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High-fat load: mechanism(s) of insulin resistance in skeletal
muscle
DS Lark1,2, KH Fisher-Wellman1,2 and PD Neufer1,2,3

Skeletal muscle from sedentary obese patients is characterized by depressed electron transport activity, reduced expression of
genes required for oxidative metabolism, altered mitochondrial morphology and lower overall mitochondrial content. These
findings imply that obesity, or more likely the metabolic imbalance that causes obesity, leads to a progressive decline in
mitochondrial function, eventually culminating in mitochondrial dissolution or mitoptosis. A decrease in the sensitivity of
skeletal muscle to insulin represents one of the earliest maladies associated with high dietary fat intake and weight gain.
Considerable evidence has accumulated to suggest that the cytosolic ectopic accumulation of fatty acid metabolites, including
diacylglycerol and ceramides, underlies the development of insulin resistance in skeletal muscle. However, an alternative
mechanism has recently been evolving, which places the etiology of insulin resistance in the context of cellular/mitochondrial
bioenergetics and redox systems biology. Overnutrition, particularly from high-fat diets, generates fuel overload within the
mitochondria, resulting in the accumulation of partially oxidized acylcarnitines, increased mitochondrial hydrogen peroxide
(H2O2) emission and a shift to a more oxidized intracellular redox environment. Blocking H2O2 emission prevents the shift in
redox environment and preserves insulin sensitivity, providing evidence that the mitochondrial respiratory system is able to
sense and respond to cellular metabolic imbalance. Mitochondrial H2O2 emission is a major regulator of protein redox state, as
well as the overall cellular redox environment, raising the intriguing possibility that elevated H2O2 emission from nutrient
overload may represent the underlying basis for the development of insulin resistance due to disruption of normal redox
control mechanisms regulating protein function, including the insulin signaling and glucose transport processes.
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INTRODUCTION
Deciphering the underlying mechanism(s) responsible for the
development of insulin resistance in peripheral tissues is one of
the cornerstones to understanding the etiology of type 2 diabetes.
A gradual decrease in the sensitivity of skeletal muscle to insulin is
considered a primary event in the disease process and, as such,
likely holds the key to devising more effective prevention and
treatment strategies. By virtue of its high percentage of total body
mass and sensitivity to insulin, skeletal muscle accounts for the
vast majority (B80%) of glucose disposal.1 The control of glucose
uptake is distributed across delivery, transport and phosphoryla-
tion, any one of which may be rate limiting depending on the
physiological circumstances.2 Insulin increases glucose delivery via
relaxation of resistance vessels to increase total blood flow and
relaxation of precapillary arterioles to increase microvascular
surface area perfusion within muscle, thereby increasing the
trans-endothelial transport of insulin and glucose.3 Although there
is some evidence that insulin resistance induced by a high-fat diet
compromises glucose delivery,4 more research is needed to fully
define this potential mechanism of action. The glucose transport
process adds further potential control points beginning with
insulin binding to and activating its receptor, and progressing
through activation of downstream intracellular signaling events
leading to the translocation (that is, budding, transport, tethering,
docking, fusion and endocytosis) and activation of the
GLUT4 transporter protein.5,6 There is compelling evidence that

phosphorylation of glucose, the third potential control point, is the
rate-limiting step for glucose uptake in response to insulin or
exercise in skeletal muscle with normal insulin sensitivity;7,8

however, the functional barrier appears to shift to transport in
the insulin-resistant state.7,9,10 GLUT4 translocation process does
not appear to be defective in insulin-resistant muscle, as both
contraction and hypoxia, which utilize a signaling pathway
different from insulin, stimulate GLUT4 translocation and glucose
uptake normally.11,12 Thus, most of the research since the mid-
1990s has focused on deciphering the mechanism(s) by which the
insulin signaling pathway is inhibited by a high-fat diet. The
present review provides a brief overview of this research and then
presents an alternative hypothesis to link mitochondrial H2O2

emission with insulin resistance during nutrient overload.

