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Abstract
A key question in cancer systems biology is how to use molecular data to
predict the biological behavior of tumors from individual patients. While
genomics data have been heavily used, protein signaling data are more directly
connected to biological phenotype and might predict cancer phenotypes
such as invasion, metastasis, and patient survival. In this study, we mined
publicly available data for colorectal adenocarcinoma from the Cancer Genome
Atlas and identified protein expression and signaling changes that are
statistically associated with patient outcome. Our analysis identified a number
of known and potentially new regulators of colorectal cancer. High levels of
insulin growth factor binding protein 2 (IGFBP2) were associated with both
recurrence and death, and this was validated by immunohistochemical staining
of a tissue microarray for a secondary patient dataset. Interestingly, GATA
binding protein 3 (GATA3) was the protein most frequently associated with
death in our analysis, and GATA3 expression was significantly decreased in
tumor samples from stage I-II deceased patients. Experimental studies using
engineered colon cancer cell lines show that exogenous expression of GATA3
decreases three-dimensional colony growth and invasiveness of colon cancer
cells but does not affect two-dimensional proliferation. These findings suggest
that protein data are useful for biomarker discovery and identify GATA3 as a
regulator of colorectal cancer  aggressiveness.
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Abbreviations
CK, Cytokeratin

CRC, Colorectal Cancer

HPA, Human Protein Atlas

IGFBP2, Insulin-like Growth Factor Binding Protein 2

IHC, Immunohistochemistry

RPPA, Reverse Phase Protein Array

TCGA, The Cancer Genome Atlas

TGF-β, Transforming Growth Factor Beta

TMA, Tissue Microarray

Introduction
High throughput data from the Cancer Genome Atlas (TCGA, 
https://tcga-data.nci.nih.gov/tcga/) and other publically available 
datasets are becoming widely available and are a rich resource for 
data mining and biological discovery. A challenge for the field is 
to identify innovative approaches to identify both biological driv-
ers and strong prognostic markers. Gene expression datasets have 
been commonly used to classify tumors, due to their wide availabil-
ity. However, additional types of high throughput datasets are now 
available and may provide a different starting point for molecular 
analysis of tumors. Protein expression datasets generated by mass 
spectrometry or reverse phase protein array (RPPA) are becoming 
widely available for many TCGA tumors1. Since gene expression 
frequently does not correlate well with protein levels2, such datasets 
may give additional insight into molecular mechanisms that drive 
tumor behaviors. In addition, phospho-protein levels may identify 
activation of specific signaling pathways.

A common approach to the analysis of tumor data is to first clas-
sify patients by molecular characteristics, such as KRAS mutation 
status or gene expression clusters, and then determine prognosis 
or treatment differences3–5. Alternatively, one can directly identify 
molecular differences that are statistically associated with patient 
outcome characteristics. We previously used the latter approach 
with RPPA data from head and neck squamous cell carcinoma to 
identify a phosphoinositide 3-kinase high, protein kinase C α low 
signaling state that drives invasive behavior6. Although it is lim-
ited by the availability of patient follow-up data, this type of bio-
informatics approach is potentially powerful for identifying novel 
molecular drivers of tumor aggressiveness.

In this study, we analyzed publicly available data from TCGA to 
identify proteins that are predictive of poor prognosis in colorectal 
adenocarcinoma (CRC)7. We analyzed RPPA data, which includes 
protein and phospho-protein expression levels. Our analysis iden-
tified both known and novel candidate CRC drivers statistically 
associated with tumor recurrence or patient survival. Of these, we 
characterized two molecules in more detail. IGFBP2 was associ-
ated with both death and recurrence. Validation in an independent 
patient dataset by immunohistochemical (IHC) staining of a tissue 
microarray (TMA) demonstrated that high levels of IGFBP2 are 
associated with poor patient prognosis. Interestingly, low protein 
levels of the transcription factor GATA3 were highly associated 
with death of CRC patients in the TCGA data set. Experimental 
studies in colon cancer cell lines indicate that GATA3 expression 
acts to suppress invasive, aggressive CRC behavior. Since GATA3 

protein and RNA levels are not correlated with each other, this asso-
ciation would not have been detected using RNA expression data.

Experimental procedures
Antibodies and reagents – We used three GATA3 antibodies: cata-
log number 558686 from BD Biosciences (GATA3 BD), catalog 
number sc-265 from Santa Cruz (GATA3 SC), and catalog number 
LS-B4163 from LifeSpan Biosciences (GATA3 LS). IGFBP2 anti-
body was catalog number LS-C138280 from LifeSpan Biosciences 
and β-actin antibody was catalog number A2228 from Sigma 
Aldrich. Transwell invasion chambers were from Corning.

TCGA Data – RPPA level 3 and clinical information was down-
loaded from the TCGA data portal. All primary data analyses were 
performed in R 1.3.18.

Bioinformatics Statistical Analyses – A univariate Cox’s proportional 
hazard’s model analysis was performed for each protein (survival 
package in R)9,10. Patients with <30 days of follow-up information 
were excluded. The Wilma algorithm works in a greedy forward 
strategy and optimizes a combination of the Wilcoxon and Margin 
statistics for finding clusters of predictor variables (supclust pack-
age in R)11. Regsubsets (Leaps package)12 is a model selection 
method that carries out an exhaustive search for the best subsets of 
independent variables that predict the dependent variable in linear 
regression. Nvmax was set to 5 and nbest was set to 10. The RPPA 
data were median-centered and scaled to one standard deviation 
before performing analyses. For the Wilma and Regsubsets analy-
ses, patients were divided into good prognosis (living patients or 
patients with recurrence-free survival were only included if they 
had ≥ 3 years of follow-up data) or poor prognosis (all patients with 
a recurrence or death were included regardless of follow-up time).

Heatmaps – Heatmaps were created with unsupervised clustering of 
patients and proteins, using the package “heatmap.plus” in R 1.3.1 
based on Euclidian distance and complete linkage13.

Survival plots – For each protein, patients were divided into 
high-expressing (at or above median RPPA expression) and low- 
expressing (below median RPPA expression). Using SPSS, mul-
tivariable cox proportional hazard model was used to estimate  
overall survival and recurrence-free survival, adjusting for patient 
stage, and Kaplan-Meier curves were generated to compare sur-
vival and recurrence-free survival between high-expressing and 
low-expressing groups.

Cell culture: Cells were grown in previously published optimal 
media for each cell line (for DLD1 and KM12c, DMEM + 10% 
FBS and non-essential amino acids)14,15. DMEM was purchased 
from Corning, FBS was purchased from Denville Scientific, and 
non-essential amino acids were purchased from Sigma. To create 
GATA3-OE cells, DLD1 or KM12c cells were transduced with 
retrovirus created by transfecting Phoenix packaging cells with 
pBabePuro-GATA3 (plasmid 1286 from Addgene). Pooled trans-
duced cells were selected by puromycin treatment and used for 
experiments16. Empty vector pBabePuro was used as a control.

