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ABSTRACT To monitor the lateral segregation of lipids into liquid-ordered (Lo) and -disordered (Ld) phases in lipid mem-
branes, environment-sensitive dyes that partition in both phases but stain them differently have been developed. Of particular
interest is the dual-color F2N12S probe, which can discriminate the two phases through the ratio of its two emission bands.
These bands are associated with the normal (N*) and tautomer (T*) excited-state species that result from an excited-state intra-
molecular proton transfer. In this work, we investigated the potency of the time-resolved fluorescence parameters of F2N12S to
discriminate lipid phases in model and cell membranes. Both the long and mean lifetime values of the T* form of F2N12S were
found to differ by twofold between Ld and Lo phases as a result of the restriction in the relative motions of the two aromatic moi-
eties of F2N12S imposed by the highly packed Lo phase. This differed from the changes in the ratio of the two emission bands
between the two phases, which mainly resulted from the decreased hydration of the N* form in the Lo phase. Importantly, the
strong difference in lifetimes between the two phases was preserved when cholesterol was added to the Ld phase. The two
phases could be imaged with high contrast by fluorescence lifetime imaging microscopy (FLIM) on giant unilamellar vesicles.
FLIM images of F2N12S-labeled live HeLa cells confirmed that the plasma membrane was mainly in the Lo-like phase. Further-
more, the two phases were found to be homogeneously distributed all over the plasma membrane, indicating that they are highly
mixed at the spatiotemporal resolution of the FLIM setup. Finally, FLIM could also be used to sensitively monitor the change in
lipid phase upon cholesterol depletion and apoptosis.
INTRODUCTION
Plasma membrane (PM) bilayers contain a large number of
lipid species that differ in their hydrocarbon chain length,
saturation, and headgroup (1). A variety of PM biological
functions, such as regulation of membrane protein activity,
membrane trafficking, and signal transduction, are thought
to be related to the lateral segregation of lipids into domains
(2–4). Lipid domains enriched in saturated lipids (mainly
sphingolipids) and sterols (mainly cholesterol (Chol)) are
believed to form a liquid-ordered (Lo)-like phase with
strongly packed lipids. These domains may behave as rafts
floating on a sea constituted by the loosely packed liquid-
disordered (Ld)-like phase enriched in unsaturated phospho-
lipids (2,5,6). However, detection and visualization of these
domains is not a simple task (7,8). Various percentages of
Lo phase (10–80%) and a rather large range of Lo domain
sizes (10–1000 nm) in PMs have been reported depending
on the technique used to detect them (9–14).

To noninvasively investigate these domains, investigators
have developed fluorescence labels that are selective for a
particular phase (15), such as the fluorescently labeled pro-
tein cholera toxin-B (CT-B) from Vibrio cholerae, which
binds rather selectively to the ganglioside GM1 associated
with Lo-phase domains, but can induce lipid domains by
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itself due to its tendency to aggregate (10,16,17). Unfortu-
nately, most molecular membrane probes, notably lipid-
like probes, are not suited for staining Lo-phase domains
due to their exclusion from the tightly packed Lo phase
(3). Nonetheless, as exceptions to this rule, a few saturated
lipids that are fluorescently labeled at their headgroups
(5,11) and a small number of fluorescent dyes with long
alkyl chains, such as LcTMA-DPH (18) and diI-C20
(19), preferentially partition in Lo domains. However, this
partition depends on the lipid composition of the Lo domain
(20). Molecular rotors such as BODIPY-FL-C12, BODIDY-
FL-DHPE, and DiOC18 (21) are powerful tools for
monitoring microscopic viscosity (22–25) and can also
discriminate Lo and Ld phases, but suffer from their prefer-
ential partitioning in the Ld phase. Alternatively, lipid do-
mains can be investigated by environment-sensitive probes
such as Laurdan (20,26) and its derivatives (27,28), as
well as di-4-ANEPPQ (29,30) and NR12S (31). These
probes partition in both Lo and Ld phases but change their
emission color in response to changes in the lipid phase,
which can be detected by ratiometric techniques (26,32).
Of particular interest is N-[[40-N,N-diethylamino-3-hy-
droxy-6-flavonyl]-methyl]-N-methyl-N-(3-sulfopropyl)-1-
dodecanaminium, inner salt (F2N12S), which is highly
sensitive to the lipid order of lipid bilayers (33,34).
F2N12S is a 3-hydroxyflavone (3HF) probe that exhibits a
dual emission as a result of an excited-state intramolecular
http://dx.doi.org/10.1016/j.bpj.2015.04.003
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proton transfer (ESIPT) reaction generating two different
excited-state species (34). Being conjugated to a zwitterion
headgroup and a long alkyl chain, the F2N12S fluorophore
is selectively anchored at the PM outer leaflet (33), whereas
its fluorophore moiety is thought to adopt two slightly
different positions and orientations (Fig. 1) (35).

The deepest and more vertical orientation is thought to be
associated with a hydrogen (H)-bond-free form that can un-
dergo ESIPT, thus providing the normal (N*) and tautomer
(T*) excited-state forms. The more shallow location and
tilted orientation is associated with an H-bonded form in
which the fluorophore forms an intermolecular H-bond
with water. This H-bond is thought to prevent the ESIPT re-
action, so only the H-bonded normal form (H-N*) can emit.
The emission spectra of the three forms (N*, H-N*, and T*)
can be obtained by deconvolution (34,36), which allows one
to characterize the polarity of the H-bond-free form through
the N*/T* ratio, as well as the hydration parameter through
the relative contribution of the H-N* form. In model mem-
branes, F2N12S is highly sensitive to the lipid order and sur-
face charge (33,34). Whereas the Ld-to-Lo transition
drastically decreases the hydration parameter, a change in
the surface charge mainly affects the polarity parameter.
F2N12S was successfully used to monitor changes in the
lipid phase of the PM of live cells upon Chol extraction
and apoptosis (33). So far, all applications of F2N12S, and
notably its imaging in cells, have relied on ratiometric mea-
surements. Although ratiometric imaging is sensitive, it re-
quires a calibration step with model systems of pure phase,
as well as a precise alignment of detectors at two different
wavelengths (32,37). An alternative is fluorescence lifetime
imaging microscopy (FLIM), which registers the fluores-
cence lifetime values in each pixel of the image indepen-
dently of the instrumentation used and with no need for a
calibration step. Previous studies have shown the advantages
of using fluorescence lifetimes to investigate lipid phases in
FIGURE 1 Location and orientation of the hydrated and nonhydrated

forms of the F2N12S probe in a lipid bilayer.
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cells (38–40), in particular using Laurdan to estimate the
fraction of Lo-like phase in the PM of live cells (41).

