Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Aug 16;91(17):8205–8208. doi: 10.1073/pnas.91.17.8205

Electrophysiological analysis of Na+/Pi cotransport mediated by a transporter cloned from rat kidney and expressed in Xenopus oocytes.

A Busch 1, S Waldegger 1, T Herzer 1, J Biber 1, D Markovich 1, G Hayes 1, H Murer 1, F Lang 1
PMCID: PMC44574  PMID: 8058781

Abstract

Phosphate (Pi) reabsorption in renal proximal tubules involves Na+/Pi cotransport across the brush border membrane; its transport rate is influenced by the Na(+)-coupled transport of other solutes as well as by pH. In the present study, we have expressed a cloned rat renal brush border membrane Na+/Pi cotransporter (NaPi-2) in Xenopus laevis oocytes and have analyzed its electrophysiologic properties in voltage- and current-clamp studies. Addition of Pi to Na(+)-containing superfusates resulted in a depolarization of the membrane potential and, in voltage-clamped oocytes, in an inward current (IP). An analysis of the Na+ and/or Pi concentration dependence of IP suggested a Na+/Pi stoichiometry of 3:1. IP was increased by increasing the pH of the superfusate; this phenomenon seems to be mainly related to a lowering of the affinity for Na+ interaction by increasing H+ concentration. The present data suggest that known properties of Pi handling at the tubular/membrane level are "directly" related to specific characteristics of the transport molecule (NaPi-2) involved.