3D Matrigel growth assay: Embedded three-dimensional culture was 
carried out as previously published17. Briefly, 35 mm glass-bottomed 
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Mat-tek dishes (Mat-tek Corporation) were coated with 60 µL 
Matrigel (Corning). 4,000 cells were plated in each dish in 200 µL 
90% Matrigel, 10% growth medium. 2 mL of growth media was 
added to each dish after 30 minutes and replaced every four days. 
Cells were imaged at 10× magnification every two days starting 
at day 3; eight random fields from each dish were imaged and the 
diameter of each in-focus colony was quantitated.

Proliferation: 1500 cells/well were plated in triplicate in the pres-
ence or absence of 10% serum in 96 well plates and grown for five 
days. Each day the plates were imaged on a Cellavista automated 
microscope after the addition of Calcein to identify live cells, Pro-
pidium iodide to identify dead cells, and Hoechst to identify nuclei 
(all from Invitrogen). Data were quantitated with Cellavista imag-
ing software to determine the number of live cells for each day.

Transwell invasion assay: 50,000 cells/well were plated in triplicate 
on Matrigel-coated Transwell inserts in serum-free DMEM. Normal 
growth media was used on the bottom as a chemoattractant. Cells 
were allowed to invade for 48 hours and then fixed with a three-step 
stain (Thermo Scientific). Five random fields from each Transwell 
insert at 10× magnification were taken on an EVOS microscope for 
quantitation.

Tissue microarray construction and IRB information: All use of 
human tissue samples was conducted under IRB-approved pro-
tocols. The colorectal cancer tissue microarray (TMA) was con-
structed with 99 cases of colorectal cancer, using duplicate 1-mm 
cores of each colorectal cancer in the GI SPORE Tissue Core facil-
ity (IRB # 020338). All samples in the TMA are from formalin-fixed 
paraffin-embedded blocks in the pathology archives, and are from 
tissue removed during the course of routine clinical care. Associ-
ated outcome and demographic data are extracted from the Color-
ectal Carcinoma Data and Virtual Archival Specimen Repository 
(IRB# 101531), and are stripped of all identifiers when released 
to investigators. The array is enriched for special histologic sub-
types of CRC such as mucinous, signet ring cell, and medullary 
carcinoma, and contains the full spectrum of histologic grades and 
tumor stages. Twelve control cases of histologically normal color-
ectal mucosa from surgical resections for non-neoplastic disease 
such as diverticulosis coli are included.

TMA staining: Antigen retrieval was performed in pH 6.0 citrate 
buffer, by using a pressure cooker at 104°C for 20 minutes with a 
10 minute bench cool down, followed by quenching with 0.04% 
H

2
O

2
 w/sodium azide for 5 minutes. After blocking in a serum-free 

protein block for 20 min, primary antibody was incubated with the 
samples for an hour, followed by detection with Dako Envision + 
HRP Labeled Polymer for 20 minutes followed by incubation with 
chromogen DAB+ for 5 minutes.

TMA analysis: To be included in the survival or recurrence-free 
curves, patients needed to have the following information: stage, 
days until event (if deceased or recurrent), and a follow-up time of 
at least 30 days (if living or nonrecurrent). Through the Vanderbilt 
University Digital Histology Shared Resource in the Epithelial Biol-
ogy Center, immunostained TMA slides were imaged at 20× mag-
nification to a resolution of 0.5 µm/pixel with the Leica SCN400 
Slide Scanner (Leica Biosystems). Tissue cores were analyzed with 

Ariol® Review software SL-50. Upper and lower thresholds for 
brown DAB positive staining were set for color, saturation, and 
intensity. Tumor areas with staining that registered between these 
thresholds were determined to be DAB-positive in an automated 
analysis. Brown (DAB-positive) area of each tumor core was thus 
used to determine cytokeratin (tumor area), IGFBP2, and GATA3 
stained area. The percent of the tumor area positive for IGFBP2 was 
calculated by dividing the IGFBP2- positive area by the cytokeratin- 
positive area and multiplying by 100.

Numbers and statistics: For comparison of good and poor prog-
nosis patients, a Fisher’s exact test was used to analyze catego-
ries with two variables (gender, M). A Chi-squared test was used 
to analyze categories with more than two variables (Stage, T, N). 
Age and gender were analyzed using a Student t-test. All analyses 
were performed in GraphPad. For experimental data from CRC cell 
lines, data from the engineered cell lines were plotted and statisti-
cally analyzed in GraphPad using a Student t-test. Data plotted in 
bar graphs were represented as mean+/-standard error. For growth 
curves, error bars represent 95% confidence intervals.

Results
To identify molecular drivers of aggressive CRC behavior, we used 
statistical methods to link patient outcome data to protein and phos-
pho-protein expression in the TCGA RPPA dataset. The RPPA data-
set includes protein and phospho-protein levels from tumor biopsies 
taken at the time of diagnosis. The clinical information for these 
patients is also available, including recurrence and survival infor-
mation, stage, and follow up time (Table 1, Table 2; Datafile 1).

Therefore, we used a combination of univariate and multivariate 
approaches to identify proteins associated with recurrence or death. 
Univariate Cox proportional hazard regression analysis9,10 relates 
the time to an event to a covariate (gene or protein expression) and 
is a common method to identify associations of protein expres-
sion with patient outcome. We also used Wilma and Regsubsets 
multivariate algorithms to select groups of proteins with predic-
tive power12,18. Patient characteristics are shown in Table 1 for the 
Cox regression analysis and in Table 2 for the Wilma/Regsubsets 
analyses. The use of all 3 methods allowed us to identify whether 
certain proteins were chosen independent of the statistical method 
used.

The Wilma and Regsubsets algorithms compare groups (clusters) 
of patients, which we predefined by patient prognosis, and find pro-
teins that are able to predict these clusters. For these multivariate 
methods, patients were divided into “good” or “poor” prognosis 
groups according to survival or recurrence data. “Good prognosis” 
patients were classified either as living or as having no recurrence 
with a minimum of 3 years follow-up time. We chose 3 years as 
a reasonable cut-off time since the great majority of colon cancer 
cases (91%) have a recurrence within this time frame19. Although 
this did reduce our sample size for patients included in the multi-
variate analyses compared to the univariate Cox regression (Table 1 
vs. Table 2), we felt it was necessary to ensure that our “good prog-
nosis” group was accurate. For the “poor prognosis” patient group, 
recurrence or death could occur at any time point. To determine 
whether any proteins had stage-specific statistical associations, 
we performed the analyses using patient groups of stages I-II, 

Page 4 of 26

F1000Research 2015, 4:99 Last updated: 04 JUN 2015



Table 1. Characteristics of patients with RPPA data included in Wilma and Regsubsets analyses for 
death and recurrence.