In this context, our objective in this work was to deter-
mine the sensitivity of F2N12S time-resolved fluorescence
parameters to the lipid phase and Chol content in large uni-
lamellar vesicles (LUVs) and giant unilamellar vesicles
(GUVs), and to validate FLIM as a method for monitoring
lipid phases in cells. Our data show that the long and
mean lifetimes of the T* band of F2N12S differ by a factor
of 2 between the Lo and Ld phases, and thus can be used by
FLIM to sensitively and straightforwardly monitor the
changes in lipid phase in cells.
MATERIALS AND METHODS

Materials

All chemicals and solvents used in this work were obtained from Sigma-

Aldrich. F2N12S was synthesized as previously described (33). The probe

was pure according to thin-layer chromatography, 1H-NMR data, absorp-

tion, and fluorescence spectra in organic solvents.
Model membranes

LUVs and GUVs were obtained by extrusion and electroformation, respec-

tively (42–44), as described in the Supporting Material.
Cell lines, culture conditions, and treatment

HeLa cells were grown in Dulbecco’s modified Eagle’s medium (DMEM,

high glucose; GIBCO-Invitrogen) supplemented with 10% (v/v) fetal bovine

serum (Lonza) and 1% antibiotic solution (penicillin-streptomycin; GIBCO-

Invitrogen) in a humidified incubator with 5% CO2 atmosphere at 37�C.
Cholwas depletedwithmethyl-b-cyclodextrin (MbCD) (Sigma-Aldrich).

In short, a stock solution of MbCD in Dulbecco’s PBS was prepared at an

appropriate concentration, filtered by aMillipore filter (0.22 mm), and added

to the cells to a final concentration of 5 mM. Treated cells were kept in the

incubator at 37�C for 30 min and then washed with PBS buffer. A stock so-

lution of F2N12S in DMSO was diluted in PBS and added to the cells to a

final concentration of 0.1 mM per 106 cells (<0.25% DMSO volume), and

the cells were incubated for 2 min in the dark at 37�C. To induce apoptosis,
the cells were treated with actinomycin D (0.5 mg/mL) for 18 h at 37�C.

In steady-state and time-resolved fluorescence experiments, cells were

trypsinized to detach them from the dish surface. The culture medium was

first removed from the culture dish and then the cells were washed two times

with PBS buffer. Trypsin 10� (Lonza) solution was diluted 10 times with

PBS and added to the cells at 37�C for 3min. The trypsinized cells in solution

were then diluted by Hank’s balanced salt solution (HBSS), transferred to

Falcon tubes, and centrifuged two times at 1500 rpm for 5 min. For staining,

an aliquot of probe stock solution in DMSO was added to 0.5 mL of HBSS

buffer, and after vortexing, the solution was immediately added to 0.5 mL

of the cell suspension (106 cells/mL) to obtain a final F2N12S concentration

of 0.1 mM (<0.25% DMSO). It should be noted that only freshly prepared

solutions of F2N12S in HBSS (<1 min old) should be used for cell staining,

because of its slow aggregation in water. The cell suspension was incubated

with the probe for 7 min at room temperature in the dark before spectra were

recorded or time-resolved fluorescence experiments were performed.

For microscopy experiments, cells were seeded onto a chambered cover-

glass (IBiDi) at a density of 5�104 cells/IBiDi. After 18–24 h, the cells

were washed with PBS and then stained by adding a freshly prepared solu-

tion of F2N12S in PBS to a final concentration of 0.1 mM per 106 cells
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(<0.25% DMSO volume), and incubated for 2 min in the dark at room tem-

perature. The cells were then washed again with PBS buffer.
Steady-state and time-resolved fluorescence
spectroscopy

Absorption and fluorescence spectra were recorded on a Cary 4000 spectro-

photometer (Varian) and a FluoroMax 3.0 (Jobin Yvon, Horiba) spectroflu-

orometer, respectively. Fluorescence emission spectra were recorded using

a 315 nm excitation wavelength at room temperature. All of the spectra

were corrected for the fluorescence of the corresponding blank (suspension

of cells or lipid vesicles without the probe) and the wavelength dependence

of the optical elements in the emission pathway. Deconvolution of F2N12S

fluorescence spectra into three bands (N*, H-N*, and T*) was carried out

(36) using the PeakFit 4 software as described in the Supporting Material.

We performed single-point time-resolved fluorescence measurements in

cuvettes using the time-correlated, single-photon counting (TCSPC) tech-

nique with the frequency-tripled output of a Ti-sapphire laser pumped by

a Millenia X laser (Tsunami; Spectra Physics) (45). The excitation wave-

length was set at 315 nm. The fluorescence decays were collected at the

magic angle (54.7�) of the emission polarizer to avoid artifacts due to the

vertically polarized excitation beam. Single-photon events were detected

with a microchannel plate photomultiplier (R3809-U; Hamamatsu) coupled

to a pulse preamplifier (HFAC; Becker & Hickl) and recorded on an SPC-

130 board (Becker & Hickl). The instrumental response function was

recorded using a polished aluminum reflector, and its full width at half-

maximum was ~40 ps. We analyzed the time-resolved decays using the

maximum of entropy method (46,47) with Pulse 5 software (Maximum En-

tropy Data Consultants), which allowed us to resolve fluorescence life-

times down to ~20 ps. The goodness of the fit was evaluated from the c2

values, which ranged from 0.9 to 1.2, and from the plot of the residuals

and the autocorrelation function. The mean lifetime was calculated by

tm ¼ P
ai ti, using the lifetimes ti associated with positive ai ampli-

tudes. Decay-associated spectra (DAS) were calculated by : IiðlÞ ¼
aitiIðlÞ=

P
aiðlÞti, where IðlÞ is the steady-state emission spectrum and

aiðlÞ are the wavelength-dependent amplitudes.
Two-photon FLIM

We performed two-photon fluorescence microscopy at 20�C by using an in-

house-built two-photon laser scanning setup based on an Olympus IX70 in-

verted microscope with an Olympus 60� 1.2NAwater immersion objective

and two fast galvo mirrors in the descanned fluorescence collection mode

(48,49). Two-photon excitation was provided by a titanium-sapphire laser

(Tsunami; Spectra Physics) or an Insight DeepSee laser (Spectra Physics).