Full text

PDF
8208

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amstutz M., Mohrmann M., Gmaj P., Murer H. Effect of pH on phosphate transport in rat renal brush border membrane vesicles. Am J Physiol. 1985 May;248(5 Pt 2):F705–F710. doi: 10.1152/ajprenal.1985.248.5.F705. [DOI] [PubMed] [Google Scholar]
  2. Barrett P. Q., Aronson P. S. Glucose and alanine inhibition of phosphate transport in renal microvillus membrane vesicles. Am J Physiol. 1982 Feb;242(2):F126–F131. doi: 10.1152/ajprenal.1982.242.2.F126. [DOI] [PubMed] [Google Scholar]
  3. Biber J., Caderas G., Stange G., Werner A., Murer H. Effect of low-phosphate diet on sodium/phosphate cotransport mRNA and protein content and on oocyte expression of phosphate transport. Pediatr Nephrol. 1993 Dec;7(6):823–826. doi: 10.1007/BF01213368. [DOI] [PubMed] [Google Scholar]
  4. Biber J., Custer M., Werner A., Kaissling B., Murer H. Localization of NaPi-1, a Na/Pi cotransporter, in rabbit kidney proximal tubules. II. Localization by immunohistochemistry. Pflugers Arch. 1993 Aug;424(3-4):210–215. doi: 10.1007/BF00384344. [DOI] [PubMed] [Google Scholar]
  5. Bindels R. J., van den Broek L. A., van Os C. H. Effect of pH on the kinetics of Na+-dependent phosphate transport in rat renal brush-border membranes. Biochim Biophys Acta. 1987 Feb 12;897(1):83–92. doi: 10.1016/0005-2736(87)90317-8. [DOI] [PubMed] [Google Scholar]
  6. Burckhardt G., Stern H., Murer H. The influence of pH on phosphate transport into rat renal brush border membrane vesicles. Pflugers Arch. 1981 May;390(2):191–197. doi: 10.1007/BF00590206. [DOI] [PubMed] [Google Scholar]
  7. Busch A. E., Kavanaugh M. P., Varnum M. D., Adelman J. P., North R. A. Regulation by second messengers of the slowly activating, voltage-dependent potassium current expressed in Xenopus oocytes. J Physiol. 1992 May;450:491–502. doi: 10.1113/jphysiol.1992.sp019138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Béliveau R., Strevey J. The sodium gradient induces conformational changes in the renal phosphate carrier. J Biol Chem. 1987 Dec 15;262(35):16885–16891. [PubMed] [Google Scholar]
  9. Béliveau R., Strévey J. Kinetic model for phosphate transport in renal brush-border membranes. Am J Physiol. 1988 Mar;254(3 Pt 2):F329–F336. doi: 10.1152/ajprenal.1988.254.3.F329. [DOI] [PubMed] [Google Scholar]
  10. Béliveau R., Strévey J. Phosphate transport in kidneys: effect of transmembrane electrical potential. Am J Physiol. 1991 Oct;261(4 Pt 2):F663–F669. doi: 10.1152/ajprenal.1991.261.4.F663. [DOI] [PubMed] [Google Scholar]
  11. Cheng L., Sacktor B. Sodium gradient-dependent phosphate transport in renal brush border membrane vesicles. J Biol Chem. 1981 Feb 25;256(4):1556–1564. [PubMed] [Google Scholar]
  12. Christie M. J., Adelman J. P., Douglass J., North R. A. Expression of a cloned rat brain potassium channel in Xenopus oocytes. Science. 1989 Apr 14;244(4901):221–224. doi: 10.1126/science.2539643. [DOI] [PubMed] [Google Scholar]
  13. Custer M., Lötscher M., Biber J., Murer H., Kaissling B. Expression of Na-P(i) cotransport in rat kidney: localization by RT-PCR and immunohistochemistry. Am J Physiol. 1994 May;266(5 Pt 2):F767–F774. doi: 10.1152/ajprenal.1994.266.5.F767. [DOI] [PubMed] [Google Scholar]
  14. Custer M., Meier F., Schlatter E., Greger R., Garcia-Perez A., Biber J., Murer H. Localization of NaPi-1, a Na-Pi cotransporter, in rabbit kidney proximal tubules. I. mRNA localization by reverse transcription/polymerase chain reaction. Pflugers Arch. 1993 Aug;424(3-4):203–209. doi: 10.1007/BF00384343. [DOI] [PubMed] [Google Scholar]
  15. Danisi G., Murer H., Straub R. W. Effect of pH on phosphate transport into intestinal brush-border membrane vesicles. Am J Physiol. 1984 Feb;246(2 Pt 1):G180–G186. doi: 10.1152/ajpgi.1984.246.2.G180. [DOI] [PubMed] [Google Scholar]
  16. Dennis V. W., Brazy P. C. Sodium, phosphate, glucose, bicarbonate, and alanine interactions in the isolated proximal convoluted tubule of the rabbit kidney. J Clin Invest. 1978 Aug;62(2):387–397. doi: 10.1172/JCI109140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gmaj P., Murer H. Cellular mechanisms of inorganic phosphate transport in kidney. Physiol Rev. 1986 Jan;66(1):36–70. doi: 10.1152/physrev.1986.66.1.36. [DOI] [PubMed] [Google Scholar]
  18. Kavanaugh M. P. Voltage dependence of facilitated arginine flux mediated by the system y+ basic amino acid transporter. Biochemistry. 1993 Jun 8;32(22):5781–5785. doi: 10.1021/bi00073a009. [DOI] [PubMed] [Google Scholar]
  19. Klöckner U., Storck T., Conradt M., Stoffel W. Electrogenic L-glutamate uptake in Xenopus laevis oocytes expressing a cloned rat brain L-glutamate/L-aspartate transporter (GLAST-1). J Biol Chem. 1993 Jul 15;268(20):14594–14596. [PubMed] [Google Scholar]
  20. Levi M. Heterogeneity of Pi transport by BBM from superficial and juxtamedullary cortex of rat. Am J Physiol. 1990 Jun;258(6 Pt 2):F1616–F1624. doi: 10.1152/ajprenal.1990.258.6.F1616. [DOI] [PubMed] [Google Scholar]
  21. Magagnin S., Werner A., Markovich D., Sorribas V., Stange G., Biber J., Murer H. Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):5979–5983. doi: 10.1073/pnas.90.13.5979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Markovich D., Stange G., Bertran J., Palacin M., Werner A., Biber J., Murer H. Two mRNA transcripts (rBAT-1 and rBAT-2) are involved in system b0,(+)-related amino acid transport. J Biol Chem. 1993 Jan 15;268(2):1362–1367. [PubMed] [Google Scholar]
  23. Murer H. Homer Smith Award. Cellular mechanisms in proximal tubular Pi reabsorption: some answers and more questions. J Am Soc Nephrol. 1992 Jun;2(12):1649–1665. doi: 10.1681/ASN.V2121649. [DOI] [PubMed] [Google Scholar]
  24. Parent L., Supplisson S., Loo D. D., Wright E. M. Electrogenic properties of the cloned Na+/glucose cotransporter: I. Voltage-clamp studies. J Membr Biol. 1992 Jan;125(1):49–62. doi: 10.1007/BF00235797. [DOI] [PubMed] [Google Scholar]
  25. Parent L., Supplisson S., Loo D. D., Wright E. M. Electrogenic properties of the cloned Na+/glucose cotransporter: II. A transport model under nonrapid equilibrium conditions. J Membr Biol. 1992 Jan;125(1):63–79. doi: 10.1007/BF00235798. [DOI] [PubMed] [Google Scholar]
  26. Sacktor B., Cheng L. Sodium gradient-dependent phosphate transport in renal brush border membrane vesicles. Effect of an intravesicular greater than extravesicular proton gradient. J Biol Chem. 1981 Aug 10;256(15):8080–8084. [PubMed] [Google Scholar]
  27. Strévey J., Giroux S., Béliveau R. pH gradient as an additional driving force in the renal re-absorption of phosphate. Biochem J. 1990 Nov 1;271(3):687–692. doi: 10.1042/bj2710687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tenenhouse H. S., Werner A., Biber J., Ma S., Martel J., Roy S., Murer H. Renal Na(+)-phosphate cotransport in murine X-linked hypophosphatemic rickets. Molecular characterization. J Clin Invest. 1994 Feb;93(2):671–676. doi: 10.1172/JCI117019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Turner S. T., Dousa T. P. Phosphate transport by brushborder membranes from superficial and juxtamedullary cortex. Kidney Int. 1985 Jun;27(6):879–885. doi: 10.1038/ki.1985.95. [DOI] [PubMed] [Google Scholar]
  30. Ullrich K. J., Rumrich G., Klöss S. Phosphate transport in the proximal convolution of the rat kidney. III. Effect of extracellular and intracellular pH. Pflugers Arch. 1978 Oct 18;377(1):33–42. doi: 10.1007/BF00584371. [DOI] [PubMed] [Google Scholar]
  31. Werner A., Kempson S. A., Biber J., Murer H. Increase of Na/Pi-cotransport encoding mRNA in response to low Pi diet in rat kidney cortex. J Biol Chem. 1994 Mar 4;269(9):6637–6639. [PubMed] [Google Scholar]
  32. Werner A., Moore M. L., Mantei N., Biber J., Semenza G., Murer H. Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9608–9612. doi: 10.1073/pnas.88.21.9608. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES