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Abstract

About 8,000 genes encode membrane proteins in the human genome. The information about their 

druggability will be very useful to facilitate drug discovery and development. The main problem, 

however, consists of limited structural and functional information about these proteins because 

they are difficult to produce biochemically and to study. In this paper we describe the strategy that 

combines Cell-free protein expression, NMR spectroscopy, and molecular DYnamics simulation 

(CNDY) techniques. Results of a pilot CNDY experiment provide us with a guiding light towards 

expedited identification of the hit compounds against a new uncharacterized membrane protein as 

a potentially druggable target. These hits can then be further characterized and optimized to 

develop the initial lead compound quicker. We illustrate such “omics” approach for drug 

discovery with the CNDY strategy applied to two example proteins: hypoxia-induced genes 

HIGD1A and HIGD1B.
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Introduction

Membrane proteins constitute approximately 50% of most important targets for 

pharmaceutical industry [1] because they constitute a key element in cell communication 

with the environment. With the support of novel techniques of membrane protein production 

and approaches for advanced labeling, structure determination methods, predominantly X-

ray crystallography and NMR spectroscopy, show impressive progress with hundreds of 

membrane protein structures determined during the last decade [2–6]. However, membrane 

protein structures still represent less than 1% of all known unique protein structures (http://

www.pdb.org). Integral membrane proteins are very difficult to investigate both structurally 

and functionally in order to understand the signaling mechanisms or for structure-based drug 

design. Human integral membrane proteins (hIMPs) are the most arduous targets among 

other membrane proteins: less than 50 structures of unique hIMPs are known (http://

www.pdb.org). Therefore, every known spatial structure of hIMP provides valuable 

experimental information for structure-based drug design.

Over the course of the past few decades, computational methods have become a viable tool 

in drug discovery efforts. Computational approaches contribute to the search for drugs at 

different stages of drug discovery, such as target identification, validation of potential hits, 

and lead design. They can also be used at the preclinical trial stage [7]. Arguably the most 

profound impact by these computational approaches is made through molecular docking 

techniques. The most efficient use of the techniques would require knowledge of the 

receptor protein structure. A wide array of different methods exists which generally account 

of ligand flexibility [7]. Recent years have also seen the advent of docking methods that 

account for receptor flexibility [8,9]. The method used in this work – the relaxed complex 

scheme [10,11] – utilizes molecular dynamics simulations in combination with docking 

algorithms to account for receptor flexibility.

Experimental verification of the potential hit compounds is a crucial step in a process of 

drug design. Modern solution NMR spectroscopy is well suited for monitoring protein-

ligand interactions and allows for the rapid screening of compound libraries [12,13]. 

Protein-based NMR screening provides valuable information about interaction with a ligand 

by detection of chemical shift perturbation in heteronuclear 1H-15N-HSQC or 1H-15N-

TROSY-HSQC experiments [13–15]. While interacting ligands could be identified simply 

by detection of changes in protein chemical shifts even without knowledge of assignment, in 

order to locate ligand-binding pocket, the protein-based screening by NMR requires 

resonance assignment for the target protein. The ability to differentiate binding sites for 

different ligands or with different affinities is also a great advantage of protein-based NMR 

screening.

Using an advanced strategy of combining cell-free (CF) membrane protein expression and 

fast NMR structural analysis we have recently demonstrated a high-speed determination of 
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backbone structures of six small human integral membrane proteins (hIMPs) [16]. Two of 

these proteins, HIGD1A and HIGD1B, belong to the class of hypoxia-induced (HI) genes 

[17]. Presumably they are subunits of Cytochrome C oxidase and HIGD1A is important for 

assembly of the respiratory supercomplexes [18], but actual function of these proteins in 

human cells, as well as in other mammalian cells, is yet unknown.

Despite the vast genomics data available for hIMPs, we lack information what hIMPs are 

potentially druggable. Here we extended our strategy by including the structure-based search 

of protein ligands. We combined Cell-free protein synthesis, NMR spectroscopy, and 

molecular DYnamics simulation methods into a strategy, we named CNDY, aimed for 

functional analysis and drug design. To illustrate the potential of such omics approach, we 

used the CNDY strategy for ligand search for HIGD1A and HIGD1B. Starting from the 

backbone NMR structures of the HI proteins, we performed molecular dynamics (MD) 

simulations of the structures embedded in a lipid bilayer, computational screening of 

compounds from the Open Chemical Repository at the National Cancer Institute for binding 

to the representative structures derived from the MD trajectories, and protein-based NMR 

screening of the hit compounds with the CF-expressed HI proteins. The results provide us a 

starting point to identify the hit compounds, which can then be optimized to discover the 

initial lead molecules.