The typical excitation power was ~2.5 mW (l ¼ 830 nm) at the sample.

Photons were detected using an avalanche photodiode (SPCM-AQR-14-

FC; Perkin Elmer) coupled to an HQ 585/40 bandpass filter and a single-

photon-counting TCSPC module (SPC830; Becker & Hickl) operating in

the reversed start-stop mode. Acquisition times were adjusted to achieve

1000 photons per pixel. The minimum fluorescence lifetime detectable

with this setup is ~300 ps. FLIM data were analyzed with a binning of

one using the SPCImage V4.6 software (Becker & Hickl), which uses an

iterative reconvolution method to recover the lifetimes from the fluores-

cence decays (50). The goodness of the fit was evaluated from the c2 values,

which ranged from 0.9 to 1.2, and from the plot of the residuals.
RESULTS

LUVs labeled by F2N12S

As the first step in characterizing the dependence of the
time-resolved fluorescence parameters on the lipid phase,
we investigated the fluorescence intensity decays of
F2N12S in LUVs of a controlled lipid composition
(Fig. S1). LUVs were chosen as model membranes because
they can be easily prepared with any composition. LUVs
composed of DOPC lipids were used as models of the Ld
phase, and LUVs composed of sphingomyelin (SM) and
Chol at a ratio of 2:1 were used as models of the Lo phase.
We performed time-resolved fluorescence measurements
using the TCSPC technique with a setup that allowed us
to record as much as 1 million photons for each decay curve,
ensuring excellent statistics. For each type of LUV, decays
were recorded at six different emission wavelengths,
ranging from 490 to 610 nm (Fig. 2, A and B; Table S1).
For LUVs of both lipid phases, up to five fluorescence life-
times were recovered, in line with the multiexponential
decay reported earlier for this probe in an Ld model mem-
brane (51). As expected for an excited-state reaction such
as ESIPT (52), a short lifetime (~30 ps) with a positive
amplitude was observed for the N* band, and a correspond-
ing fast-rise component associated with a negative ampli-
tude was observed for the T* form in both phases. This
shortest component was almost independent of the phase
state. Its value indicated that the ESIPT reaction occurred
within 30 ps, so the equilibrium between the N* and T*
forms was reached very rapidly in both lipid phases. The
values of the intermediate lifetimes (0.1–0.3 ns) and (0.7–
1.1 ns) were found to be reasonably close in the two lipid
phases (Fig. 2, A and B). In sharp contrast, the two phases
clearly differed with regard to the F2N12S long lifetimes.
The Ld phase was characterized by a 2.8 (5 0.2) ns compo-
nent (Fig. 2 A), whereas the Lo phase was characterized by a
much longer component of 6.0 (5 0.2) ns (Fig. 2 B). Impor-
tantly, the amplitudes of these long lifetimes were observed
to strongly increase with the emission wavelength, reaching
~80% at wavelengths R 590 nm, so these emission wave-
lengths were selected for further measurements.

Interestingly, the long lifetime value in the Lo phase
(6.0 ns) was very close to that reported for the T* band of
a 3HF-based amino acid when it was included in a polysty-
rene film or when, being part of a peptide, it was stacked
with nucleobases in a peptide/oligonucleotide complex
(53). For this 3HF-based amino acid, the ~6-ns-long lifetime
was clearly related to the restriction of the relative motions
of the two aromatic moieties of the 3HF fluorophore, as
result of stacking interactions with the polystyrene aromatic
rings or the nucleobases, which favored the more planar and
emissive 3HF conformation. Therefore, we assumed that the
relative motions of the two aromatic rings of the F2N12S
fluorophore were also restricted by the highly packed Lo
phase, explaining the appearance of the 6.0 ns component
as a result of a decrease in the nonradiative deactivation
rates. Due to the less constrained packing of lipids in the
Ld phase, the restriction in the relative motions of the
F2N12S aromatic moieties was certainly less stringent,
readily explaining the lower value (2.8 ns) of the long
Biophysical Journal 108(10) 2521–2531



FIGURE 2 Dependence on the emission wave-

length of the time-resolved fluorescence parame-

ters of F2N12S in LUVs of Ld and Lo phases.

(A and B) Time-resolved emission decays of

F2N12S were recorded in cuvettes for LUVs

composed of (A) DOPC (Ld phase) and (B) SM/

Chol (Lo phase). The ~30 ps component describing

the ESIPT reaction was omitted in the graph. The

emission wavelengths are indicated by the color

code. The excitation wavelength was 315 nm. To

see this figure in color, go online.
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lifetime in this case. Notably, a 2.2 (5 0.1) ns component
was also observed in the Lo phase. However, due to its
low amplitude (<19%), this 2.2 ns component is expected
to only marginally interfere with the determination of the
Lo and Ld phases in systems where both phases are present.

As an alternative to the long lifetimes, the values of the
mean lifetime tm can also be used to discriminate the two
phases. These values are especially selective for the T*
band at high emission wavelengths. Indeed, we obtained
tm values of 2.3 (5 0.1) ns and 5.4 (5 0.5) ns for DOPC
LUVs and SM/Chol LUVs, respectively, using the decay pa-
rameters at 590 and 610 nm (Fig. S2). Thus, both the long
and mean lifetime values differ by a factor of 2 between
the Lo and Ld phases, and the two phases can be discrimi-
nated with high contrast using FLIM.

The strong dependence of the lifetime amplitudes on the
wavelength suggests that the different lifetimes may be
associated with different excited-state species. As was
shown in previous studies (34,36), three emissive species
(N*, H-N*, and T*) contribute to the F2N12S emission
spectrum. To attribute the lifetime components to these spe-
cies, we drew the DAS for all lifetime components and
compared them with the spectra of the three species ob-
tained by deconvolution of the emission spectra (Fig. 3)
(36). Notably, the emission spectra of F2N12S in DOPC
and SM/Chol LUVs differed slightly from those reported
in our previous studies (34,54), since they were corrected
from the wavelength dependence of the optical elements
in the emission pathway. A comparison of the deconvoluted
spectra of F2N12S in Ld and Lo phases (Fig. 3, A and B)
Biophysical Journal 108(10) 2521–2531
indicated that the spectra differed mainly by the large contri-
bution of H-N* in the Ld phase. The absence of the H-N*
form in the Lo phase could be readily explained by the
strong packing and poor hydration of this phase (36,55),
which did not favor this hydrated and tilted form.

A comparison of the deconvoluted emission spectra with
the DAS for each lifetime component indicates that the
emission of F2N12S in SM/Chol LUVs was largely domi-
nated by the 6.0 ns component (Fig. 3 A, green diamonds).
This finding was fully expected for the T* form, where the
amplitude and thus the population associated with the 6.0 ns
component represented up to 81% (Fig. 2 B), and its frac-
tional contribution to the fluorescence intensity calculated
by the product of the component by its amplitude divided
by the mean lifetime represented up to 92%. The 6.0 ns
component also dominated the emission of the N* band,
although its population represented less than 20% in this
band (Fig. 2 B). The strong contribution of this component
in the N* emission resulted from the fact that the most popu-
lated component (0.1 ns) of the N* form is very poorly fluo-
rescent and thus contributes little to the N* emission (Fig. 3
A, orange disks). In DOPC LUVs, the emission spectrum of
F2N12S was dominated by the emission associated with the
2.8 ns component. This component was particularly domi-
nant in the case of the H-N* and T* forms, as could be
seen from the DAS spectra. In contrast, the emission of
the N* band was mainly contributed by the 0.3 ns and
1.1 ns components. The short-decay components (0.1–
0.3 ns) with high amplitude observed for the N* band in
both Ld and Lo phases are likely due to fast photophysical
FIGURE 3 (A and B) DAS overlapped with

steady-state spectra and deconvoluted bands of

F2N12S in SM/Chol (A) and DOPC (B) LUVs.

Steady-state spectra are represented as solid lines.

Deconvoluted spectra of N*, H-N*, and T* bands

are drawn with black, green, and red dashed lines,

respectively. The DAS for the 0.1 ns, 0.7 ns, and

2.2 ns components in (A) and the 0.3 ns, 1.1 ns,

and 2.8 ns components in (B) are plotted with or-

ange disks, blue triangles, and magenta inverted

triangles, respectively. The DAS for the 6 ns

component in (A) is plotted with green diamonds.

The sum of the DAS for 0.3 ns and 1.1 ns compo-

nents in (B) is plotted with cyan squares. To see

this figure in color, go online.
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processes related to the charge and proton transfer proper-
ties of the highly dipolar N* form. On the other hand, the
intermediate-decay component (~1 ns) observed for the
N* form in DOPC LUVs could be related to the slow relax-
ation of its lipid environment, as suggested in earlier studies
(51,56).

Next, we investigated the dependence of F2N12S time-
resolved fluorescence parameters in the Ld phase on the
presence of Chol. Chol is a major component of cell mem-
branes, representing up to 50% of their lipid composition
(57–59). Its presence in model membranes of the Ld phase
was shown to affect the response of Prodan, Laurdan, and
di-4-ANEPPDHQ probes (20,26,29,60,61), suggesting that
it can affect both membrane order (31,41,54,62) and hydra-
tion (36,55). By using Ld LUVs composed of DOPC and
increasing Chol fractions, we observed a progressive and
substantial decrease of the H-N* band in the F2N12S emis-
sion spectra (Fig. 4 A). From the deconvoluted spectra, we
observed a Chol-induced decrease in the hydration param-
eter of F2N12S by up to 50% (Fig. 4 A, inset) at the highest
Chol fraction tested (32%), in line with the well-known
dehydration effect of Chol in lipid membranes (34,55).
However, there was far less dehydration in the Ld phase
than in the Lo phase, where the H-N* band was absent.

The time-resolved intensity decays of the DOPC/Chol
LUVs were characterized by five lifetime components
(Fig. 4 B; Table S2). Whereas the long lifetime was iden-
tical to that of SM/Chol LUVs (Lo phase), all other lifetimes
were similar to those observed in DOPC LUVs (Ld phase).
Even at low concentrations, Chol significantly affected the
F2N12S environment, as shown by the sharp decrease in
the amplitude associated with the 3 ns component, which
was mainly to the benefit of the 1 ns component. It can be
speculated that a low Chol content in DOPC would induce
some disorder in the probe environment, and thus the rela-
tive motions between the two aromatic moieties of
F2N12S would be less restricted. At higher Chol concentra-
tions, we observed a progressive increase in the amplitude of
the 3 ns lifetime, indicating that the probe accumulates in
more packed lipid regions, which form as a result of the
favorable packing interactions of Chol with lipids. Some
LUVs with increasing Chol fraction. Experiments were performed in cuvettes. C

was omitted in the graph. Emission was recorded at 590 nm. To see this figure
of these regions may be rigid enough to allow the 6 ns
component to be perceived. However, the amplitude of
this 6 ns component (<�11%) is far below that observed
in the Lo phase (63%), suggesting that the DOPC/Chol clus-
ters around the F2N12S probe are much more dynamic than
the SM/Chol ones. Therefore, the relative amplitudes asso-
ciated with the 3 and 6 ns components appear to be reliable
parameters for discriminating the Lo phase from the Ld
phase in both the absence and presence of Chol.
GUVs labeled by F2N12S

LUVs were not appropriate to use for FLIM experiments
due to their small size (0.11 mm); therefore, we used
GUVs, whose sizes (~10 mm) are perfectly suited for micro-
scopy measurements. In the FLIM technique, a fluorescence
decay is recorded at each pixel to extract the fluorescence
lifetimes and convert them into a color code. Therefore,
the contrast of the obtained images is given by the lifetime
values. In contrast to solution measurements, FLIM does not
allow recording of more than a few thousand photons per
pixel. This results in poor statistics, which precludes anal-
ysis of decays with more than one or two lifetime compo-
nents (50). By monitoring the emission centered at
580 nm, where the contribution of lifetimes of %2.2 ns
are negligible (Fig. 3, A and B), we should only be able to
detect the 2.8 ns component in DOPC GUVs of the Ld phase
and the 6 ns component in SM/Chol GUVs of the Lo phase.

In line with our expectations, FLIM measurements
(Fig. 5 A, top) provided rather narrow lifetime distributions
centered at 2.7 5 0.5 ns for DOPC GUVs and 6.6 5 0.6 ns
for SM/Chol GUVs (Fig. 5 B), which correspond to the long
lifetime signatures of the Ld and Lo phases, respectively.
Notably, as was found for the ratiometric images, a strong
polarization effect could be observed for the Lo phase due
to the restricted vertical orientation of F2N12S fluorophore
in the lipid bilayer (35,63). Due to the much less constrained
environment in the Ld phase, the probe can sample a larger
range of orientations, so at each pixel of the GUV bilayer, at
least a fraction of the dyes are not perpendicular to the
electric field of the laser beam. In GUVs composed of
FIGURE 4 Steady-state and time-resolved fluo-

rescence spectroscopy of F2N12S in DOPC/Chol

LUVs. (A) Steady-state spectra of F2N12S in

DOPC/Chol LUVs with increasing fractions of

Chol: 0.07 (black), 0.14 (red), 0.25 (magenta),

and 0.32 (orange). Spectra of F2N12S in DOPC

and SM/Chol are in green and blue, respectively.

The spectra are normalized at the T* band

maximum. (Inset) Dependence of the hydration

parameter of F2N12S on the Chol fraction in

DOPC/Chol LUVs. The probe hydration in

DOPC was taken as 100%. (B) Time-resolved fluo-

rescence parameters of F2N12S in DOPC/Chol

olor code as in (A). The ~30 ps component describing the ESIPT reaction

in color, go online.
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FIGURE 5 FLIM images and lifetime distribu-

tion of GUVs of different compositions. (A)

FLIM images of DOPC (Ld) and SM/Chol (2:1)

(Lo) GUVs (top). FLIM image of GUVs with

SM/DOPC/Chol (1:1:0.7) composition (LoþLd)

(bottom). For each pixel, the lifetime value is

coded using the color scale given at the bottom.

The scale bar is 10 mm. (B) Distribution of lifetime

values for the three types of GUVs. To see this

figure in color, go online.
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DOPC/SM/Chol (1:1:0.7), where the Lo and Ld phases
coexist, the two phases could be easily distinguished
through their lifetimes, highlighting the ability of the
FLIM technique to discriminate the two phases with high
contrast. The lifetime of the Ld phase (2.7 5 0.5 ns) was
found to be very similar to the lifetimes of the DOPC
GUVs (Fig. 5 B) and the DOPC/Chol (2:1) LUVs (Fig. 4
B). In contrast, the lifetime of the Lo phase (5.2 5 1 ns)
was somewhat shorter than that of the SM/Chol (2:1)
GUVs, suggesting that the Lo phase was slightly less or-
dered in the ternary mixture. This lower-order level prob-
ably resulted from the presence of DOPC in the Lo phase
of the ternary mixture, which may somewhat reduce the
tight packing between SM and Chol in this phase. As a
consequence of the clear difference in lifetimes between
the two phases, the partition coefficient of F2N12S between
the two phases could be estimated. For this purpose, we first
measured the size of both domains using ImageJ software
(64) on 10 GUVs to estimate the fractional amounts of Lo
and Ld phases in these GUVs. We obtained a 75:25 ratio
of Ld/Lo phases, in excellent agreement with the 70:30 ratio
expected from the phase diagram for GUVs of this compo-
sition (65). Next, using SPCimage software, we integrated
the number of photons, No and Nd, emitted for each of the
two phases. We then calculated the partition coefficient of
F2N12S between the two phases, P ¼ [Lo]/[Ld], as

P ¼ Nofd

Ndfo

Cd

Co

; (1)

where fo (26.5 5 3%) and fd (30 5 3%) are the quantum
yields of F2N12S in the Lo and Ld phases, respectively, and
Cd/Co is the ratio of the two phases in the GUVs. A p value
of 0.17 5 0.04 was obtained, indicating a clear preference
of F2N12S for the Ld phase.
Cells labeled by F2N12S

Next, we used time-resolved fluorescence approaches to
characterize F2N12S-labeled cell membranes. First, we
characterized suspensions of intact and Chol-depleted cells
using the TCSPC technique. Chol-depleted cells were ob-
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tained by incubation with 5 mM MbCD at 37�C for
30 min (31,66). As previously reported for another cell
line (U-87 MG) (31), Chol depletion was observed to in-
crease the ratio of short- to long-wavelength bands and
red-shift the short-wavelength band (Fig. 6 A). The value
of the short lifetime associated with the negative amplitude
(Table S3) was indistinguishable from the corresponding
value in LUVs, indicating that the ESIPT process is only
marginally altered by the cell membrane environment or
by Chol depletion. Moreover, the amplitudes of the two in-
termediate lifetimes (0.25 0.04 and 0.95 0.2 ns) were low
(<10%), so the decays recorded at 590 nm were largely
dominated by the two long lifetimes, 3.3 5 0.2 ns and
6.9 5 0.1 ns, which corresponded to the signatures of the
Ld and Lo phases, respectively (Fig. 6 B).