INTRAMYOCELLULAR FAT ACCUMULATION
Triacylglycerol
Skeletal muscle of obese and diabetic individuals is characterized
by a greater size and number of lipid droplets.13 Once assumed to
be relatively inert, lipid droplets are now known to be coated with
phospholipids and a variety of proteins, to exist in a regulated
equilibrium of triglyceride synthesis and degradation and to
participate in other cellular processes including vesicle trafficking
and cell signaling.14--16 One possibility is that fat deposition in
tissues not specialized for fat storage can promote lipotoxicity.17

1East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; 2Department of Kinesiology, East Carolina University, Greenville, NC, USA and
3Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA. Correspondence: Dr PD Neufer, Department of Physiology, Brody School of
Medicine, 6N98, East Carolina University, Greenville, NC 27834, USA.
E-mail: neuferp@ecu.edu
This article was published as part of a supplement funded with an unrestricted educational contribution from Desjardins Sécurité Financière.
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Numerous initial studies in both humans and rodents reported a
strong correlation between intramuscular triglyceride content and
insulin resistance.18--23 However, endurance-trained athletes also
have high intramuscular triglyceride content, as well as high
insulin sensitivity,24 indicating that triglyceride accumulation per
se is not an underlying cause of insulin resistance. In fact, mice
with skeletal muscle-specific overexpression of diacylglycerol
acyltransferase (DGAT1), the final enzyme in the TAG synthesis
pathway, are protected from high-fat diet-induced insulin
resistance despite higher muscle TAG content.25 Nevertheless,
given the dynamic interplay between triglyceride synthesis and
storage, it has recently been suggested that a mismatch between
these processes could give rise to potential insulin-desensitizing
lipid intermediates.14,15

Diacylglycerol (DAG) and long-chain acyl-coAs (LCACoAs)
Further clues as to the mechanism by which fat accumulation in
muscle may lead to insulin resistance have come from studies of
the signaling pathway acting downstream of the insulin receptor.
Under normal circumstances, activation of the insulin receptor
tyrosine kinase and subsequent tyrosine phosphorylation of the
insulin receptor substrate (IRS) docking proteins leads to the
recruitment and activation of phosphoinositide 3-kinase (PI3K).
The major substrate for PI3K is the membrane lipid phosphatidy-
linositol-4,5-bisphosphate (PI(4,5,)P2), which is phosphorylated to
produce phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5,)P3). The
rise in PI(3,4,5,)P3 provides a lipid-based platform that attracts
downstream pleckstrin homology domain-containing signaling
proteins, including the serine/threonine kinases phosphoinositide-
dependent protein kinase-1 (PDK1) and Akt.6 PDK1 phosphor-
ylates Akt and atypical protein kinase C isoforms l and z (aPKC-l/z).
Both Akt and aPKC-l/z have been linked to insulin-stimulated
GLUT4 translocation and glucose uptake.

In addition to tyrosine residues, phosphorylation of IRS proteins
on serine residues has emerged as a major control point for the
insulin signaling pathway. Of the B70 serine residues at potential
consensus phosphorylation sites, more than 20 have been
identified by proteomics to be phosphorylated by insulin,26 and
more than a dozen of these sites are subject to reversible
phosphorylation by at least 16 different kinases, including 2 of the
novel PKC isoforms (PKC d and y).27 Given that both LCACoAs and
DAG are well-established activators of PKCs,28 much attention has
been given to the possibility that novel PKCs may mediate the
serine phosphorylation and inactivation of IRS proteins. LCACoAs
and DAGs both accumulate in muscle with lipid infusion or high-
fat feeding29 and are associated with membrane translocation and
activation of PKC-y, increased IRS-1 serine phosphorylation and
decreased insulin-stimulated IRS-1 tyrosine phosphorylation,
IRS-1-associated PI3K activity and muscle glucose uptake.30--32

In cultured myocytes, expression of active PKC-y increases
phosphorylation of IRS-1 at Ser1101 and blocks insulin-stimulated
IRS-1 tyrosine phosphorylation and activation of Akt, whereas
mutation of Ser1101 to alanine renders IRS-1 insensitive to PKC-y
and restores downstream insulin signaling.33 Similarly, PKC-y
kinase activity has recently been shown to mediate the serine
phosphorylation and inactivation of PDK1 in mouse embryonic
fibroblast cells exposed to palmitate.34 Finally, and most compel-
ling, PKC-y knockout mice were found to be completely protected
against lipid infusion-induced disruptions in insulin signaling and
muscle glucose uptake.35

Evidence specifically linking PKC-y to insulin resistance, how-
ever, has also been challenged. Mice expressing a kinase-dead,
dominant-negative mutant form of PKC-y specifically in skeletal
muscle, rather than being protected from fat-induced insulin
resistance, have impaired insulin signaling in muscle by 4 months
of age and develop insulin resistance and obesity on a chow diet
by 6 to 7 months of age.36 PKC-y may mediate its effects indirectly

via other signaling kinases, such as PDK1, JNK and/or IKK, or may
be compensated for by the highly homologous PKCd.33 Curiously,
no studies have been conducted on either PKC-y knockout or
muscle-specific, dominant-negative mice on a high-fat diet, the
more physiologically relevant model of insulin resistance, nor have
mice expressing a constitutively active or inducible PKC-y
specifically in skeletal muscle been generated.