Material and Methods

Cell-free expression and structure determination by NMR spectroscopy

CF expression of HIGD1A and HIGD1B and high-speed determination of their structures by 

NMR spectroscopy have been described by Klammt et al. [16].

System preparation for MD simulation

The backbone NMR structures were used to prepare the membrane systems for simulation of 

HIGD1A and HIGD1B (PDB codes 2LOM, 2LON). The CHARMM-GUI membrane 

builder [19,20] was used for the system setup. PDB files were loaded as starting point. The 

protein segment was specified as all 93 and 99 residues present in the PDB files of HIGD1A 

and HIGD1B, respectively. No terminal patching was carried out. Protonation and 

phosphorylation states were built based on standard assumptions. The proteins were oriented 

by translating it along the z axis by -3 Å with respect to the original PDB coordinates. A 

rectangular simulation box of 75 Å was chosen. A 15 Å water layer in the z direction was 

added to both sides of the membrane. The extension of the simulation box in x-y direction 

was determined based on the ratios of lipid components. A homogenous DMPC lipid bilayer 

was chosen, resulting in 84 lipid molecules in the upper leaflet and 80 lipid molecules in the 

lower leaflet for HIGD1A and 86 lipid molecules in the upper leaflet and 78 lipid molecules 

in the lower leaflet for HIGD1B. The center of the system was placed at z=0. The total 

system sizes were 93.0 Å in x direction, 98.0 Å in y direction, and 83.2 Å in z direction 

(HIGD1A) and 95.5 Å in x direction, 94.0 Å in y direction, and 86.5 Å in z direction 

(HIGD1B). 20 Na+ and 26 Cl- ions were added to neutralize the HIGD1A system and 21 

Na+ and 27 Cl- ions were added to neutralize the HIGD1B system and to obtain a 150 mM 

ionic strength. TIP3P waters were added.
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The fully solvated system for HIGD1A contained 48423 atoms (including 164 lipid 

molecules, 9194 water molecules) and the system for HIGD1B contained 50086 atoms 

(including 164 lipid molecules and 9707 water molecules). The CHARMM27 force field 

[21] was used for all the simulations. Minimization and equilibration using NAMD 2.9 [22] 

was performed in six stages. The first and second stages simulated 25 ps in the NVT 

ensemble with a 1 fs timestep. During the first stage, harmonic force restraints were applied 

to all system components, i.e. protein (positional restraints), waters (restraint to prevent 

water from entering the hydrophobic membrane region), lipids (restraints to keep structural 

integrity of membrane) and ions (positional restraints). In the second stage of equilibration 

the restraints on the ions were removed and the restraints on the protein backbone and side 

chains were cut in half. The remaining four stages all simulated in the NPAT ensemble. 

Stage 3 simulated for 25 ps with a 1 fs timestep, while stages 4-6 simulated for 100 ps with a 

2 fs time step. Restraints on all system components are gradually decreased within stages 

3-6. Only a 0.1 kcal/mol/Å2 restraint on the protein backbone remained in stage 6. For a 

more detailed description of the equilibration protocol see [19].

Molecular Dynamics simulations and trajectory clustering

All simulations were performed under the NPT ensemble at 300 K using NAMD 2.9 [22] 

and the CHARMM27 force field [21]. Periodic boundary conditions were used along with a 

non-bonded interaction cutoff of 12 Å. Bonds involving hydrogen atoms were constrained 

using the SHAKE algorithm [23], allowing for a time step of 2 fs. Structures were saved 

every 2 ps. All systems were simulated for 100 ns.

Visual inspection of the 100 ns trajectories allowed identification of potential binding sites 

(pockets) for HIGD1A and HIGD1B. Owing to the different screening strategies applied to 

HIGD1A and HIGD1B, the molecular dynamics trajectories were processed differently. For 

HIGD1B 86 equally spaced frames (every ∼1.16 ns) were extracted from the 100 ns MD 

trajectory. For HIGD1A, frames every 10 ps were extracted from the MD trajectory. The 

extracted frames were subsequently aligned in two separate sets using the Cα atoms in two 

potential binding site of HIGD1A. Structures in the aligned frame sets were clustered by 

RMSD using the GROMOS++ conformational clustering [24] A RMSD cutoffs of 1.9 Å and 

2.1 Å was chosen for two HIGD1A potential binding sites. The chosen cutoffs resulted in 6 

clusters for each potential binding site that represented at least 90% of the respective 

trajectories. The central members of each of these clusters were chosen to represent the 

pocket conformations within the cluster and thereby the conformations sampled most 

prominently by that pocket over the course of the simulation.

Virtual Screens of hIMPs

Virtual screens were carried out for both HIGD1A and HIGD1B. Different strategies were 

applied to the two systems in order to test their performance and reliability in identifying 

possible binders.