In intact cells, the two long lifetimes (3.3 and 6.9 ns) had
similar amplitudes (Fig. 6 B), giving a mean lifetime of
4.5 5 0.5 ns. Both the amplitudes associated with the two
long lifetimes and the mean lifetime value are closer to those
observed in Lo LUVs as compared with Ld LUVs, confirm-
ing that the Lo-like phase may be dominant in cell PMs
(34,41,66). Depletion of Chol leads to a redistribution of
the amplitudes of the two components (Fig. 6 B) with, as ex-
pected, a strong decrease of the amplitude of the lifetime
associated with the Lo-like phase and thus a strong decrease
of the mean lifetime to 2.6 5 0.5 ns.

Next, we imaged F2N12S-labeled intact and Chol-
depleted HeLa cells using FLIM. We first analyzed the im-
ages by employing a single-decay-component model. As
previously reported for ratiometric images (31), the FLIM
images of intact and Chol-depleted cells labeled with
F2N12S showed a remarkable homogeneity in their
pseudo-color distribution (Fig. 7 A), indicating that no clear
phase separation could be perceived. The lifetime distribu-
tions were centered at 5.6 5 0.9 ns and 3.6 5 0.4 ns for
intact and Chol-depleted cells, respectively (Fig. 7 B).
Both lifetimes were intermediate between those observed
for the Ld and Lo phases in GUVs (Fig. 5 B), suggesting
that the two phases may be present in both types of cells.
As these two phases could not be discriminated in the
FLIM images (Fig. 7 A), this suggests that the Lo-like and
Ld-like domains are smaller than the ~300 nm resolution



FIGURE 6 (A and B) Emission spectra (A) and

time-resolved fluorescence parameters (B) of

F2N12S-labeled intact (blue) and Chol-depleted

(green) HeLa cells. Time-resolved fluorescence

parameters were obtained by TCSPC measure-

ments at 590 nm emission wavelength on cell sus-

pensions in cuvettes. The excitation wavelength

was 315 nm. To see this figure in color, go online.
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limit of our two-photon excitation microscope and/or that
the domains are highly dynamic and thus cannot be resolved
in the timescale (approximately seconds) of the FLIM mea-
surements. This is in sharp contrast to the DOPC/SM/Chol
GUVs (Fig. 5 A), where the separated lipid domains could
be easily observed due to their large size and slow dynamics
(5,20,35).

As both Lo-like and Ld-like phases are likely present in
intact and Chol-depleted cells, we next analyzed the FLIM
images using a two-component model to recover the life-
times and amplitudes associated with the two phases. For
intact cells, we obtained t1 ¼ 3.4 5 0.7 ns and t2 ¼
6.4 5 0.9 ns components (Fig. 8, A and B), which are
consistent with the lifetimes of Ld and Lo phases in model
systems and the lifetimes recovered by TCSPC measure-
ments on suspensions of the same cells. The two lifetimes
recovered by FLIM were found to be homogeneously
distributed all over the PM, confirming that the two phases
are mixed, at least at the spatiotemporal resolution of the
setup. For Chol-depleted HeLa cells, the two lifetime com-
ponents of F2N12S were t1 ¼ 2.75 0.4 ns and t2 ¼ 5.4 5
0.7 ns, respectively (Fig. 8, A and B). The 5.4 ns value for
the long lifetime was significantly lower than the 6.9 ns
value in TCSPC measurements. This is likely a consequence
of there being too few photons in several pixels of the FLIM
image, so the analysis could not resolve the two compo-
nents. In spite of this limitation, it is still obvious from the
t1 and t2 images of Chol-depleted cells (Fig. 8 A) that the
two phases largely overlap all over the cell PM, suggesting
that Chol depletion is not able to unmix the two phases, at
least at the spatiotemporal resolution of our FLIM setup.
To further illustrate the potency of our lifetime-based im-
aging approach, we monitored PM remodeling during
apoptosis induced by actinomycin D (0.5 mg/mL; Fig. 9).
Using a single-component analysis, we found that apoptotic
cells exhibit a lifetime value of 5.15 0.6 ns, which is inter-
mediate between the 5.6 5 0.9 ns and 3.6 5 0.4 ns values
shown by intact and Chol-depleted cells, respectively. This
indicated a decrease in the Lo-like phase (34,62), which
probably resulted from the loss of transmembrane asymme-
try (67) and the SM hydrolysis into ceramide that occurred
during apoptosis (68). A further decreased lifetime value
(4.4 5 0.3 ns) and thus a further decrease in lipid order
were observed in vesicles (Fig. 9, arrows), which may be
attributed to apoptotic blebs (69,70). This decrease in lipid
order in apoptotic blebs is fully consistent with the Ld-
like phase that Kreder et al. (70) recently described for these
blebs by ratiometric imaging using Nile-red based probes.
DISCUSSION

In this work, we investigated the potency of time-resolved
fluorescence techniques to discriminate lipid phases in
model and cell membranes, using the ratiometric membrane
probe F2N12S. Despite the complex multiexponential decay
of F2N12S (51), we found that the Lo phase could be
discriminated from the Ld phase with high contrast, by
the values of its long and mean fluorescence lifetimes.
The best sensitivity was observed at the red edge of
the F2N12S emission spectrum, where the T* form is domi-
nant. The twofold higher values of the F2N12S long and
mean lifetimes in the Lo phase as compared with the Ld
FIGURE 7 FLIM images and lifetime distribu-

tion of intact and Chol-depleted HeLa cells,

analyzed by a single decay component model.

(A) FLIM images of Chol-depleted (left) and intact

(right) HeLa cells. The pixel colors describe the

lifetime values according to the color scale on

the X axis. (B) Lifetime distribution for intact

(blue) and Chol-depleted (green) cells. The distri-

butions were obtained from measurements on

20 cells. Two-photon excitation was at 830 nm.