Patients included in Wilma and Regsubsets analyses

Recurrence Death

Recurrent Non-recurrent 
(3 yr. follow-up) p-value Deceased Living 

(3 yr. follow-up) p-value

Total number 22 12 23 20

Average age 66.86 59.83 0.2339 73.96 63.65 0.0274*

Average weight 77.55 79.75 0.6605 67.21 77.79 0.1732

Male 13 7
1

14 10
0.5472

Female 9 5 9 10

Stage I 0 2

0.0341*

3 3

0.2379
Stage II 6 2 6 5

Stage III 6 7 4 8

Stage IV 9 1 9 3
T0 0 0

0.0834

1 0

0.1315
T1 0 1 0 1
T2 0 2 4 3
T3 17 9 11 15
T4 5 0 7 1
N0 7 4

0.3392
10 8

0.9904N1 8 7 8 7
N2 6 1 5 4
M0 7 10

0.0161*
10 13

0.1516
M1 10 1 9 3

Table 2. Characteristics of patients with RPPA data included in Cox regression analysis for death and 
recurrence.

Patients included in Cox regression analysis

Recurrence Death

Recurrent Non-recurrent 
(3 yr. follow-up) p-value Deceased Living 

(3 yr. follow-up) p-value

Total number 22 125 23 168

Average age 66.86 63.53 0.3418 73.96 65.21 0.003*

Average weight 77.55 82.84 0.2136 67.21 82.62 0.0459*

Male 13 63
0.4951

14 86
0.5052

Female 9 62 9 82

Stage I 0 22

0.0009*

3 27

0.0016*
Stage II 6 46 6 67

Stage III 6 41 4 53

Stage IV 9 13 9 17

T0 0 0

0.1259

1 0

0.0037*

T1 0 3 0 3
T2 0 22 4 27

T3 17 87 11 120

T4 5 10 7 15
Tis 0 1 0 1
N0 7 75

0.0137*
10 102

0.2263N1 8 39 8 45
N2 6 11 5 20
M0 7 99

< 0.0001*
10 130

0.0006*
M1 10 13 9 18
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stages I-III, or stages I-IV (“all stages”). However, we did not 
use stage, node or metastasis status as traits for identification of 
molecular correlates for several reasons. First, we reasoned that 
identifying molecular correlates of stage would not add prognos-
tic information for clinical decision making, since stage is already 
gathered on every patient. Second, an initial test using the Wilma 
algorithm suggested that RPPA protein expression changes selected 
to be associated with node and metastasis negativity (e.g. N0M0 
vs. N+M+) did not segregate patients well into groups. Thus, two-
dimensional projections indicate that proteins selected by both 
recurrence and death had the ability to separate patients into distinct 

groups, indicating good predictive power, while N/M status at the 
time of diagnosis did not (Supplemental Figure 1).

The full results of the analyses for molecules statistically associ-
ated with death or recurrence are shown in Supplemental Table 1– 
Supplemental Table 4 (Cox hazard analyses shown in Supplemental 
Table 1, Supplemental Table 2, and results from all analyses sum-
marized in Supplemental Table 3, Supplemental Table 4). Modified 
volcano plots of these proteins shows the number of times a pro-
tein was identified vs. the difference in RPPA expression for either 
death or recurrence (Figure 1a). Proteins with negative values 

Figure 1. Visualization of proteins identified by bioinformatics analysis. a) Volcano plots were created by plotting the difference in the 
scaled RPPA expression for each protein vs. the number of times that protein was identified in the bioinformatics analysis. A positive value 
on the y-axis means that protein is upregulated in poor prognosis (recurrent or deceased) patients, while negative value on the y-axis means 
that protein is downregulated in poor prognosis (recurrent or deceased) patients. Proteins identified by more than one bioinformatics method 
(Table 3, Table 4) are shown in red, and proteins selected for further analysis are boxed and labeled. b) Heatmaps were created using 
unsupervised clustering of all top hits (Table 3, Table 4) in stage I-II patients. Each row is a patient; each column is a protein. Red boxes outline 
poor prognosis (recurrence or death) clusters. Proteins selected for further analysis (GATA3 and IGFBP2) are outlined in grey boxes.
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are downregulated in patients with poor outcome (such as the well- 
known tumor suppressor, Rb) and proteins with positive values are 
upregulated (such as the oncogene c-Jun). Proteins that were iden-
tified by more than one method are shown in Table 3 and Table 4 
and indicated in red in the volcano plots (Figure 1a).

Proteins associated with death included known CRC drivers, includ-
ing SMAD3, SMAD4, and MSH2, which respectively regulate 
Transforming growth factor beta (TGF-β) signaling20 and microsat-
ellite instability21 (Table 3). In addition, a number of apoptosis and 
cell cycle proteins were associated with death, including Bid, Bim, 

Table 3. Summary tables for death, ordered by the number of times each protein 
was selected. Proteins that were identified by more than one computational method (Cox 
regression, Wilma, or Regsubsets) were included. Proteins identified by Cox regression 
and the Wilma algorithm were significantly associated with prognosis (p<0.05); proteins 
are included for Regsubsets if they were identified five times or more.

Death

Method Cox Wilma Regsubsets
Total #

Stages All I-II I-III All I-II I-III All I-II I-III 

A
n

ti
b

o
d

y 

GATA3.M.V ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 8

Bid.R.C ✔ ✔ ✔ ✔ ✔ ✔ ✔ 7

Rb.M.V ✔ ✔ ✔ ✔ ✔ 5

AMPK_alpha.R.C ✔ ✔ ✔ ✔ ✔ 5

Tau.M.C ✔ ✔ ✔ ✔ ✔ 5

IGFBP2.R.V ✔ ✔ ✔ ✔ 4

Beclin.G.V ✔ ✔ ✔ ✔ 4

Src_pY527.R.V ✔ ✔ ✔ ✔ 4

COX.2.R.C ✔ ✔ ✔ 3

c.Jun_pS73.R.C ✔ ✔ ✔ 3

X4E.BP1.R.V ✔ ✔ ✔ 3

Bim.R.V ✔ ✔ ✔ 3

Smad4.M.V ✔ ✔ 2

ERK2.R.NA ✔ ✔ 2

PR.R.V ✔ ✔ 2

Chk1.R.C ✔ ✔ 2

MSH2.M.C ✔ ✔ 2

Smad3.R.V ✔ ✔ 2

Table 4. Summary tables for recurrence, ordered by the number of times each protein 
was selected. Proteins that were identified by more than one computational method (Cox 
regression, Wilma, or Regsubsets) were included. Proteins identified by Cox regression 
and the Wilma algorithm were significantly associated with prognosis (p<0.05); proteins are 
included for Regsubsets if they were identified five times or more.