HIGD1A—The entire National Cancer Institute (NCI) compound database was used for the 

virtual screen. The original unprepared dataset contained 265,241 compounds. Ligands were 

prepared using LigPrep [25], adding missing hydrogen atoms, generating all possible 
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ionization states, as well as tautomers. The final prepared dataset used for virtual screening 

contained 798,555 compounds. Docking simulations were performed with Glide [26–28]. 

Due to the high number of test compounds, the Virtual Screening Workflow was utilized. A 

pre-filter routine decreased the time spent on non-desirable compounds. QikProp [29] was 

run to efficiently evaluate pharmaceutically relevant properties of the test compounds. A 

Lipinski's Rule [30] pre-filter was applied. The OPLS2005 force field [31] was used for 

docking, as well as Epik state penalties [32]. A hierarchical docking scheme was used: 

100% of the filtered compounds were docked with Glide HTVS. The 10% best scoring 

states after HTVS transitioned into Glide SP. Again, the 10% best scoring states after SP 

were used for docking with Glide XP. All dockings were performed flexibly and a post-

docking minimization was applied. The docked XP poses and scores were finally evaluated 

for compound selection. This docking procedure was performed independently for 12 

different HIGD1A structures extracted from the MD trajectory by RMSD clustering (see 

above) – six cluster centers for each potential binding site.

HIGD1B—The virtual screen was performed using the NCI diversity set III, a subset of the 

full NCI compound database. Again, ligands were prepared using LigPrep, adding missing 

hydrogen atoms, generating all possible ionization states, as well as tautomers. The final 

prepared dataset used for virtual screening contained 1013 compounds. No pre-filtering was 

applied for the diversity set. Docking simulations were performed with AutoDock Vina [33]. 

The entire diversity set was docked into all 86 individual trajectory frames.

Screening by NMR

NMR screening approach—The top 80 available hit compounds for each protein with 

the maximal docking scores were obtained from NCI database depository (The Open 

Chemical Repository Collection). The compounds were ordered in a list according to the 

computed binding score. Each hit compound was assigned a unique within the list seven-

digits code. An Xth digit in the code defines the presence (1) or absence (0) of the compound 

in a sample X. The compounds with lower predicted docking score were assigned with the 

codes, corresponding to infrequent presence of these compounds in the samples. Among the 

80 compounds in each list, 7 were present in one sample, 21 in two samples, 35 in three 

samples, and 17 in four samples. In turn, samples 1 to 7 contained 33, 32, 31, 31, 31, 32, and 

32 compounds, accordingly.

Preparation of the proteins—Both proteins, HIGD1A and HIGD1B, were prepared 

uniformly 15N-labeled using CF system, as described in [16]. The proteins were expressed 

as a precipitant [34,35] in 6 ml CF reaction, which was enough for 8 NMR samples with a 

protein concentration of approximately 150-250 μM. The expressed proteins were 

solubilized in 2% (HIGD1B) or 3% (HIGD1A) 1-myristoyl-2-hydroxy-sn-glycero-3-

[phospho-rac-(1-glycerol)] (LMPG) buffered with 20 mM MES-Bis-Tris, pH 6.0. The 

solubilized proteins were divided into 8 equivalent samples and the sample volumes were 

adjusted to 330 μl with 20 mM MES-Bis-Tris, pH 6.0, 2% (HIGD1B) or 3% (HIGD1B) 

LMPG buffer, contained also D2O (the final D2O concentration in the samples were 5%). 

One sample for each protein was used as a control without the compounds, and seven 

samples for each protein were used for solubilization of the different compound mixtures.
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Preparation of the ligands—All hit compounds were suspended in 4:4:1 

chloroform:methanol:water mixture at a concentration close to 10 mg/ml. Aliquots (5 μl) of 

the compound solutions or suspensions were combined in 7 different mixtures for each list, 

according to the protocol described above and air-dried. An NMR sample of the detergent-

solubilized protein were added to the vial, which contained a dried compound mixture, 

vortexed, and left overnight at RT. This procedure results in almost 100% solubilization of 

all compounds in the NMR samples. The samples were flush-frozen in a liquid N2 and 

stored at -20 °C. For NMR experiments the samples were thawed at 37 °C, transferred into 

Shigemi NMR tube, and degased under low vacuum in a sonication bath for 3 minutes.

NMR experiments and analysis—The 1H-15N-TROSY-HSQC spectra (256 t2 

increments, 16 scans) were measured for all samples at 310 K on a 700 MHz Bruker NMR 

spectrometer equipped with a cryogenic probe. The spectra were transformed using Bruker 

NMR software, Topspin. The transformed spectra were analyzed in CARA [36]. The known 

assignment of HIGD1A and HIGD1B [16] was used in the analysis of chemical shifts 

changes in ligand-containing samples. Weighted-average chemical shift differences (WCS) 

were calculated for each residue as described [37]. Molecular graphics and analysis were 

performed using UCSF Chimera program [38].

Results

MD simulation of backbone NMR structures in explicit bilayer

One of the important contributions that MD can make to the structural elucidation of 

membrane proteins is a simulation in a more natural environment than that which the 

experiments were performed in. NMR measurements were done in micelles, which shape 

and surface properties differ from the lipid bilayer membrane environment of HIGD1A and 

HIGD1B. Experimentally determined structures for HIGD1A and HIGD1B were embedded 

in a homogenous DMPC lipid bilayer, minimized and equilibrated. Subsequently, 100 ns 

MD simulations were performed on both proteins in the lipid bilayer.

Structural stability of the proteins with respect to the equilibrated starting structure was 

monitored. Figure 1 shows the root mean square deviation (RMSD) from the starting 

structure as a function of simulation time as well as the root mean square fluctuations 

(RMSF) as a function of residue numbers. RMSDs were calculated over heavy backbone 

atoms in the regions of interest. The RMSD plot, which is a measure of overall protein 

stability, shows a fast increase of the RMSD within the first 10 ns of simulation time. Then 

the protein remains more or less stable (at around 4-5 Å RMSD) for the rest of the 

simulation. All proteins, including soluble proteins, exhibit an initial increase in RMSD 

upon start of the MD simulation. This increase is generally associated with full equilibration 

of the structure in the molecular mechanics force field. For a protein of less than 100 amino 

acids, one would expect an increase between 2 and 3 Å associated with equilibration. The 

higher increase in the case of HIGD1A suggests a structural reorganization due to the 

transition from micelle to lipid bilayer environment. The RMSF plot depicts the per-residue 

fluctuations during the course of the simulation. Different regions of the protein are subject 

to very different fluctuations. While the two transmembrane helices are very stable (RMSF 
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values below 2 Å), there are significant fluctuations and rearrangements at both termini. 

Interestingly, the interhelical loop exhibits a high degree of stability, probably since it is 

anchored into the membrane. Figure 2 depicts the ensemble of conformations sampled by 

the interhelical loop and the N- and C-termini. The first 10 ns of the simulation have been 

deemed equilibration time and have thus been removed for all subsequent analysis.

The position of the proteins in the membrane has been monitored over the course of the 

simulations. No significant changes in position or orientation relative to the membrane could 

be discerned.

Conformational analysis of the structural changes during MD simulation and comparison of 

the dihedral angles with the ones in the set of 20 NMR backbone structures show that in 

both proteins the TM helices keep their length, but became more relaxed (the ranges of 

backbone angles increased by 10-15 degrees, see Supplemental Figure 1 and 2). Most 

pronounced adjustments occurred at the terminal turns of the TM helices, located in the 

bilayer/water interface. Also the inter-helical loops and short regions between N-terminal 

amphiphilic helix and first TM helix were significantly refined and their conformational 

space was restricted during MD simulation. The short amphiphilic helices at the N-terminal 

tails of both proteins remain folded, located on a bilayer surface and oriented parallel to the 

surface (Figure 2), while C-terminal tails remain unfolded and show significant fluctuations 

in their orientation. During MD simulation side chain angles became clustered around three 

favorable rotamers (-60/180/+60) in both proteins. On the other hand, there is no substantial 

restriction in the distribution of side chain angles in helical regions.

Pocket identification and clustering

Visual inspection of the 100 ns HIGD1A trajectory data revealed two areas of the protein 

that exhibited pocket-like character for a significant amount of the simulation time and thus 

may function as interesting targets for virtual screening of possible binders. We identified a 

top pocket (from here on referred to as pocket 1) and a side pocket (from here on referred to 

as pocket 2). The pockets are separated by the helix-helix interface and by the inter-helical 

loop in such a way, that pocket 1 is easily accessible for hydrophilic compounds, while 

pocket 2 is buried inside the TM region (Figure 3A). Pocket 1 is formed by residues Y43, 

G44, K47, and L48 in helix 1, residues S57, I58, and L60 in the interhelical loop, and 

residues R64, A67, Q68, F70, and V71 in helix 2. Pocket 2 is formed by residues A39, I40, 

and Y43 in helix 1, by residue I58 in the interhelical loop, and by residues V71 and M75 in 

helix 2. Residues Y43 (helix 1), I58 (interhelical lop), V71 (helix 2), and several others 

separate the pockets and therefore they belong to both pockets (Figure 3A). Coordinates of 

these pockets were the basis for trajectory clustering for the virtual screening protocol. The 

chosen clustering parameters resulted in 6 clusters (per pocket) that represented at least 90% 

of the respective trajectories. Visual inspection of the 100 ns HIGD1B trajectory data 

revealed one possible binding pocket. The pocket is formed by residues V40, V41, Y44, 

R45 in helix 1, residues M57, S58, and I59 in interhelical loop, and residues A70, C71, 

M77, and L78 in helix 2 (Figure 3B). No trajectory clustering was performed for HIGD1B. 