To see this figure in color, go online.
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FIGURE 8 FLIM images of F2N12S-labeled

intact and Chol-depleted HeLa cells, analyzed by

a two-component model. (A) FLIM images were

recorded as in Fig. 7 and analyzed with a two-

component (t1 and t2) model. The colors of the

pixels describe the values of the t1 (left panels)

and t2 (right panels) components according to

the color scale on the X axis. (B) Distribution of

the amplitudes associated with the t1 (green) and

t2 (blue) components for intact (top panel) and

Chol-depleted (bottom panel) cells. The histo-

grams resulted from measurements on 20 cells.

To see this figure in color, go online.
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phase were attributed to the restriction in the relative mo-
tions of the two aromatic moieties of F2N12S imposed by
the highly packed Lo phase, which favored the more planar
and more emissive conformation of the 3HF fluorophore
(53). Addition of Chol to DOPC LUVs was also found to
induce the appearance of the ~6 ns lifetime component,
which is characteristic of the Lo phase, but only at low
amplitude. This is likely related to the inability of Chol to
induce in the Ld phase the strong packing of lipids that char-
acterizes the Lo phase and efficiently restricts the relative
motions of the two aromatic moieties of F2N12S. Therefore,
the lifetime signatures of the Ld and Lo phases (~3 ns and
~6 ns, respectively) appear to be sensitive tools for distin-
guishing the two phases even in the presence of Chol.
This was confirmed by FLIM images of SM/DOPC/Chol
GUVs, where the large and stable Ld and Lo phases could
be easily discriminated by their lifetime signatures,
although Chol was likely distributed in both phases
(Fig. 5). The capacity to distinguish between the Lo and
Ld phases in Chol-containing lipid compositions is an
important advantage of F2N12S over a number of other
environment-sensitive probes, such as Laurdan, in which
FIGURE 9 FLIM images of apoptotic HeLa cells analyzed by a single-

decay-component model. The pixel colors describe the lifetime values ac-

cording to the color scale on the X axis. The arrows show vesicles that

can be assigned to blebs. The lifetime values of the blebs suggest that

they exhibit an Ld-like phase. To see this figure in color, go online.
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case the presence of Chol in the Ld phase decreases the
contrast with respect to the Lo phase (71).

The contrast in lifetimes between the two phases
observed with F2N12S was found to be significantly higher
than that observed for various fluorescence-labeled phos-
pholipids, such as BODIPY-PC (72), Rhod-DOPE (73),
and C6-NBD-PC (38,74). Although the last compound
was also quite sensitive, showing a 70% difference in life-
time values between the two phases, it provided a much
smaller change (<10%) in response to Chol depletion as
compared with F2N12S (~60%) and suffered also from
low photostability (38). F2N12S also showed improved
sensitivity compared with perylene monoimide derivatives,
which are highly bright and photostable, but undergo a
smaller change (35%) in their lifetime between Ld and Lo
phases and suffer from their tendency to aggregate (39).

The ~2-fold variation in F2N12S lifetimes between Lo
and Ld phases is comparable to the variation in the general
polarization or the two-band ratio values observed
with Laurdan (41), PY series (40), di-4-ANEPPDHQ
(30,38,39), and NR12S (31) probes. However, since fluores-
cence lifetimes are absolute parameters that are independent
of the instrumentation used, no calibration is required, in
contrast to ratiometric methods, which are based on inten-
sity measurements (26,31,33,75). Moreover, a key feature
of F2N12S is its capacity to bind specifically to the outer
leaflet of the PM. This is of crucial importance for two rea-
sons. First, since the PM is asymmetric, with the outer
leaflet being highly enriched in SM, Lo domains are partic-
ularly important in this leaflet. As a result, the information
revealed by F2N12S at the PM is not complicated by stain-
ing of the inner leaflet. Second, since F2N12S is anchored at
the outer leaflet, it does not diffuse rapidly inside the cell to
stain the inner lipid membranes. As a result, the contrast of
the FLIM images at the PM is not decreased by photons
coming from inner compartments close to the PM. A
frequently used alternative to FLIM imaging is the phasor
plot approach (76,77). Although this method is also based
on fluorescence decays, it requires a calibration step with
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compounds exhibiting single lifetimes (41,77). The contrast
obtained by F2N12S lifetime analysis is also comparable to
that reported for the ratio of its two emission bands (34).
More importantly, the contrast offered by the lifetime anal-
ysis and the intensity ratio differs according to its origin.
Whereas ratiometric measurements are mainly sensitive to
F2N12S hydration, fluorescence lifetimes mainly reflect
the local dynamics of F2N12S in its lipid environment.
The F2N12S fluorescence lifetimes measured at 580 nm
are poorly sensitive to hydration or solvent relaxation effects
because the T* form, in contrast to the N* form, exhibits low
dipole moment in its excited state (78–80). Therefore, FLIM
and ratiometric imaging with F2N12S are two complemen-
tary approaches for studying lipid membranes. Remarkably,
when the Lo and Ld phases are compared, these two param-
eters correlate because the increase in the membrane rigidity
(observed by lifetimes) is a result of tight packing in the Lo
phase, which expels water from the membrane (observed by
the ratio).

Whereas the time-resolved fluorescence parameters of
F2N12S in the Ld phase were only moderately sensitive to
Chol, it nevertheless appears that DOPC LUVs, which are
frequently used as an Ld phase standard (34,41), do not
appropriately mimic the Chol-rich Ld-like phase in cell
membranes. It is likely that other lipids (in particular,
partially unsaturated ones such as POPC) may also affect
the local dynamics of F2N12S, making it difficult to
find the appropriate lipid composition that will faithfully
mimic the behavior of F2N12S in the Ld-like phase of
cell membranes. The same conclusion likely applies also
for the Lo phase. Further complication arises from the fact
that, to our knowledge, the exact lipid composition of
both phases in cell membranes is still not known. In these
conditions, it appears to be very difficult to use this kind
of tool to accurately determine the phase composition in
cell membranes. Whereas an accurate quantitative determi-
nation of the two phases appears unrealistic, the large differ-
ence in the lifetimes of the two phases allowed us to reveal
by FLIM that both Lo-like and Ld-like phases were distrib-
uted all over the PM of intact and Chol-depleted live cells.
No separation of the two phases could be observed, suggest-
ing that the two phases are mixed over the PM in our mea-
surement conditions. This suggests that the two phases are
highly dynamic on the timescale of the measurements
(seconds) and/or that one or both phases show subdiffraction
sizes (<250 nm), supporting the notion that lipid domains in
cell membranes may be small and highly dynamic (81,82).
In line with previous reports (31,34,41,54,62,66,83), the Lo-
like phase was clearly dominant in live cells, whereas Chol
depletion or apoptosis was found to increase the Ld-like
phase. Thus, our data on the coexistence of the two phases
and the prevalence of the Lo-like phase in intact cells are
in line with a previous model suggesting that the PM may
be constituted by a continuous Lo-like phase filled with
Ld-like holes or, alternatively, by a continuous Ld-like
phase containing a large number of Lo domains that cannot
be spatially resolved (41).