Recurrence

Method Cox Wilma Regsubsets
Total #

Stages All I-II I-III All I-II I-III All I-II I-III 

A
n

ti
b

o
d

y 

COX.2.R.C ✔ ✔ ✔ ✔ ✔ ✔ ✔ 7

c.Jun_pS73.R.C ✔ ✔ ✔ ✔ ✔ 5

Rb.M.V ✔ ✔ ✔ ✔ 4

IGFBP2.R.V ✔ ✔ ✔ 3

Rb_pS807_S811.R.V ✔ ✔ ✔ 3

Beclin.G.V ✔ ✔ 2

Smad4.M.V ✔ ✔ 2

HSP70.R.C ✔ ✔ 2

p70S6K.R.V ✔ ✔ 2

PEA.15.R.V ✔ ✔ 2

XRCC1.R.C ✔ ✔ 2
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Rb, and Chk1. Interestingly, the transcription factor GATA3 was our 
top hit associated with patient death and was identified eight times 
out of a potential maximum of nine times (three stage groups ana-
lyzed by three statistical methods). GATA3 is frequently mutated in 
breast cancer and is known to promote luminal cell differentiation 
in the mammary gland22–25, but has not been previously studied in 
colon cancer. IGFBP2, which was linked with both patient death 
and tumor recurrence in our analysis, was another interesting hit, as 
it has been associated with a number of cancer types but few studies 
have addressed its role in CRC26–28.

Proteins associated with recurrence (Table 4) also included known 
CRC regulators, including the pro-inflammatory enzyme COX229,30, 
phospho-c-Jun31 and SMAD4 (reviewed in 32). Some proteins were 
identified to be statistically associated with both death and recur-
rence, including the cell cycle regulator Rb, the autophagy regulator 
Beclin1, and IGFBP2.

To visualize the expression of top hits (listed in Table 3 and Table 4) 
in individual patient tumor samples, we created heatmaps using 
unsupervised clustering. Interestingly, clustering of data from 
Stage I and II patient tumors gave superior segregation of prog-
nosis groups by the proteins than using data from Stages I-III or 
I-IV patient tumors. For both recurrence and survival, there was a 
“poor prognosis” cluster that segregated away from the remaining 
patients (Figure 1b, red boxes). Notably, the ability of the chosen 
proteins to cluster patients according to poor prognosis was also 
superior when using death as the outcome, perhaps due to the larger 
number of significant proteins or the larger sample size of Stage I-II 
patients with that follow-up metric (Figure 1b, compare death and 
recurrence heat maps).

Of the proteins identified in our analyses, GATA3 and IGFBP2 were 
the most novel as regulators of CRC. Visualization by heatmaps 
shows a decreased expression in GATA3 and increased IGFBP2 
expression in tumors within the poor prognosis clusters (Figure 1b, 
grey boxes). Stage-adjusted survival plots revealed that TCGA 
patients with low GATA3 expression levels had a significantly 
increased risk of death, compared with patients whose tumors 
had high GATA3 levels. Patients whose tumors had high IGFBP2 
expression had a trend towards decreased survival, but this did not 
reach statistical significance (Figure 2a). Importantly, both GATA3 
and IGFBP2 had significantly altered RPPA expression in deceased 
patients for all stages, stages I-II, and stages I-III (Figure 2b, c). 
Similar trends were seen in recurrent vs. non-recurrent patients, 
but the data did not reach statistical significance, potentially due 
to the smaller number of patients with recurrence follow up data 
(Supplemental Figure 2).

To validate our findings in an independent tumor cohort, we obtained 
a tissue microarray (TMA) that contained 61 CRC samples with 
available patient follow-up data (Datafile 2). Patient characteristics 
are shown in Supplemental Table 5. Note that some clinical infor-
mation, such as age or gender, was not available for all patients. 
We stained the TMA slides with antibodies against IGFBP2 as 
well as with the epithelial marker cytokeratin in order to identify 
tumor cells (Figure 3a, b). We quantified the areas of both IGFBP2 

staining and cytokeratin staining (representing total tumor area), 
and calculated the percent IGFBP2 positive area per tumor area in 
order to normalize to the amount of tumor present in each sample 
(Datafile 2). This metric was used to divide patients into high or low 
IGFBP2 by median expression, and their survival or recurrence-
free survival was compared. The results revealed that patients with 
IGFBP2 staining at or above the median had a significant reduc-
tion in both survival and recurrence-free survival time, independ-
ent of tumor stage (Figure 3a, b, lower panels). Staining of normal 
colon tissue also revealed strong staining in the bottom of the crypts 
(Figure 3c), consistent with a previous report28.

GATA3 is a transcription factor that was originally identified as a 
T-cell differentiation factor33,34. However, recent data indicates that 
GATA3 is also expressed in some epithelia (reviewed in 35). In 
breast cancer, GATA3 is frequently mutated23,25. In addition, low 
levels of GATA3 correlate with decreased breast cancer patient 
survival36–40. To determine whether GATA3 was expressed in CRC 
cells or only in T-cells, we stained CRC TMAs as well as matched 
normal and colon cancer tissue (Figure 4; Datafile 3). Antibodies to 
cytokeratin (CK) and CD3 respectively marked the epithelial tumor 
cell and T-cell compartments. We found variable staining patterns 
with two different anti-GATA3 antibodies. Using the same anti-
body that was used to probe the TCGA RPPA samples (Figure 4a, 
GATA3 BD), there was weak cytoplasmic and occasional nuclear 
staining in the tumor cells and a small amount of nuclear staining 
in cells in the stromal compartment. It should be noted that this 
antibody had not been validated for IHC. Furthermore, we noticed 
variable staining of TMA sections from normal colon tissue, sug-
gesting high sensitivity of this antibody to fixation conditions. We 
therefore tested two more antibodies that were validated for IHC. 
Using an antibody that has successfully been used for breast cancer 
stratification36, we detected very light cytoplasmic staining of epi-
thelial cells with some nuclear staining of stromal cells in normal 
colon samples, but no staining of epithelial or stromal cells in paired 
colon cancer samples (GATA3 SC, Figure 4b). Using a second vali-
dated IHC antibody (GATA3 LS), we found strong staining of the 
epithelial component of both normal colon tissue and colon cancer 
(Figure 4b). Interestingly, with both the SC and LS antibodies, it 
appeared that in normal colon tissue there was increased staining 
in epithelial cells at the mucosal surface with nuclear localization, 
compared to the deep crypts (Figure 4b). Staining of the TMA with 
GATA3 LS gave strong staining in both the nuclei and cytoplasm 
of tumor cells. However, there was a high background in many of 
the samples with apparently nonspecific staining throughout both 
the tumor and stromal compartment (Figure 4a), which made the 
samples unsuitable for quantitation. This high background may be 
due to overfixation of some of the TMA blocks, since it was not 
apparent on separate fixed tissues that were not part of the TMA 
(compare Figure 4a to Figure 4b , GATA3 LS staining).