Rather frames every ∼1.16 ns were extracted from the simulation and used as receptor 

structures.
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Computational docking

Two separate pockets on HIGD1A were identified as possible binding sites and targeted in 

two separate virtual screens. For each of the two pockets six cluster center conformations 

were chosen that represented the respective pocket conformations during the simulation. 

Docking was performed into each of the 12 representative structures (six of them with 

pocket 1 as docking center and six with pocket 2 as docking center). The dataset used in the 

virtual screen was the full NCI database. The rationale for screening such a large dataset was 

to comprehensively test the most accurate representation of the chemical space available 

through the NCI. Schroedinger's Virtual Screening Workflow was used to enable a 

hierarchical screening of the vast number of compounds. About 1% of all compounds were 

screened with the most accurate Glide XP scoring function. These docking results were 

ranked according to the predicted docking score. The best docking score for each compound 

was identified across the six input receptor structures for each pocket individually. For each 

of the two pockets, the top 40 compounds from a merged list of top scoring compounds were 

ordered for testing.

The identified HIGD1B pocket was targeted in a virtual screen. 86 equally spaced 

simulation structures (∼1.16 ns apart in simulation time) were chosen to represent the 

receptor conformations over the course of the simulation. Docking was performed into each 

of the 86 structures using the NCI diversity set III in the virtual screen. With HIGD1B we 

tested the idea of screening a larger conformational variety albeit with a much smaller 

dataset compared to what was used for HIGD1A. To this end, AutoDock Vina was used for 

the virtual screen. All 1013 compounds were docked into all 86 receptor structures, resulting 

in a total of 87118 docking simulations. The docking results were ranked according to the 

predicted docking score. The best docking score for each compound was identified across all 

86 input receptor structures. Finally, the top 80 compounds from the merged list of top 

scoring compounds were ordered for testing.

Supplemental Tables 1 and 2 summarize the results of HIGD1A and HIGD1B virtual 

screenings and provide NCI database IDs and docking scores for the top scoring compounds 

for each pocket in both proteins. While generally a wide structural variety of compounds can 

be seen, one motif seems to be recurring in HIGD1A top scoring compounds. Many 

compounds contain a tetraol or higher order polyol group. This specific geometry seems to 

fit the HIGD1A pocket shapes particularly well. Since the diversity set was used for 

HIGD1B screening no clear common structural motif between the top scoring compounds 

can be identified.

NMR screening approach

NMR is a unique method, which provides atomic-level information on protein-ligand 

interactions in a native-like environment. Advanced methods of NMR screening allow 

researchers to identify interacting compounds (hits) in a high-throughput manner (up to 

thousands of compounds per day) and, using protein-based detection, to obtain the detailed 

information on protein's binding pockets simultaneously [39]. The protein-based NMR 

detection of interaction with a compound follows the perturbation of the protein chemical 

shifts, in particular, 1H and 15N chemical shifts using 1H-15N-HSQC “fingerprint” spectra. 
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Since we had a backbone assignment for both HIGD1A and HIGD1B [16], we decided to 

use the protein chemical shift perturbation as an indicator of interactions.

The NMR approaches for screening compound libraries usually use pooling strategies in 

order to reduce the number of experiments and, correspondingly, necessary amounts of an 

isotope-labeled protein. The adaptive pooling strategies divide the pool of compounds into 

groups of 3-30 molecules and screening these mixtures separately. The positive groups are 

deconvoluted subsequently in order to identify the active compounds. The adaptive pooling 

strategies reduce the number of experiments if the fraction of positive responses is below 

29% [40]. The non-adaptive pooling approaches imply a strategic pooling, which gives to 

every compound a unique pattern of presence in the mixtures, thus making unnecessary the 

deconvolution of the mixtures [41,42]. Due to a relatively small size of libraries and higher 

probability of positive hits, the non-adaptive pooling strategies usually do not have 

advantages over adaptive schemes in NMR screens [40].

The deconvolution of groups with the positive response is required because standard group 

testing algorithm presumes a binary response (positive or negative) in the tests, and that is 

usually the case for many HTP drug screens. In turn, NMR screens can provide more 

complex response such as, for example, relaxation-induced line width broadening of 

resonances, attributed to a particular compound, in ligand-based screens [40] or chemical 

shifts perturbation for the different resonances in 2D NMR spectra in response to 

interactions with different compounds in protein-based screens. We took into account this 

feature of the NMR screen and designed a hybrid group-testing strategy. Our strategy allows 

direct identification of hits out of total N compounds using log2N samples in a case of small 

number of expected hits (1-2%). Otherwise, if the number of the positive responses is too 

high to resolve the active compounds, the strategy can easily adapt the pooling scheme for 

deconvolution of the intermediate results.