Sphingosines and ceramides
In addition to LCACoA and DAG, the accumulation of the
sphingolipid intermediate ceramide has also been suggested to
have a role in lipid-induced insulin resistance.37,38 Intracellular
accumulation of ceramide occurs in response to numerous cellular
stressors (for example, cytokines, hypoxia and ROS) via the stress-
induced activation of sphingomyelinases/glucosidases and/or the
suppression of ceramide clearance.39 High-fat diets and lipid
infusion have been shown to increase intracellular ceramide,
impair insulin signaling and decrease glucose uptake in skeletal
muscle of rodents40 and humans,41 as well as in cultured
myotubes.42 Inhibition of de novo ceramide synthesis prevents
the development of muscle insulin resistance in response to lipid
infusion and in various diet-induced obesity models,43--45 provid-
ing fairly compelling evidence that ceramide accumulation may
be a key factor in the etiology of insulin resistance. However, no
increase in ceramide content was detected in at least two other
studies using lipid infusion to induce insulin resistance in rats or
humans,46,47 and no differences in ceramide levels were found in
the skeletal muscle from type 2 diabetic versus healthy
individuals.48 In addition, at least one of the inhibitors used to
inhibit ceramide (myriocin) has also been shown to increase
energy expenditure in treated animals,44 potentially complicating
the interpretation of these studies.49 Thus, it appears that further
work is required to determine whether ceramide accumulation is
necessary and/or sufficient for the induction of diet-induced
insulin resistance in skeletal muscle.

INFLAMMATION
Numerous lines of evidence have established a link between
elevated systemic, as well as tissue-derived, inflammation with the
development of insulin resistance (for review see Heilbronn and
Campbell50 and Schenk et al.51). As such, elevations in proin-
flammatory cytokines (tumor necrosis factor-a interleukin-6) and
C-reactive protein have repeatedly been observed in the plasma,
as well as within peripheral insulin target tissues (for example,
liver, adipose tissue and skeletal muscle), of both animal (high-fat
diet) and human (obesity and type 2 diabetes) models of insulin
resistance (for review see de Luca and Olefsky52 and Shoelson
et al.53). Regardless of the origin/site of inflammation, the effectors
of insulin resistance within peripheral tissues in the context of
high-fat diet-induced inflammation are believed to involve
hyperactivation of stress-sensitive Ser/Thr kinases, such as JNK54

and IKKb,55 due in large part to increased signaling through the
JNK/activator protein 1 (AP1) and IKK/NF-kB pathways. Over-
activation of these signaling pathways and their associated Ser/
Thr kinases is expected to induce reductions in insulin sensitivity
through a similar mechanism as that described previously for
intracellular lipid accumulation (for example, inhibitory serine
phosphorylation of the insulin receptor:IRS1 axis).27

At present, it would appear that the eventual manifestation of
an insulin-resistant phenotype likely results from, or is exacerbated
by, the summation of proinflammatory responses that occur
systemically,56 as well as within each peripheral tissue bed
(adipose,57,58 skeletal muscle59,60) as a consequence of high-fat
diet exposure. In other words, activation of proinflammatory
cascades seems to be a general response within all cells under
conditions of nutrient overload. Although the association between
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inflammation and high-fat diet-mediated insulin resistance
appears to be well established, a central question remains: what
is the mechanism by which excessive nutrient/lipid supply serves
to activate proinflammatory cascades within peripheral tissues?
Suggested mechanisms have included the following: (1) micro-
hypoxic conditions within engorged adipocyte depots,61 (2)
adipocyte cell death/necrosis,62 (3) endoplasmic reticulum stress63

and (4) activation of cytotoxic T cells following ligation of T-cell
receptors via specific fatty acid species.58 An additional potential
unifying mechanism involves the induction of intrinsic proin-
flammatory cascades within peripheral cells as a consequence of
elevated H2O2 production.64--66 That is, activation of the afore-
mentioned proinflammatory pathways (JNK/AP1 and IKK/NF-kB) is
also possible within peripheral tissues following an oxidative shift
in the cellular redox environment, without any need for
macrophage activation/infiltration.67 This later hypothesis is
intriguing given that mitochondrial-derived hydrogen peroxide
(H2O2), a major regulator of the cellular redox environment, has
recently been linked to the etiology of diet-induced insulin
resistance.68--70 To understand the mechanisms by which mito-
chondrial-derived ROS are believed to interact with and ultimately
impair cellular signaling in response to insulin, a brief discussion of
the factors governing mitochondrial H2O2 generation is necessary.