We also checked the Human Protein Atlas (HPA)41 for staining of 
colon tissues by GATA3 antibodies (Supplemental Figure 3). The 
HPA also used three different antibodies. One of them, CAB016217, 
is the same as the antibody we tested that gave little to no staining 
of colon tissue (GATA3 SC). Likewise, they found little nuclear 
staining, and weak or negative cytoplasmic staining across both 
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Figure 2. Survival analysis of selected proteins in TCGA data. (a) Stage-adjusted survival plots for GATA3 and IGFBP2. (b) and (c) 
Comparison of RPPA-determined expression in living and deceased patients for GATA3 (b) and IGFBP2 (c). IGFBP2 expression is significantly 
increased in deceased patients in Stages I-II, I-III, and I-IV, while GATA3 is significantly decreased in deceased patients in Stages I-II, I-III, 
and I-IV. *p<0.05, **p<0.01, ***p<0.001
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Figure 3. IGFBP2 expression is associated with recurrence and death in CRC in a secondary dataset. IHC immunostaining of a CRC 
tissue microarray for IGFBP2 and cytokeratin (epithelial marker) was performed. a) Representative IGFBP2 staining in living and deceased 
patients and Kaplan-Meier curve comparing survival of patients with low (below median) vs. high (at or above median) IGFBP2 staining. 
b) Representative IGFBP2 staining in non-recurrent and recurrent patients and Kaplan-Meier curve comparing recurrence-free survival of 
patients with low (below median) vs. high (at or above median) IGFBP2 staining. %IGFBP2-positive area of tumor was calculated using 
IGFBP2 area and cytokeratin area to identify tumor. Survival and recurrence-free survival plots are adjusted for stage. c) Representative 
IGFBP2 and cytokeratin staining in a representative normal colon sample. Scale bars indicate 100 µm.

normal and colon cancer samples. The other two antibodies stained 
the epithelial component of both normal and colon cancer samples 
with primarily nuclear or nuclear + cytoplasmic staining patterns. 
Thus, with four out of the five antibodies tested by our laboratory 
and the HPA, nuclear GATA3 staining was seen in colon epithelial 
and cancer cells. However, due to the variability in intensity and 
pattern of staining, we were not able to perform quantitations to 
obtain information about prognostic significance.

To determine if we could use a gene expression dataset for valida-
tion, we tested whether GATA3 RNA expression by RNA sequencing 
correlated with GATA3 protein expression by RPPA in TCGA sam-
ples that had both types of data. There was no correlation between 
GATA3 RNA and protein expression (Supplemental Figure 4a), 
so we were not able to use GATA3 RNA expression for correla-
tive studies in a secondary tumor dataset. By contrast, IGFBP2 pro-
tein levels correlate well with IGFBP2 RNA levels (Supplemental 
Figure 4b). There was no correlation between IGFBP2 protein and 
GATA3 protein levels (data not shown), indicating there is likely no 
mechanistic link between these two proteins.

As an alternative to validation with tissue samples, we decided 
to investigate the biological role of GATA3 in colon cancer with 
in vitro experiments. We performed Western blot analysis of GATA3 
levels in a panel of CRC cell lines with Jurkat T-cells as a positive 
control for GATA3 expression (Datafile 4). Using the same anti-
body that was used in the TCGA RPPA analyses (GATA3 BD), we 
detected a band of the correct 48 kDa size for GATA3. Compared 
with Jurkat cell expression, GATA3 was expressed at a much lower 
level in most CRC cell lines. GATA3 expression was undetectable 
in about half of the cell lines tested, including several with inva-
sive characteristics, e.g. DLD1, SW480, and SW62042,43. Consistent 
with the known role of GATA3 in cellular differentiation34,44–48, the 
highest GATA3 expression was observed in the more differentiated 
cell lines, Caco-2, SK-CO-15 and HT-2949–51 (Figure 5a).

To investigate the role of GATA3 in CRC growth and invasion, 
we chose two of the invasive cell lines with undetectable GATA3 
expression and stably expressed GATA3 in them using retrovi-
ral transduction (Figure 5b; Datafile 4). We first tested the ability 
of the GATA3-expressing cells to form colonies after seeding as 
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Figure 4. GATA3 is expressed in human CRC. a) Representative immunostained tissue sections from two patient tumors from the CRC TMA 
showing staining for epithelial tumor (cytokeratin, CK), T-cells (CD3), and two different GATA3 antibodies (BD and LS). b) Representative 
staining of matched normal colonic tissue and colon cancer samples for two different GATA3 antibodies (LS and SC). Note the variability of 
GATA3 staining with different antibodies.
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Figure 5. GATA3 expression affects CRC aggressiveness. a) Representative Western blot (of 2 blots) showing that GATA3 is expressed in 
a subset of CRC cell lines. Jurkat is a T-cell line and used as a positive control. Higher expression is seen in the more differentiated cell lines 
Caco-2, HT-29, and SK-CO-15. b) Western blot showing engineered expression of GATA3 in DLD1 and KM12c CRC cell lines. pBabe is an 
empty vector control. c) Colony growth of engineered CRC cell lines in 3D Matrigel. Left: Representative images from day 9. Right: Growth 
curves. Data were gathered from duplicate wells from 3 independent experiments. The mean is plotted and error bars represent 95% CI. 
d) Invasion of CRC cell lines across Transwell filters. Left: Representative images of the bottom of Transwell filters after 48 hours invasion. 
Right: Quantitation of invaded cells/field. Data from five random fields per filter x triplicate filters for each of 3 independent experiments. 
Error bars represent +/- SEM. ***p<0.001.
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single cells in an embedded 3D Matrigel growth assay. Colony 
growth in this assay represents a combination of growth and matrix 
remodeling activity, since the cells are fully embedded in 90% 
Matrigel52–54. Compared with control cells, GATA3-expressing cells 
formed smaller colonies in this 3D culture environment, an effect 
that was statistically significant beginning at day 5 (Figure 5c;  
Datafile 5). To determine whether the smaller colony size of GATA3-
expressing cells was due to an intrinsic decrease in proliferation 
rate, we cultured them in 2D in the presence or absence of serum 
and used automated microscopy to follow the number of cells over 
a period of 5 days. GATA3 expression had no effect on cell num-
bers in the presence or absence of serum (Supplemental Figure 5; 
Datafile 6). To determine if GATA3 specifically controls CRC 
invasiveness, control and GATA3-expressing cells were allowed to 
invade for 48 h across a bed of Matrigel in a Transwell invasion 
assay. For both of the tested CRC cell lines, GATA3-expressing 
cells exhibited significantly decreased invasion compared to control 
cells (Figure 5d; Datafile 7). Taken together, these data indicate that 
GATA3 controls CRC invasiveness.

Dataset 1. Raw data of identified protein expression and signaling 
changes statistically associated with patient outcome

http://dx.doi.org/10.5256/f1000research.6388.d46074

Detailed legends describing the each data files are can be found in 
the .txt file provided.