Similar to the non-adaptive algorithms, our hybrid strategy defines a unique code of 

presence or absence of the compound in each of the samples. In contrast to the non-adaptive 

algorithms, we do not restrict the codes to make them independent in terms of Boolean 

algebra, i.e. a code may be a Boolean sum of two or more other codes. As a result, we have a 

number of samples within the theoretical upper bound for the adaptive algorithms (d log2N, 

where d is the number of positive responses and N is the total number of compounds in the 

test) and still can determine the active compounds in many cases without deconvolution. 

The negative effect of our simplification appears when NMR spectra of different samples 

show similar response (the same affected cross peaks) and this response may be an impact of 

several compounds with the dependent (in terms of Boolean algebra) codes. For example, 

for the codes 1000 (A), 0001 (B), 1100 (C), and 1101 (D), the identical positive responses, 

detected for samples 1, 2, and 4, may indicate the single effect of a compound with code D 

(1101), or combined effect of two, three or all four compounds in following combinations: 

BC, CD, ABC, ABD, or ABCD. In such cases additional experiments are necessary to 

deconvolute the compounds. Often, when the number of hit compounds is not expected to be 

very high, the deconvolution step can be combined with the “one-by-one” experiment for 

binding confirmation of the hit compounds.
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According to the standard practice in description of group test problems, let us present the 

codes as columns in a matrix M(s, c) with elements mi,j = {0, 1}. Here s is the number of 

samples and c is the number of compounds (and codes). In each code ci, mi,j = 1 if this 

compound is present in sample j, otherwise mi,j = 0. In non-adaptive algorithms in order to 

be able to resolve d positive responses the matrix should be d-disjunct, which means that 

any column is not a part of the Boolean sum of any other d columns. This requirement 

significantly increases the number of samples (length of the codes) for the tests with high 

positive response rates [40,42,43]. In order to simplify the pooling approach we avoided this 

restriction, leaving only the simple uniqueness of the codes for each compound.

The lists of compounds, selected by computational docking for both HI proteins, consist of 

80 molecules (Supplemental Tables 3 and 4). We defined 7 samples for each list and 

distributed the codes in the list in such a way, that compounds with lower (better) score were 

present in the samples less frequently (see Materials and Methods and Supplemental Tables 

3 and 4). The analysis of the codes shows, that if we consider all responses in 2D NMR 

spectra as binary events (yes or no, without differentiation between cross peaks and, 

therefore, between different residues), a response in a single sample gives us exactly one 

code (one hit compound), response in two samples give 3 codes (3 possible hit compounds), 

in 3 samples give 7 codes, and in 4, 5, and 6 samples give 14-15, 25-28, and 47-50 codes, 

respectively. The codes for possible hit compounds are not independent: as we show in the 

example above, only specific combinations of four codes (A, B, C, and D) would correspond 

to the observed response in sample 1, 2, and 4. So, the deconvolution of these codes may 

require fewer trials, than a one-by-one approach, but since separate confirmation of the 

compound activity is necessary, in a case of small number of possible hit compounds it is 

always easier to test them “one-by-one”.

NMR screening results

The CF-produced HIGD1A and HIGD1B were split to 8 equivalent samples for each 

protein. One sample was used as a control, without the compounds, and 7 samples were used 

to solubilize the compound mixtures as described in Materials and Methods. The simple 

check of “fingerprint” 1H-15N-HSQC-TROSY (TROSY) spectra shows a consistency of the 

samples. The 1H and 15N chemical shifts of backbone signals were retrieved from TROSY 

spectra and analyzed. The WSC values calculated for each cross peak in the TROSY spectra 

(see Materials and Methods) allows us to identify the possible hit compounds as well as 

affected protein regions (Figure 4, Supplemental Figure 3). Persistent in all samples WCSs 

above a threshold value of 0.02 indicate sensitivity of the N-terminal residues and the inter-

helical loop residues in both proteins to changes of the LMPG micelle properties (micelle 

shape, detergent density, interface properties, etc.). Since the LMPG micelles are very 

sensitive to the environment [44], these changes could be induced by non-specific 

interaction of several different compounds with the micelle.

HIGD1A shows specific, sample-dependent response in WCSs above the threshold in 

samples 2, 3 and 6 (Figure 4A). In turn, only sample 7 shows a specific response of 

HIGD1B (Figure 4B). HIGD1A responses in samples 2, 3 and 6 restrict the pool of possible 

hits to seven compounds. Their NCI library IDs are 8127 (short list ID a02), 252035 (a03), 
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408122 (a06), 368270 (a11), 71286 (a34), 83960 (a41), and 1972 (b08). More detailed 

analysis of the response allows us to reorganize the shortlist. Indeed, the WCS responses can 

be easily divided into two groups. The first group contains cross peaks for residues K49, 

T54, S57, L60, and A66 (group I), which are affected in all three samples 2, 3, and 6 (Figure 

4A). The second group contains residues V71, V72, T76, and M79 (group II), which are 

affected only in sample 6. Basing on the definition of binding pockets 1 and 2 for HIGD1A 

in computational docking (see above and Figure 3A), we presumed that these separately 

affected groups of residues belong to the different pockets. We regrouped the shortlist and 

separated the combinations of possible hits, which could be responsible for effect only in 

samples 2 and 3. These combinations are a02 and a03 together, a11 alone, or any 

combination of a11 with a02 and/or a03. All of these compounds were predicted to bind to 

the pocket 1. In turn, in order to detect responses in samples 2, 3, and 6 at least one of the 

following combinations must contain all active compounds: b08, a06a11, a02a41, a03a34, 

a02a03a06, or any merger of these 5 combinations with the possible hits. Among these 

compounds only b08 was predicted to be active on the pocket 2.

The one-by-one binding tests show that compounds a11 and a06 (NCI library IDs 408122 

and, 368270 respectively) affect chemical shifts in TROSY spectra of HIGD1A (Figure 5), 

while other five compounds have no effect. Compound a11 affects chemical shifts of 

residues from the group I in the inter-helical loop and compound a06 affects chemical shifts 

of the residues in both groups I and II. Since the test with single compound b08 shows no 

response, no one of the hit compounds, pre-selected by computational docking to the pocket 

2, were confirmed experimentally. On the other hand, responses in chemical shifts of atoms, 

located in the second TM helix of HIGD1A, to the compound a06 reflect changes in the 

chemical environment of the amide groups of V71, V72, T76, and M79 from the second TM 

helix. At the moment we don't have clear explanation for this observation and hypothesize 

that the interaction of the bulky aromatic compound 368270 with the inter-helical loop 

(Figure 5D) may affect the packing of the helices inside the micelle.

HIGD1B response in a single spectrum allows identification of the single hit compound 

(NCI library ID 25457) using the pooling matrix. The affected cross peaks, according to 

HIGD1B assignment [16], belong to the following residues: L35, V41, Y44, R45 (all from 

the first TM helix), I76, G79, V81, M84, and Y88 (second TM helix, Figure 6). Analysis of 

the possible binding pocket for the compound 25457 shows two preferable poses, first one 

under the inter-helical loop, where it may affect amides of residues V41, Y44, Y47, and 

A70, and another pose in the middle of the TM region, close to I33, V41, and V81 (Figure 

6B). The detected effect on amide chemical shifts of L35, R45, I76, and G79 can be 

attributed to ligand-induced changes in bundle packing and, subsequently, to changes in 

local environment, such as interaction with detergent aliphatic chains within a micelle.

Discussion

The paper describes the CNDY strategy for search of potential ligands for hIMPs. The 

backbone structures of HIGD1A and HIGD1B, determined by accelerated NMR methods 

[16], were refined in a lipid bilayer. Representative structures from 100 ns MD simulations 

in the bilayer were used for computational docking of the compounds from the NCI Open 
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Chemical Repository. Predicted computational docking hit compounds (80 top-scored for 

each protein) were tested experimentally by protein-based NMR screening using 

combinatorial mixtures of the ligands. Two compounds were found interacting with 

HIGD1A and one compound was active on HIGD1B (Supplemental Table 5). Based on the 

number of hits it is not possible to identify one of the virtual screening strategies to be 

superior.

The described strategy for the fast screening of potential hit compounds for IMPs identified 

and experimentally confirmed three hits starting from the library of several hundred 

thousand compounds and the backbone-only, low-to-medium resolution NMR structures of 

the IMPs. Despite the high throughput, the approach allows us to assign the protein 

responses to different compounds and outline the binding pockets.

Computational identification of a compound binding within the TM region of IMP is an 

incredibly challenging task. Standard computational docking approaches are tailored for the 

search of a hydrophobic ligand, which fits into a hydrophobic pocket on soluble proteins or 

protein domains. These approaches also work fine with domains, distant from the 

membrane, such as tails and inter-helical loops. The domains of MPs, exposed from the 

membrane, may have hydrophobic cavities far removed from the solvent, resembling those 

of folded globular proteins. In turn, TM helical bundles have extended hydrophobic 

surfaces, which extensively interact with aliphatic chains of lipids, and a less hydrophobic 

helix-helix interface. Since standard docking programs do not model the lipid environment, 

the hydrophobic surface of the TM bundle became “naked” and exposed to hydrophobic 

