[112]. In another study, human iPSC were modified by a process called iCRISPR, a 

combination of TALEN and CRISPR-Cas, to generate biallelic knock outs with loss of 

function, and homozygous knock ins, that could model disease in a stage-specific, inducible 

manner [113]. CRISPR has also been used to create genetic models of disease in vivo in 

mice [114, 115]. Very recently, a Cre-dependent Cas9 knock-in mouse was established, 

enabling the broad application of Cas9 editing in vivo [116]. The utility of this approach was 

demonstrated by the simultaneous generation of mutations in KRAS, p53, and LKB1 in vivo 

and dynamic modeling of the resulting lung adenocarcinomas. Rats with conditional alleles 

in three DNA methylase transferase genes were recently generated using CRISPR-Cas9 

[117]. The ability to rapidly generate complex genetic models of disease in vivo enables the 

examination of gene by environment (GxE) interactions in the development of disease and 

drug resistance, and for targeted therapy design.

Recently, the ability to repress gene expression by controlling transcription [118–120] and 

by targeting RNA directly [121] using CRISPR, has been described. Jonathan Weissman’s 

group at UCSF has developed libraries that enable reversible genome-wide repression by 

CRISPRi [118] or activation by CRISPRa [122] of gene expression over a wide fold-range 

[123]. Using a catalytically dead cas 9 protein fused to Krüppel associated box fusion to 

repress transcription, and a sunCas9-VP16 fusion to activate transcription, they screened for 

genes involved in response to a chimeric cholera diphtheria toxin (CTx-DTA) in K562 cells 

and identified genes and pathways involved in pathogen entry, retrotranslocation and 

toxicity. Previously, haploid mutagenesis revealed the diphthamide biosynthetic pathway 

(required to generate eEF-2-diphthamide, the target of diphtheria toxin) and the ganglioside 

biosynthetic pathway (required to produce GM1a, the cell-surface receptor for cholera 

toxin), as modulating cellular sensitivity to CTx-DTA [124]. CRISPRi provided genetic 

confirmation that GM1a is the relevant cell-surface receptor for CTx-DTA and revealed the 

role of additional components in these two pathways and complexity of their responses, 

enabled by the identification of both sensitizing and protective genes. Additionally, 

CRISPRi clarified the mechanisms by which the toxin traverses the Golgi network, through 

the discovery that COG and GARP complexes, which tether late endosomes to the trans-

Golgi network or modulate intra-Golgi retrograde transport [125], are critical host factors for 

CTx-DTA. CRISPRi appeared to approach saturation, evidenced by tight clustering of many 

of the top hits in protein complexes and pathways. CRISPRa confirmed some of the findings 
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of CRISPRi and revealed additional and highly complementary information, e.g. clarifying 

the roles of enzymes in different branches of the glycosphingolipid biosynthesis pathways in 

protection against toxicity. These findings highlight some of the advantages of this CRISPR 

approach over haploid mutagenesis.

A large part of the human transcriptome comprises non-coding RNA, including miRNAs 

and long non-coding RNA (lncRNA) [126]. Over 56,000 lncRNAs have been discovered to 

date [127] and roles for some of them in response to xenobiotic exposures have been 

described [128]. Methodologies to probe the full extent of lncRNA involvement are needed 

to fully delineate the biological response to xenobiotics. Recent studies have exemplified the 

power of CRISPR to target non-coding RNAs. Using CRISPRi, Gilbert et al. achieved 

>80% knockdown for 5 of 6 lncRNAs in K562 [123]. Ho et al. used an approach featuring 

HR-mediated targeting, NHEJ suppression, and a dual-guide RNA vector to generate 

knockouts for miRNAs and lncRNAs [129]. As mentioned above, the GeCKOv2 library 

developed by Feng Zhang’s group contains sgRNAs that target human miRNAs (n=1,864) 

[110] by directing mutations to the pre-miRNA hairpin structure [130].

5.3 Limitations of CRISPR-Cas9 screening

CRISPR-Cas9 has limitations that need to be addressed before it can be deployed, 

particularly in the therapeutic realm, on a large scale. Though CRISPR-Cas9 has a high 

validation rate, OTEs do occur partly due to the small seed region guiding specificity, albeit 

at a lower rate than with RNAi [131]. Several strategies to reduce OTEs have been 

developed. For example, a paired nickase or dual nickase strategy, in which adjacent offset 

nicks are generated at the target site using two gRNAs and two co-dependent Cas9 nickase 

monomers, has been described [98, 132–134]. Joung’s group reduced OTEs substantially by 

simply using sgRNAs that were truncated (tru-gRNAs) by 2–3 nucleotides at the 5′ end of 

their complementarity regions [135]. Another approach to minimize off-target effects is to 

predict them in silico, e.g. the bioinformatics tool COSMID (CRISPR Off-target Sites with 

Mismatches, Insertions, and Deletions) searches genomes for potential off-target sites 

(http://crispr.bme.gatech.edu), helping to inform the design of CRISPR-Cas systems with 

minimal off-target effects [136]. In a recent paper, Yang et al. used whole-genome 

sequencing to assess target specificity in human-induced pluripotent stem cells (hiPSC) and 

found that single nucleotide variants can create OTEs, with a likelihood of 1.5–8.5%, 

depending on the genome and site-selection method and thus has important implications for 

subject-specific design [127]. Joung’s group developed an approach called genome-wide, 

unbiased identification of DSBs enabled by sequencing (GUIDE-seq), that relies on capture 

of double-stranded oligodeoxynucleotides into DSBs. The method identified many OTEs 

that were not detectable by existing computational methods and confirmed that tru-gRNAs 

exhibit reduced numbers of OTEs [137].

Another limitation is that the range of currently available target sites is restricted by the need 

for a PAM sequence matching the form NGG; use of alternative PAM sequences is being 

explored but requires further validation [98]. Use of gRNA in conjunction with Cas9 from 

other species may also expand target options.
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Strategies to reduce OTEs, to increase the target range and specificity, and shift the balance 

away from NHEJ-mediated indel mutations and toward HDR-driven alterations are 

priorities. A final limitation is that some cell lines are more challenging to transfect/infect, 

and may limit the technology to less relevant cell lines.

Despite these challenges, the studies to date demonstrate the potential of the CRISPR-Cas9 

system for conducting large-scale genome-wide screens in mammalian cells. This system 

offers several powerful features such as gene inactivation at the genomic DNA level and 

lower off-target effects than RNAi, which will be further reduced by ongoing improvements 

to the technology.

6. Potential of CRISPR-Cas9 for toxicity screening

Each of the screening methodologies described in this paper has advantages and 

disadvantages as discussed above. The CRISPR-Cas9 screening approach, which is evolving 

rapidly, overcomes many of the limitations of previous approaches. It can be used to repress 

and activate both coding and non-coding genes of interest, with fewer OTEs than RNAi. It is 

compatible with any human cell type that can be transfected and thus can identify genes that 

are more directly relevant to normal human cells compared with yeast and KBM7 haploid 

screening. Libraries are commercially available that can target a large and growing number 

of human genes. Therefore, CRISPR-Cas9 is a powerful functional genomic screening 

approach that will provide unprecedented mechanistic insight in the field of modern 

toxicology.

First, as described earlier, CRISPR-Cas9 has been used to identify genes involved in the 

response to chemical and microbial toxicants in several cell types [94, 101–103]. Thus, it 

could readily be extended to the systematic screening of large numbers of environmental 

chemicals in a variety of human cell lines. Second, as well as the knockout of gene function, 

CRISPRi and CRISPRa facilitate the repression and activation of gene expression with near-

saturation [123]. Thus, it offers the potential to more fully characterize AOPs and AOP 

networks than yeast or human haploid screening. Third, as a flexible gene-editing tool, 

CRISPR-Cas9, as well as allowing the examination of the effects of a large number of gene 

knock-outs simultaneously, enables the precise targeting of individual genes and gene 

regions identified by CRISPR, or other screening methods, for further validation. Fourth, as 

well as screening genes, CRISPR-Cas9 can be used to precisely generate human cell and 

animal models of development and disease [111–117] that can increase the efficiency of 

preclinical toxicity testing and be used to discover or validate GxE interactions at the level 

of individual genotypes or haplotypes. Fifth, CRISPR-Cas9 can be used to target non-coding 

RNAs [110, 123, 129, 130], which represent a large proportion of the human transcriptome 

and potentially play important roles in response to toxicants.

Ongoing improvements in target range and specificity, automation, next generation 

sequencing, and data handling and analysis, will increase the throughput of screening 

techniques. High-throughput screening of chemicals of concern or unknown toxicity will 

elucidate common and unique mechanisms and pathways of toxicity. The time is right for 

the establishment of efforts to systematically evaluate chemicals of concern by CRISPR-
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Cas9 screening in human cells. Such an approach could be designed to address some of the 

major challenges of risk assessment today [1], including the identification of individual 

variation in susceptibility at the level of genes and toxicity pathways, as well as 

understanding the effect of environmental levels of exposure, co-exposures, tissue-specific 

effects (use of different cell types), and early-life effects (use of hESC and differentiated 

cells).
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Abbreviations

3-BrPA 3 bromopyruvate

AOP adverse outcome pathway

ARF4 ADP-ribosylation factor 4

BFA brefeldin A

BT 1,2,4-benzenetriol

CML chronic myeloid leukemia

COSMID CRISPR off-target sites with mismatches, insertions, and deletions

CRISPR-Cas9 clustered regularly interspaced short palindrome repeats-associated 

nuclease-Cas9

CTx-DTA chimeric diphtheria toxin

DSB double-strand break

dsRNA double-stranded RNA

eHAP engineered HAPloid

ETC electron transport chain

ER endoplasmic reticulum

ERAD ER-associated degradation product

ESC embryonic stem cell

GeCKo genome-scale CRISPR-Cas9 knockout

GWAS genome-wide association studies

GUIDE-seq genome-wide unbiased identification of DSBs enabled by sequencing

HCS high-content screening

HDR homolody-directed repair
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HQ hydroquinone

HTS high-throughput screening

iPSC induced pluripotent stem cell

lncRNA long non-coding RNA

MHC major histomompatibility protein 1

MCT1 monocarboxylate transporter 1

MOA mode of action

NGS next-generation sequencing

NHEJ non-homologous end-joining repair

ORF open reading frame

OTE off-target effects

PAM protospacer-adjacent motif

PCR polymerase chain reaction

PDA parallel deletion analysis

PLP2 proteolipid 2

RNAi RNA interference

sgRNA single-guide RNA

tru-gRNA truncated sgRNA

shRNA short hairpin RNA

siRNA short-interfering RNA

SLC35F2 solute carrier family member 35 F2

TALEN transcription activator-like effector nuclease
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Figure 1. 
CRISPR-Cas9 DSB repair pathway and gene editing [13]. Reproduced with permission from 
Nature Protocols.
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Figure 2. 
Lentiviral vector delivery system for Cas9 and sgRNA [138].
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