Discussion
In this study, we used high throughput protein and phospho-protein 
expression data from the TCGA to identify candidate drivers of CRC 
aggressiveness. By linking RPPA data to patient death or recurrence 
and using multiple statistical approaches, we identified both known 
and novel biomarkers of CRC aggressiveness. The top hit in our 
survival analysis was the transcription factor GATA3, for which low 
levels correlated with death. Follow-up experiments indicated that 
GATA3 is expressed in CRC and suppresses the invasive behavior of 
CRC cells. We also validated the prognostic value of the known but 
understudied molecule IGFBP2 in a secondary CRC dataset. These 
data indicate that RPPA and other high throughput protein datasets 
are useful for identifying potential biomarkers and drivers of aggres-
sive tumor behavior, especially for proteins whose RNA expression 
does not correlate to protein expression, such as GATA3.

Gene expression signature discovery has been dominated by tran-
script profiling technologies. Since we previously found that a small 
RPPA dataset from human tumors can be useful as a biological 
discovery tool6, we tested its utility in a larger dataset from TCGA 
in this study. In addition to identifying proteins known to drive CRC 
progression, we identified several novel or understudied proteins 
associated with recurrence or death of CRC patients. These included 

IGFBP2 and GATA3, which were identified by multiple statistical 
methods, and a number of additional proteins that were detected by 
multiple (Table 3, Table 4) or any method (Supplemental Table 3, 
Supplemental Table 4). Validation of IGFBP2 by TMA staining 
and GATA3 in vitro suggests that our bioinformatic approach has 
utility and biological validity. Moreover, our analysis showed that 
GATA3 mRNA levels were not predictive of GATA3 protein levels 
(Supplemental Figure 4). Consistent with recent reports showing 
that RNA and protein expression levels frequently do not correlate 
with each other2,55, these data highlight the necessity of incorporat-
ing proteomics data into gene signature studies.

Our approach uses a comparison of tumor tissue between good 
and poor prognosis patients, which differs from previous proteom-
ics studies that have either focused on differences between tumor 
and normal control tissues or on stage-specific differences56–63. 
These studies have given insight in to the pathophysiology of CRC 
progression. However, our goal was to identify markers that are 
independent of stage and could be potentially used in the future to 
predict prognosis in early stage patients. It is agreed that Stage III 
and IV patients universally benefit from chemotherapy64, but the 
treatment decision for early Stage II patients is more complicated: 
there is disagreement over whether Stage II patients should65–67 or 
should not68,69 receive additional chemotherapy. While our findings 
are clearly a long way away from translation to the clinic, we posit 
that our general approach has the potential to identify biomarkers 
that can be used to identify early stage patients that could benefit 
from additional adjuvant therapy.

A limitation of our study was that the TCGA CRC patient sample 
set is smaller for RPPA than for more standard analyses such as 
RNA Seq or DNA mutations (196, compared to 244 and 224 patient 
samples)7. In addition, many samples either did not have clinical 
follow-up or had only short follow-up time, further reducing our 
sample size. Additionally, there were no other published RPPA 
datasets in CRC that contained analysis of our proteins of inter-
est. Therefore, validation of our findings required either staining of 
tissue microarrays or in vitro experiments. As RPPA datasets accu-
mulate, we anticipate that there will be larger and multiple inde-
pendent validation datasets with longer follow-up times. Finally, 
because RPPA is an antibody-based technique, it is usually typi-
cally limited in the number of proteins detected. Higher throughput 
proteomic approaches may solve this problem, although they are 
often unsuitable for quantitation of posttranslational modifications 
such as phosphorylation.

We identified increased expression of IGFBP2 to be associated 
with CRC recurrence and death. High levels of IGFBP2 have been 
associated with poor prognosis in several cancer types. In breast 
cancer, IGFBP2 has increased expression compared to normal sam-
ples70. IGFBP2 has also been shown to promote invasion of ovarian 
cancer cells71. In CRC, IGFBP2 has been reported to be upregu-
lated compared to normal colon epithelia26 with a trend towards 
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higher expression in more advanced CRC27. Interestingly, IGFBP2 
is expressed predominantly in the crypts of normal colon tissue 
(Figure 3a and 28), opposite to the pattern we observed with GATA3 
expression and suggesting a stem-cell-like expression pattern. Nota-
bly, IGFBP2 has been connected to both hematopoietic and glioma 
stem cell expansion and survival72,73. In addition, IGFBP2 over-
expression in CRC cell lines was recently found to promote CRC 
tumorigenesis and metastasis28. Those data are consistent with our 
finding that high IGFBP2 expression in CRC tumors is significantly 
associated with death and recurrence in two independent datasets of 
CRC patients (Table 3, Table 4; Figure 3).

The top hit in our survival analysis was GATA3, which has not pre-
viously been studied in CRC. GATA3 is a transcription factor that 
was originally identified in T-cells, and controls the differentiation 
of TH2 cells34,46–48, skin cells44, hair follicles45 and luminal cells in 
the mammary gland22,24. The importance of GATA3 for mammary 
luminal cell proliferation and differentiation is suggested by the 
high expression of GATA3 in luminal breast cancers and recur-
rent mutations in the luminal subtype that stabilize GATA3 protein 
expression levels23,25. Conversely, similar to our findings in CRC, 
low GATA3 levels are associated with poor patient prognosis in 
breast cancer36–40. At this point it is unclear whether that represents 
the overall poor outcome of non-luminal breast cancers or an active 
role for GATA3 in suppressing aggressive behavior. Support for the 
latter possibility is provided by data indicating that re-expression 
of GATA3 in non-luminal breast cancer cells is sufficient to induce 
differentiation and suppress lung metastases24.

In CRC, the mechanistic role of GATA3 still remains to be defined. 
One possibility is that GATA3 controls CRC differentiation, simi-
lar to its function in T-cells and luminal breast cells. Consistent 
with our prediction, IHC stains of normal colon tissue showed 
higher staining in the superficial mucosa, where the most differen-
tiated cells should be. In addition, the most differentiated CRC cell 
lines in our panel had the highest GATA3 expression. Additionally, 
we previously identified three transcriptional subtypes of CRC 
and then identified subtype-specific driver networks by integrat-
ing mutation and copy number alteration data from each subtype 
with a protein signaling network using a random walk approach5. 
GATA3 was included in the driver network for the “differentiated 
subtype” with relatively good survival outcome, although GATA3 
mRNA was not significantly up-regulated in this subtype. Another 

nonexclusive possibility is that GATA3 regulates TGF-β signal-
ing, a key pathway regulating CRC aggressiveness, as reported in 
breast cancer74. Further work is required to determine if any of 
these or other mechanisms are responsible for the role of GATA3 
in CRC.

Data availability
F1000Research: Dataset 1. Raw data of identified protein expres-
sion and signaling changes statistically associated with patient out-
come, 10.5256/f1000research.6388.d4607475 

Author contributions
CF and AW conceived of the study. CF carried out bioinformatics 
analyses, with guidance from BZ and FY. FR performed staining of 
the TMAs, under guidance of KW. CF performed cell invasion, pro-
liferation and colony assays. DB, RC, and ND provided reagents, 
cell lines, and advice on the project. All authors participated in the 
writing of the manuscript.