Taken together, our data indicate that the use of F2N12S
with lifetime-based approaches allows one to distinguish
Lo from Ld phases with high contrast. We successfully
used this technique to monitor membrane remodeling in
F2N12S-labeled cells during various physiological pro-
cesses, such as apoptosis. Further characterization of the
membrane phases will require techniques with either faster
acquisition rates than FLIM, such as fluorescence lifetime-
transient scanning (FLITS, with a millisecond acquisition
time (50)), or higher spatial resolution, such as single-particle
tracking (82) and stimulated emission depletion-fluores-
cence correlation spectroscopy (STED-FCS) (81,84). Exper-
iments using these techniques are currently being conducted
on F2N12S-labeled cells.
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transfer and solvent relaxation of a 3-hydroxyflavone probe in lipid bi-
layers. J. Phys. Chem. B. 112:11929–11935.

http://refhub.elsevier.com/S0006-3495(15)00349-5/sref10
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref10
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref10
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref11
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref11
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref11
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref12
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref12
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref12
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref13
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref13
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref13
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref14
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref14
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref14
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref15
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref15
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref15
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref16
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref16
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref16
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref17
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref17
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref17
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref18
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref18
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref18
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref18
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref18
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref19
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref19
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref19
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref20
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref20
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref20
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref21
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref21
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref21
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref22
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref22
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref22
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref23
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref23
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref23
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref24
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref24
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref24
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref25
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref25
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref25
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref26
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref26
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref26
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref27
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref27
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref28
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref28
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref28
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref29
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref29
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref29
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref30
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref30
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref30
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref30
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref31
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref31
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref31
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref32
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref32
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref32
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref33
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref33
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref33
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref34
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref34
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref34
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref34
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref35
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref35
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref35
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref35
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref36
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref36
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref36
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref37
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref37
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref37
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref38
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref38
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref38
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref39
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref39
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref39
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref40
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref40
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref40
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref41
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref41
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref41
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref42
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref42
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref43
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref43
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref43
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref44
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref44
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref44
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref45
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref45
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref45
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref45
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref46
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref46
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref46
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref47
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref47
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref48
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref48
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref48
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref48
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref49
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref49
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref49
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref49
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref50
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref50
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref50
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref51
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref51
http://refhub.elsevier.com/S0006-3495(15)00349-5/sref51


Monitoring Membrane Lipid Order by FLIM 2531
52. Shynkar, V. V., Y. Mely, ., A. P. Demchenko. 2003. Picosecond
time-resolved fluorescence studies are consistent with reversible
excited-state intramolecular proton transfer in 40-(dialkylaminoe)-3-
hydroxyflavones. J. Phys. Chem. A. 107:9522–9529.

53. Sholokh, M., O. M. Zamotaiev, ., Y. Mély. 2015. Fluorescent amino
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65. Bezlyepkina, N., R. S. Gracià,., R. Dimova. 2013. Phase diagram and
tie-line determination for the ternary mixture DOPC/eSM/cholesterol.
Biophys. J. 104:1456–1464.

66. Hao, M., S. Mukherjee, and F. R. Maxfield. 2001. Cholesterol depletion
induces large scale domain segregation in living cell membranes. Proc.
Natl. Acad. Sci. USA. 98:13072–13077.

67. Zwaal, R. F., and A. J. Schroit. 1997. Pathophysiologic implications of
membrane phospholipid asymmetry in blood cells. Blood. 89:1121–
1132.

68. Tepper, A. D., P. Ruurs,., W. J. van Blitterswijk. 2000. Sphingomye-
lin hydrolysis to ceramide during the execution phase of apoptosis re-
sults from phospholipid scrambling and alters cell-surface morphology.
J. Cell Biol. 150:155–164.
69. Charras, G. T., M. Coughlin,., L. Mahadevan. 2008. Life and times of
a cellular bleb. Biophys. J. 94:1836–1853.

70. Kreder, R., K. A. Pyrshev, ., A. S. Klymchenko. 2015. Solvatochro-
mic Nile Red probes with FRET quencher reveal lipid order heteroge-
neity in living and apoptotic cells. ACS Chem. Biol. Published online
March 6: 2015. http://dx.doi.org/10.1021/cb500922m.

71. Parasassi, T., M. Di Stefano,., E. Gratton. 1994. Influence of choles-
terol on phospholipid bilayers phase domains as detected by Laurdan
fluorescence. Biophys. J. 66:120–132.

72. Ariola, F. S., D. J. Mudaliar,., A. A. Heikal. 2006. Dynamics imaging
of lipid phases and lipid-marker interactions in model biomembranes.
Phys. Chem. Chem. Phys. 8:4517–4529.

73. de Almeida, R. F., J. Borst, ., A. J. Visser. 2007. Complexity of lipid
domains and rafts in giant unilamellar vesicles revealed by combining
imaging and microscopic and macroscopic time-resolved fluorescence.
Biophys. J. 93:539–553.
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