MITOCHONDRIAL H2O2 EMISSION, THE REDOX
ENVIRONMENT AND INSULIN RESISTANCE
H2O2 is the nonradical dismutation product of superoxide (O2

K�),
the short-lived parent molecule of all ROS. Although there are
numerous sources of H2O2, mitochondrial-derived H2O2 is
considered the major source in biological systems.71 Mitochon-
drial H2O2 emission reflects the balance between the rate of O2

K�/
H2O2 formation and scavenging within the matrix, with emitted
H2O2 serving to regulate the intracellular redox environment
in favor of greater reducing (k H2O2) or oxidizing (m H2O2)
conditions.72 Currently, identified sites of electron leak within the
respiratory chain include the flavin mononucleotide (site IF) and
ubiquinone-binding site (site IQ) within complex I, the quinone at
centre ‘o’ within complex III (site IIIQo), the quinone-binding site
within glycerol-3-phosphate dehydrogenase (G3PDH) and elec-
tron-transferring flavoprotein Q oxidoreductase (ETF-QOR).73

Additional nonrespiratory chain sites include two matrix dehy-
drogenase enzyme complexes, pyruvate dehydrogenase (PDH)
and a-ketoglutarate dehydrogenase (KGDH)74 (Figure 1).

Regardless of the site, mitochondrial H2O2 is strongly depen-
dent on overall metabolic balance, as maximal rates of electron
leak occur under elevated reducing conditions (m NAD(P)H/
NAD(P)þ , QH2/Q), in which mitochondrial membrane potential
(Dc) is highly negative and the overall demand for ATP synthesis
is low.75,76 These criteria are met under conditions that mimic
state 4 respiration, where respiring mitochondria are fully
saturated with substrate, yet not actively phosphorylating ADP.77

Although it is unlikely that cells in vivo are ever truly engaged in
state 4 respiration, near state 4 conditions likely occur during
periods of nutrient overload combined with minimal ATP demand
(that is, high caloric intake combined with a sedentary lifestyle).
These conditions would be expected to elevate the reducing
pressure within the respiratory chain, accelerate mitochondrial
O2

K� generation/H2O2 emission and trigger an oxidative shift in
the redox environment. In support of this notion, high dietary fat
intake generates an increase in partially oxidized lipid intermedi-
ates indicative of mitochondrial overload78 and decreases the
GSH/GSSG ratio in muscle, indicative of a shift in the intracellular
redox environment to a more oxidized state.68 This appears to be
mediated, at least in part, by a remarkable increase in the
propensity for mitochondrial H2O2 emission, implying some type
of alteration in the governance of H2O2 production/emission in
response to the lipid overload.68 Treatment of high-fat-fed rodents
with SS31 (mitochondrial-targeted small antioxidant peptide),
as well as the transgenic expression of the human catalase
gene within muscle mitochondria (mCAT), completely blocked the
development of insulin resistance, as well as the associated
increase in H2O2-emitting potential and oxidative shift in
the redox environment. Interestingly, mCAT mice fed a standard
chow diet exhibit improved skeletal muscle insulin sensitivity, as
well as reduced H2O2-emitting potential, compared with chow-fed
WT mice.68

Collectively, these findings suggest that the degree of skeletal
muscle insulin sensitivity within a cell may rely on the degree of
reduction or oxidation within the intracellular redox environment.
In this context, H2O2 emission by the mitochondria and the
resulting oxidative shift in the cellular redox environment during
nutrient overload is viewed as a metabolic feedback sensor to
decrease insulin sensitivity.79 The mechanism(s) by which H2O2-
mediated redox control regulates insulin sensitivity is unknown.
Given the sensitivity of cellular phosphatases to redox state,80 it
has recently been suggested that elevated mitochondrial H2O2

emission may lead to a decrease in the normally dominant global

Figure 1. Potential sites of mitochondrial superoxide (O2
K�) generation. Mitochondrial-derived O2

K� can arise from any one of seven known
sites of electron leak, including the flavin mononucleotide- and ubiquinone-binding site within complex I, the quinone at centre ‘o’ within
complex III, the quinone-binding site within G3PDC, the ETF-QOR complex and the matrix dehydrogenase enzyme complexes PDC and KGDH.
Cyto c, cytochrome c; OAC, oxaloacetate; QH2, ubiquinol; Q, ubiquinone.
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phosphatase tone in cells, increasing the susceptibility of insulin
signaling proteins to inhibitory serine/threonine phosphorylation
by stress-sensitive kinases (that is, JNK/AP1 and IKK/NF-kB; for
review see Fisher--Wellman and Neufer79). Another possibility is
that elevated H2O2 emission may directly target a key component
of the glucose uptake process itself.