Competing interests
No competing interests were disclosed.

Grant information
This study was supported by the following NIH grants: P50CA09-
5103 GI Special Program of Research Excellence (SPORE), 
including a pilot project to AMW, main projects RDB, NGD and 
RJC, and Translational Pathology and Imaging Core to MKW, 
R01CA158472 (RDB, NGD), R01CA46413 (RJC), P30CA068485 
to the Vanderbilt Ingram Cancer Center, and F31DE021619 (CLF). 
The content of this article is solely the responsibility of the authors 
and does not necessarily represent the official views of the National 
Institutes of Health.  

I confirm that the funders had no role in study design, data collection 
and analysis, decision to publish, or preparation of the manuscript.

Acknowledgements
We thank Dr. Darren Tyson for advice on bioinformatic analysis 
methods and Dr. Joseph Roland in the Vanderbilt University Digital 
Histology Shared Resource in the Epithelial Biology Center for his 
help with the Ariol® TMA image analysis.

Page 14 of 26

F1000Research 2015, 4:99 Last updated: 04 JUN 2015

http://dx.doi.org/10.5256/f1000research.6388.d46074


Supplementary material

Supplemental Table 1. Hazard ratios and p-values for cox 
regression analysis identifying proteins associated with death. 
Only proteins with a significant p-value (<0.05) were included.

Death

Antibody Hazard_
Ratio P_value

All stages XBP1.G.C 7.12 0.003

AMPK_alpha.R.C 4.82 0.011

Tau.M.C 0.19 0.015

Smad3.R.V 3.48 0.019

Bid.R.C 0.06 0.028

INPP4B.G.C 1.96 0.029

IGFBP2.R.V 1.44 0.030

GATA3.M.V 0.24 0.038

Bim.R.V 2.67 0.044

Fibronectin.R.C 0.58 0.046

Stages I-II GATA3.M.V 0.04 0.0003

K.Ras.M.C 0.14 0.002

cIAP.R.V 15.84 0.005

IGFBP2.R.V 2.25 0.006

Rb.M.V 0.02 0.008

Cyclin_D1.R.V 0.00 0.010

AMPK_alpha.R.C 24.32 0.012

X14.3.3_epsilon.M.C 0.00 0.017

Tau.M.C 0.05 0.025

Notch3.R.C 3.33 0.036

PR.R.V 0.02 0.047

Stages I-III GATA3.M.V 0.07 0.001

Rb.M.V 0.06 0.004

Bid.R.C 0.01 0.006

IGFBP2.R.V 1.83 0.007

K.Ras.M.C 0.23 0.008

Tau.M.C 0.07 0.009

AMPK_alpha.R.C 5.91 0.015

c.Kit.R.V 2.25 0.027

TAZ_pS89.R.C 0.00 0.031

PR.R.V 0.06 0.046

XBP1.G.C 6.28 0.046

Supplemental Table 2. Hazard ratios and p-values for cox 
regression analysis identifying proteins associated with 
recurrence. Only proteins with a significant p-value (<0.05) 
were included.

Recurrence

Antibody Hazard_
Ratio P_value

All stages COX.2.R.C 2.02 0.001

YAP_pS127.R.C 2.31 0.021

Caspase.7_
cleavedD198.R.C 0.63 0.028

c.Jun_pS73.R.C 4.18 0.042

MEK1_pS217_S221.
R.V 2.42 0.049

Stages I-II XIAP.R.C 41.60 0.012

HSP70.R.C 2.44 0.031

YAP_pS127.R.C 8.12 0.035

IGFBP2.R.V 2.01 0.040

COX.2.R.C 2.68 0.045

PEA.15.R.V 52.19 0.046

CDK1.R.V 0.00 0.050

Stages I-III IGFBP2.R.V 1.96 0.004

COX.2.R.C 2.30 0.007

YB.1_pS102.R.V 7.69 0.019

XRCC1.R.C 16.08 0.028

XIAP.R.C 12.56 0.030

DJ.1.R.C 0.07 0.043
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Supplemental Table 3. All proteins associated with death, sorted in descending order by 
the number of times identified.

Death 

Method Cox Wilma Regsubsets
Total

Stages All I-II I-III All I-II I-III All I-II I-III 
A

n
ti

b
o

d
y 

GATA3.M.V ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 8

Bid.R.C ✔ ✔ ✔ ✔ ✔ ✔ 6

Rb.M.V ✔ ✔ ✔ ✔ ✔ 5

AMPK_alpha.R.C ✔ ✔ ✔ ✔ ✔ 5

Tau.M.C ✔ ✔ ✔ ✔ ✔ 5

IGFBP2.R.V ✔ ✔ ✔ ✔ 4

Beclin.G.V ✔ ✔ ✔ ✔ 4

Src_pY527.R.V ✔ ✔ ✔ ✔ 4

c.Jun_pS73.R.C ✔ ✔ ✔ 3

X4E.BP1.R.V ✔ ✔ ✔ 3

Bim.R.V ✔ ✔ ✔ 3

COX.2.R.C ✔ ✔ 2

Smad4.M.V ✔ ✔ 2

ERK2.R.NA ✔ ✔ 2

PR.R.V ✔ ✔ 2

Annexin_I.R.V ✔ ✔ 2

Chk1.R.C ✔ ✔ 2

K.Ras.M.C ✔ ✔ 2

MSH2.M.C ✔ ✔ 2

p27_pT157.R.C ✔ ✔ 2

p70S6K_pT389.R.V ✔ ✔ 2

Smad3.R.V ✔ ✔ 2

X4E.BP1_pT37.R.V ✔ ✔ 2

XBP1.G.C ✔ ✔ 2

ACC1.R.C ✔ 1

Akt.R.V ✔ 1

AMPK_pT172.R.V ✔ 1

Caspase.3_active.R.C ✔ 1

CDK1.R.V ✔ 1

Fibronectin.R.C ✔ 1

STAT5.alpha.R.V ✔ 1

TAZ.R.C ✔ 1

YB.1_pS102.R.V ✔ 1

B.Raf.M.NA ✔ 1

Bax.R.V ✔ 1

c.Kit.R.V ✔ 1

cIAP.R.V ✔ 1

Cyclin_D1.R.V ✔ 1

Cyclin_E1.M.V ✔ 1

eIF4E.R.V ✔ 1

INPP4B.G.C ✔ 1

Notch3.R.C ✔ 1

p27.R.V ✔ 1

p38_pT180_Y182.R.V ✔ 1

PRAS40_pT246.R.V ✔ 1

S6.R.NA ✔ 1

TAZ_pS89.R.C ✔ 1

X14.3.3_epsilon.M.C ✔ 1
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Supplementary Table 4. All proteins associated with recurrence, sorted in descending order by 
the number of times identified.

Recurrence

Method Cox Wilma Regsubsets
Total

Stages All I-II I-III All I-II I-III All I-II I-III 

A
n

ti
b

o
d

y 

COX.2.R.C ✔ ✔ ✔ ✔ ✔ ✔ ✔ 7

c.Jun_pS73.R.C ✔ ✔ ✔ ✔ ✔ 5

Rb.M.V ✔ ✔ ✔ ✔ 4

IGFBP2.R.V ✔ ✔ ✔ 3

Rb_pS807_S811.R.V ✔ ✔ ✔ 3

Beclin.G.V ✔ ✔ 2

Smad4.M.V ✔ ✔ 2

GSK3.alpha.beta.M.V ✔ ✔ 2

HSP70.R.C ✔ ✔ 2

p70S6K.R.V ✔ ✔ 2

PEA.15.R.V ✔ ✔ 2

PI3K.p85.R.V ✔ ✔ 2

XIAP.R.C ✔ ✔ 2

XRCC1.R.C ✔ ✔ 2

YAP_pS127.R.C ✔ ✔ 2

GATA3.M.V ✔ 1

ERK2.R.NA ✔ 1

PR.R.V ✔ 1

ACC1.R.C ✔ 1

AMPK_pT172.R.V ✔ 1

Caspase.3_active.R.C ✔ 1

CDK1.R.V ✔ 1

Fibronectin.R.C ✔ 1

STAT5.alpha.R.V ✔ 1

TAZ.R.C ✔ 1

YB.1_pS102.R.V ✔ 1

ACC_pS79.R.V ✔ 1

Akt_pS473.R.V ✔ 1

ARID1A.M.V ✔ 1

Caspase.7_cleavedD198.R.C ✔ 1

DJ.1.R.C ✔ 1

GSK3_pS9.R.V ✔ 1

Lck.R.V ✔ 1

MEK1_pS217_S221.R.V ✔ 1

NF2.R.C ✔ 1

Rad50.M.C ✔ 1

Rad51.M.C ✔ 1

Shc_pY317.R.NA ✔ 1

STAT3_pY705.R.V ✔ 1
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Supplemental Table 5. Characteristics of patients included in TMA analysis.

TMA Patients

Characteristics 

Average age (years) 63.05

Male 26

Female 34

Gender unknown 1

Average follow up time (days) 2074.08

Recurrence 

Average days to recurrence 674.95

Recurrent 22

Non-recurrent 39

Death 

Average days to death 1180.05

Deceased 21

Living 40

Stage

Stage I 0

Stage II 34

Stage III 26

Stage IV 0

Supplemental Figure 1. Comparison of death, recurrence, and node/metastasis status as metrics to identify proteins with the ability 
to predict patient prognosis. All number indicate individual patients; 1’s are patients with poor prognosis (death; recurrence; N or M positive 
at time of diagnosis) and 0’s are patients with good prognosis (living with 3 years of follow up time; non-recurrent with 3 years of follow up time; 
N and M negative at time of diagnosis). The distinct populations in the death and recurrence plots, showing clear separation of the good and 
poor prognosis patient clusters, indicate these definitions of poor prognosis can identify groups of proteins with good predictive power. The 
overlap of these patient clusters in the Node/Metastasis plot indicates this definition has less predictive power.
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Supplemental Figure 2. Comparison of RPPA-determined expression in non-recurrent and recurrent patient tumors for GATA3 and 
IGFBP2. Decreased GATA3 (a) and increased IGFBP2 (b) expression are evident in recurrent patient tumors, but the data were not significant 
(n.s.).
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Supplemental Figure 3. Comparison of GATA3 staining patterns in CRC tumor samples in the Human Protein Atlas (HPA) using 
three different antibodies. a) Subcellular localization; b) Staining, intensity, and quantity plots from the HPA. c) Representative images from 
matched normal colon tissue and CRC samples with three different GATA3 antibodies, as indicated.
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Supplemental Figure 4. Correlations of RPPA protein expression with RNA expression. GATA3 and IGFBP2 RPPA and mRNA expression 
values from TCGA datasets were plotted and analyzed on an individual tumor basis. (a) GATA3 mRNA expression does not correlate with 
protein expression. (b) IGFBP2 mRNA expression does correlate with protein expression. Plots were created with cBioPortal using TCGA 
(2012) dataset6.
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Supplemental Figure 5. GATA3 does not affect 2D CRC proliferation. Growth curves (log base 10 of the cell number) from CRC cell lines 
grown in the presence of 10% serum (a, “(+) serum)”) or the absence of serum (b, “(-) serum”). Cells were plated in triplicate and imaged on 
a Cellavista automated microscope in 3 independent experiments. Mean is plotted and error bars represent 95% confidence intervals. No 
significant differences were observed between control and GATA3-OE cells for either cell line.
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The paper of French   "Linking patient outcome to high throughput protein expression data identifieset al.
novel regulators of colorectal adenocarcinoma" utilizes publicly available RPPA data for colorectal
adenocarcinoma with the objective to predict patient survival. Two factors were identified to be
significantly associated with bad prognosis: high levels of IGFBP2 and low levels of GATA binding protein
3.  GATA3 protein level is not correlated with its RNA level, highlighting the interest of RPPA use. a
Proteins accumulation in tissue microarray was performed, and biological validation in cell culture was
provided for GATA3, through retroviral delivery in colon cancer cell lines. Over expression of GATA3
specifically reduced invasion in a transwell filter assay, and reduced the size of colony formation in
matrigel without effect on cell proliferation in 2D cultures. The data are sound, convincing and of interest
for the community.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 01 June 2015Referee Report

doi:10.5256/f1000research.6853.r8773

 Stanley Stylli
Department of Surgery, University of Melbourne, Parkville, VIC, Australia

The research article ‘Linking patient outcome to high throughput protein expression data identifies novel
regulators of colorectal adenocarcinoma aggressiveness’ by French  presents a solid and et al
well-structured study examining the link between protein signaling data and potentially predicting patient
survival, in particular for colorectal cancer. To perform their research, they have utilized publically
available databases to detect protein expression changes in colorectal cancer. The appropriateness and
robustness of their experimental design is encompassed by the validation through multiple computational
methods which identified a number of known, but more importantly new potential regulators of colorectal
cancer. Increased levels of IGFBP2 were shown to be associated with tumour recurrence and death. In
addition, they also identified that GATA binding protein 3 (GATA3) expression was also associated with
patient outcome (being significantly decreased in the lower stage colorectal cancer patients).

Confirmation of the role of GATA3 was shown in their proliferation and invasion laboratory studies.  The
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Confirmation of the role of GATA3 was shown in their proliferation and invasion laboratory studies.  The
results are clearly presented and extensively rationalized in the discussion, for which the authors must be
commended.  It is a comprehensive study which will be of interest to many readers who wish to undertake
similar approaches utilizing protein expression data in public databases as a foundation of their laboratory
research. It is an excellent addition to the current literature.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:
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