ligands. As a result the computational docking to the intra-membrane pocket may produce a 

large number of false-positive hits, which in the experiment could not compete with the 

lipids for binding to the protein surface. In light of the demonstrated success in identifying 

three compounds interacting with the HI proteins, there remains potential for further 

improvement. For instance, we ask if the computational ligand search for TM helical 

bundles can be modified (1) to account for the lipid environment of the hydrophobic surface 

of a TM helical bundle and, concurrently, (2) to search for a binding in the hydrophilic 

cavities inside the bundles, which are formed by interacting TM helices and are shielded 

from the detergent. These improvements combined with the use of genomic information will 

greatly facilitate the drug discovery process in the near future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

hIMPs human integral membrane proteins

CF cell-free

HI hypoxia-induced

MD molecular dynamics

DMPC 1,2-dimyristoyl-sn-glycero-3-phosphocholine

LMPG 1-myristoyl-2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)
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Highlights

• CNDY strategy is to experimentally evaluate druggability of human membrane 

proteins

• NMR structures of human membrane proteins refined by molecular dynamics in 

bilayer

• Compounds from NCI Open Chemical Repository screened by computational 

docking

• Three hit compounds experimentally verified by protein-based NMR screening
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Figure 1. 
Conformational flexibility of the HIGD1A (A and B) and HIGD1B (C and D) structures 

during 100 ns MD simulation. (A and C) Root mean square deviation (RMSD) of all 

backbone heavy atoms (black) and backbone heavy atoms of TM helices (residues 30-49 

and 67-88 for both proteins, red) with respect to the starting structure as a function of 

simulation time. (B and D) Root mean square fluctuations (RMSF) as a function of residue 

numbers. The two TM regions and the interhelical loop are labeled.

Lindert et al. Page 17

Biochem Biophys Res Commun. Author manuscript; available in PMC 2015 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
The ensemble of conformations sampled by the interhelical loop and the N- and C- termini 

of (A) HIGD1A and (B) HIGD1B. The figure was prepared using Chimera program [44].
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Figure 3. 
Representative structures of (A) HIGD1A and (B) HIGD1B from the 100 ns MD simulation. 

The asterisks show locations of centers of binding pockets used in computational docking. 

The pocket-forming residues are labeled. The figure was prepared using Chimera program 

[38].
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Figure 4. 
Weighted chemical shifts difference (WCS) for samples of HIGD1A (A) and HIGD1B (B) 

with ligand mixtures. WCS were calculated using 1H and 15N chemical shifts measured 

in 1H-15N-TROSY-HSQC spectra of the sample with and without the ligands. (A) WCS for 

samples 2 (white bars), 3 (dashed bars), and 6 (black bars) with the compounds mixed 

according to the pooling matrix for HIGD1A. (B) WCS for sample 7 (black-filled bars) in 

comparison with average WCS value for samples 1-6 (empty bars). Standard deviations for 

average WCS values are shown.
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Figure 5. 
Hit compounds interaction with HIGD1A confirmed by NMR spectroscopy. (A and B) 

Superimposed 1H-15N-TROSY-HSQC spectra (1H: 7.8 – 8.3 ppm, 15N: 115 - 125 ppm) of 

HIGD1A samples with (A: sample 2, B: sample 6) and without hit compounds. The 

spectrum of the sample without ligands is shown in black. The cross peaks, affected by the 

compounds are colored and marked with rectangles. Spatial structures of HIGD1A with 

bound hit compounds 408122 (C) and 368270 (D). The binding conformation of compounds 

408122 and 368270 were calculated by Glide program [26]. The representative structures of 

HIGD1A were selected from a 100 ns MD simulation of the backbone NMR structure 

(2LOM) in DMPC lipid bilayer. The residues in close proximity to the ligand are labeled. 

Panels C and D of the figure were prepared using Chimera program [38].
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Figure 6. 
Hit compound interaction with HIGD1B confirmed by NMR spectroscopy. (A) 

Superimposed 1H-15N-TROSY-HSQC spectra (1H: 7.40 – 8.75 ppm, 15N: 110.7 – 124.0 

ppm) of HIGD1B samples with hit compound 25457 (red lines) and without any compound 

(black lines). The cross peaks, affected by the ligands are marked with arrows (N-terminal 

amphiphilic helix) and rectangles (TM helices). (B) Spatial structure of HIGD1B with 

compound 25457 bound in two poses. The binding conformations of 25457 were calculated 

by Vina-Autodock program [33]. The structure of HIGD1B was selected from a 100 ns MD 

simulation of the HIGD1B backbone NMR structure (2LON) in DMPC lipid bilayer. The 

residues in close proximity to the ligand are labeled. Panel B of the figure was prepared 

using Chimera program [38].
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