ALTERATIONS IN HEXOKINASE (HK) DURING NUTRIENT
OVERLOAD
Glucose phosphorylation is an integral step for insulin-stimulated
glucose uptake and has been shown to be functionally impaired
during nutrient overload induced by a high-fat diet81,82 and in
association with type 2 diabetes.83 Glucose phosphorylation is
catalyzed by HK, and gene and protein expression of HKII, the
predominant isoform found in skeletal muscle, is increased in
response to insulin84 but depressed in patients with type 2
diabetes.85,86 HKI and HKII can also bind to the mitochondrial
outer membrane through interactions with mitochondrial porin in
skeletal muscle.87 Intriguingly, overexpression of HKII in insulin-
resistant mice fed a high-fat diet improves exercise-stimulated,
but not insulin-stimulated, glucose uptake.7 This presents a
quandary: why does not increasing glucose phosphorylating
capacity (via HKII overexpression) improve glucose uptake if
glucose phosphorylation is rate limiting? One possibility is that
glucose phosphorylation is not solely a function of HKII content,
but also dependent upon the subcellular localization of HK with
mitochondria. When bound to mitochondria in skeletal muscle, HK
displays greater sensitivity for ATP derived from mitochondria
than exogenous ATP,88 suggesting that HK association
with mitochondria provides a bioenergetic advantage to glucose

phosphorylation. Insulin promotes HKII association with the
mitochondrial outer membrane in both rodent89 and human90

striated muscle, and may do so via Akt in two ways: (1) direct
phosphorylation of HKII91 and (2) inhibition of glycogen synthase
kinase-3b (GSK-3b),92 a basally active negative regulator of
glycogen synthesis. Inhibition of GSK-3b decreases phosphoryla-
tion tone on VDAC, which increases the binding affinity between
VDAC and HK.91 GSK-3b activity is increased during nutrient
overload93 and oxidative stress,94 whereas muscle-specific over-
expression of GSK-3b is casually linked to insulin resistance.95

In addition, exogenous H2O2 has been shown to dissociate HKII
from mitochondria in cultured cardiomyocytes,96 providing a
potential direct link between mitochondrial/cellular redox control
and HK association with mitochondria (Figure 2). Whether
elevated mitochondrial H2O2 emission leads to dissociation of
HK from mitochondria and thereby contributes to high-fat diet-
induced insulin resistance awaits further investigation.

CONCLUDING REMARKS
Research conducted over the last several decades has firmly
established a link between positive metabolic balance and the
development of metabolic disease (for example, insulin resistance,
type 2 diabetes). However, deciphering the mechanism(s) by
which chronic excess nutrient supply actually interacts with and
impairs insulin signaling, ultimately leading to the clinical
manifestation of insulin resistance, has proven difficult. Evidence
is accumulating that adaptations within the mitochondria, either
in ‘response to’ or ‘as a consequence of’ excessive nutrients, likely
underlie this process. Further elucidation of the complex relation-
ships between metabolic balance, H2O2 emission and cellular

Figure 2. Effects of insulin and H2O2 on HK association with mitochondria. Left panel: HK association with mitochondria is promoted
by insulin-mediated Akt phosphorylation of HK. Concurrently, Akt phosphorylation of GSK-3b relieves tonic phosphorylation of VDAC,
resulting in increased HK/VDAC-binding affinity. When bound to mitochondria, HK is thought to gain a bioenergetic advantage via coupling
with oxidative phosphorylation by virtue of the fusion of the outer and inner mitochondrial membranes through interaction between
VDAC/ANT. Right panel: exogenous H2O2 dissociates HK from the mitochondria in cardiomyocytes through an unknown mechanism. GSK-3b
activity is increased by exogenous H2O2, which is hypothesized to decrease binding of HK to VDAC, leading to HK dissociation from
mitochondria, which is proposed to contribute to the etiology of diet-induced insulin resistance by impairing glucose phosphorylation in
skeletal muscle.
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redox environment will be necessary to allow for the eventual
design/development of pharmacological/dietary interventions
designed to restore/prevent metabolic disease.
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