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Abstract
Batrachochytrium dendrobatidis(Bd), a chytrid fungus, has increasingly been implicated as

a major factor in the worldwide decline of amphibian populations. The fungus causes chytri-

diomycosis in susceptible species leading to massive die-offs of adult amphibians. Although

Bd infects the keratinized mouthparts of tadpoles and negatively affects foraging behavior,

these infections are non-lethal. An important morphogen controlling amphibian metamor-

phosis is thyroid hormone (T3). Tadpoles may be infected with Bd and the fungus may be

exposed to T3 during metamorphosis. We hypothesize that exposure of Bd to T3 may in-

duce the expression of factors associated with host colonization and pathogenicity. We uti-

lized a proteomics approach to better understand the dynamics of the Bd-T3 interaction.

Using liquid chromatography-mass spectrometry (LC-MS), we generated a data set of a

large number of cytoplasmic and membrane proteins following exposure of Bd to T3. From

these data, we identified a total of 263 proteins whose expression was significantly changed

following T3 exposure. We provide evidence for expression of an array of proteins that may

play key roles in both genomic and non-genomic actions of T3 in Bd. Additionally, our prote-
omics study shows an increase in several proteins including proteases and a class of un-

common crinkler and crinkler-like effector proteins suggesting their importance in Bd
pathogenicity as well as those involved in metabolism and energy transfer, protein fate,

transport and stress responses. This approach provides insights into the mechanistic basis

of the Bd-amphibian interaction following T3 exposure.
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Introduction
Batrachochytrium dendrobatidis (Bd), a chytrid fungus, has been implicated in widespread am-
phibian decline [1–4]. The fungus infects the keratin skin layer of metamorphosed amphibians
causing the diseased animals to experience thickening of the epidermal layer and eventually
sloughing of the skin [5]. The life cycle of Bd consists of substrate-independent motile zoo-
spores and substrate-dependent sporangia [3]. However, little is known about the early events
during the fungal-amphibian interaction leading to death of these animals.

The amphibian life cycle primarily consists of tadpole and adult animals, and the transition
of tadpole to adult is known as metamorphosis [6]. Thyroid hormone plays an integral role in
the metamorphosis of these animals. A strong association of metamorphosis with the rise in
circulating plasma concentrations of thyroid hormone has been observed [7]. At the climax
stage of metamorphosis, a surge of thyroid hormone occurs, however the level of the hormone
is reduced at the end of this stage. Studies have shown that pre-metamorphic tadpoles that are
lacking thyroid hormones had the ability to sense exogenous hormone. When pre-metamor-
phic tadpoles were exposed to thyroid hormone, they were capable of precocious metamorpho-
sis [8], suggesting the importance of the thyroid hormone in the development of amphibians.

Although Bd infection negatively affects the feeding behavior of young tadpoles, the infec-
tion is not lethal [5], [9]. Various studies have reported massive die-offs of amphibians that
have recently undergone metamorphosis due to Bd infections [5,10–12]. Additionally, Bd-
infected amphibians exhibit a weakened immune response to the pathogen. Recent studies
demonstrate that Bdmay cause severe immune suppression in susceptible hosts [13–15]. We
recently reported that a Bd subtilisin-like serine protease degrades frog anti-microbial peptides
[16]. This may lead to increased susceptibility of the host to the fungus.

To better understand the early events during Bd-frog interactions, particularly, how Bd re-
sponds to host-derived thyroid hormone, a study of the proteome was carried out following in
vitro exposure of Bd to thyroid hormone (T3). Proteomic analyses have been used to under-
stand pathogenicity in fungi such as Botrytis cinerea [17] and Sclerotinia sclerotiorum [18]. Ad-
ditionally, in the human pathogen, Candida albicans, a proteomics study demonstrated the
importance of proteins involved in hyphal-yeast transitions [19]. Using proteomic and pheno-
typic profiling of Bd, a previous study showed that genotype is associated with virulence [20].
Here we present a global proteomics approach to document protein expression changes in Bd
exposed to T3 and discuss its significance in understanding this fungal-amphibian interaction.

Methods

Cultivation of fungus
The VM1 isolate of Batrachochytrium dendrobatidis isolated from a diseased Western chorus
frog (Pseudacris triseriata), was provided by Louise Rollins-Smith (Vanderbilt Univ). Bd was
maintained on TGhL (1.6% tryptone, 0.2% gelatin hydrolysate, 0.4% lactose, 0.8% agar) plates
and all experiments were conducted by inoculation in H-broth (1% tryptone, 0.32% glucose).
The fungal culture was routinely maintained at room temperature (21°C) and incubated in
the dark.

Exposure to thyroid hormone
Of the two forms of thyroid hormone, 3, 5, 3'- triiodothyronine (T3) and 3, 5, 3', 5'- tetraio-
dothyronine (thyroxine, T4), T3 is the biologically more active form in vertebrates [21] and was
used in this study. T3 was used at the concentration at which it occurs physiologically in tad-
poles [22]. A 10 mM stock solution of T3 was prepared by dissolving 3, 30, 5-triiodo-L-
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thyronine sodium salt (Sigma-Aldrich) in methanol and stored at -20°C. The T3 stock was fur-
ther diluted in water, which was then used for the experiments. The fungal cultures were ex-
posed to a final concentration of 50 nM T3 for 3 hours at room temperature. Methanol was
used as the solvent control. Three biological replicates of T3-treated and control cultures were
used for the study.

Protein extraction
To pinpoint when Bd proteins are induced during exposure to T3 and at what level they are ex-
pressed, a time-course experiment was carried out. Following 7 days of growth in H-broth, Bd
cells were exposed to a final concentration of 50 nM T3 for 1, 3, 6 or 12 hrs. After careful analy-
sis, the 3-hr time point was chosen for this proteomics study. Proteins from Bd cells were ex-
tracted using a glass bead method. The cells were harvested at 10,000 rpm at 4°C for 10
minutes. The supernatant was discarded and the pellet was resuspended in breaking buffer
(50 mM sodium monophosphate (pH 7.4), 1 mM phenylmethylsulfonyl fluoride (PMSF),
1 mM ethylenediaminetetraacetic acid (EDTA) and 5% glycerol). An equal volume of acid-
washed glass beads (0.5 mm diameter) was added to the cell suspension. The pellet was then
subjected to eight alternate cycles of vortexing and incubation on ice for 30 seconds. The mix-
ture was then centrifuged at 14,000 x g for 10 minutes at 4°C. The resulting supernatant was
transferred to a microfuge tube and subjected to 14,000 x g for 10 minutes to further remove
any glass beads from the solution. The concentration of total soluble protein was estimated by
the Bradford assay [23] and further used for LC-MS study.

One-dimensional (1-D) gel electrophoresis
Protein samples (100 μg) of 3 biological replicates from T3-treated and control were separated
on a one-dimensional gel using SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The
samples were mixed with protein loading buffer (2% SDS, 1% Tris-HCl, 10% v/v glycerol,
0.01% bromophenol blue, 5% beta-mercapto-ethanol, pH 6.8). The mixture was boiled for 5
minutes, centrifuged briefly and then loaded into a 12% resolving gel (BioRad). Following elec-
trophoresis the gel was stained with 0.1% Coomassie Blue stain for 4 hours followed by destain-
ing (10% methanol, 10% acetic acid, 2% glycerol and 78% water) overnight. The proteins were
visualized using Alpha Innotech imaging system (Cell Science).

In-gel digestion and extraction of peptides
Each sample lane of the gel in which the proteins were separated was cut into 8 equal slices and
each slice was kept in a 0.5 ml microfuge tube. In-gel digestion on each slice was carried out as
described previously [24]. Briefly, these slices were washed in milli Q water for 5 minutes at
37°C at 600 rpm and then washed twice with acetonitrile (ACN)/100 mMNH4HCO3 (50/50)
for 10 minutes to destain the gels. Subsequently, proteins in the gel pieces were subjected to re-
duction in 50 μl 10 mM dithiothreitol at 56°C at 600 rpm for one hour. These slices were then
washed in water, alkylated in 50 μl of iodoacetamide solution (55 mM in 40 mMNH4HCO3),
and incubated in the dark for 30 minutes. To remove any remaining dye, the gel slices were
washed alternately in water and 50% ACN. After completely removing the dye, the gel pieces
were incubated for one minute in 100 μl of 100% ACN and air-dried. The samples were di-
gested using 30 μL of sequencing grade trypsin (Promega) solution (12.5 ng/μL in 25 mM
NH4HCO3) and incubated overnight at 37°C. Peptide extraction was performed twice using
50% ACN containing 0.1% formic acid solution. The extracted peptide solutions were pooled
and dried using a speed vacuum centrifuge and the peptides resuspended in 20 μl of 0.1%
formic acid.
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Nano LC-MS/MS
To analyze the peptides extracted from in-gel digestion, nano-flow liquid chromatography tan-
dem mass spectrometry (nano-LC-MS/MS) was used on an LTQ-XL ion trap mass spectrome-
ter (Thermo, CA, USA) at the Center for Biotechnology and Genomics, Texas Tech University.
Chromatographic separation of the peptides was carried out using a Dionex nano-HPLC (Ulti-
mate 3000) with a trapping column (C18, 3 μm, 100 Å, 75 μm × 2 cm) followed by a reverse
phase column (C18, 2 μm, 100 Å, 75 μm × 15 cm, nanoViper). Peptides were first injected onto
the trapping column, which was equilibrated with 1% ACN, 0.1% formic acid in mass spectro-
metric grade water. These peptides were trapped for 10 minutes using the loading pump at a
flow rate of 5 μl/min. The trapped peptides were then loaded on the reverse-phase analytical
column, and bound peptides were eluted using solvents A (2% ACN, 0.1% formic acid in
water) and B (98% ACN, 2% water, 0.1% formic acid) at 300 nl/min. The gradient was main-
tained constant for the first 10 minutes at 4% solvent B followed by a gradual increase up to
30% solvent B in 20 minutes. Solvent B was further increased to 60% in 40 minutes followed by
a rapid increase up to 90% over 5 minutes. The eluted peptides were directed into the nanos-
pray ionization source of the LTQ-XL with a capillary voltage of*2 kV. The collected spectra
were scanned over the mass range of 300–2000 atomic mass units. Data dependent scan set-
tings were defined to choose the 6 most intense ions with dynamic exclusion list size of 100, ex-
clusion duration of 30 seconds, repeat count of 2, and repeat duration of 15 seconds. To
generate MS/MS spectra, collision-induced dissociation of the peptide ions at normalized colli-
sion energy of 35% was utilized.

Database search
To identify the proteins using the spectra acquired from the LTQ-XL mass spectrometer, Pro-
teome Discoverer software (version 1.3, Thermo Scientific) was employed. For this purpose,
SEQUEST cluster was used as the search engine (Thermo Electron Corp., San Jose CA) against
a Bd database (www.broadinstitute.org). The following criteria were used by the search engine:
precursor ion mass tolerance was set at 2.5 Da, and fragment ion mass tolerance at 0.8 Da. Ad-
ditional parameters included fully tryptic enzyme specificity, two missed cleavages, and mass
range 350–5000 Da and CID as the collision method. For all searches, carbamidomethylation
of cysteines and oxidation of methionine were set as dynamic modifications. The false discov-
ery rate (FDR), percentage of false positive identifications among all the tentative peptide iden-
tifications, was set at 1% using a decoy databases created from a reversed target database.

Quantitative proteomic analysis
ProteoIQ software (ProteoIQ 2.70, Premier Biosoft) was used for label-free comparative rela-
tive protein quantification using spectral counts. For protein quantification purposes, the fol-
lowing stringent filter criteria were employed: minimum number of spectra = 5, minimum
percentage of replicates = 60 (2 out of 3 replicates) and maximum protein false discovery rate
(FDR %) = 1. Additionally, probability filters including minimum peptide probability = 0.99
and minimum protein group probability = 0.95 were applied. Using the reversed target data-
base as decoy, the protein FDR was calculated as protein FDR = (number of reverse proteins
identified)/ (total protein identifications) x100. To calculate the peptide FDR, the formula, pep-
tide FDR = 2�(number of reverse peptide identifications)/ (total peptide identifications) x100
was used. Protein abundance data were determined using the method described previously
[25]. To calculate protein abundance data, normalized spectral abundance factors (NSAF)
were employed. In this method, for each protein, k, in sample i, the number of spectral counts
(SpC, the total number of MS/MS spectra) identifying the protein was divided by the apparent
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length of the protein. To calculate the protein length, molecular weight of the protein was di-
vided by the molecular weight of an average amino acid. The NSAFi values for the sample i was
determined as SpCk/Lengthk values normalized to the total by dividing by the sum (SpCk/
Lengthk). The values in T3 normalized spectral count (T3 N-SC) Log2 relative expression are
presented here. To calculate the absolute fold change, the conversion was applied as 2^ (T3

N-SC).

Statistical analysis
To determine the protein expression changes between T3 treatment and methanol control, a
student t-test was performed. The t-test was performed using log transformed NSAF data, and
those P-values less than 0.05 were measured to be statistically significant. These protein sets
were further subjected to functional annotation.

Annotation and mapping
To gain evidence on functional annotation of identified Bd proteins, the nucleotide sequences
of all proteins (Broad Institute) were matched to the NCBI non redundant (NR) protein data-
base and the gene ontology (GO) database by Blast2GO software (Version 1.6) [26]. Using
Mercator-Mapman annotation tool, metabolic pathways and other cellular processes in the
fungus were mapped (S2 Table and S3 Table). This tool was used to map the differentially ex-
pressed proteins into various metabolic pathways [27].

Results
In an effort to understand the early events during Bd-T3 interaction, we used a quantitative
proteomic approach and assessed the protein expression profiles of Bd exposed to T3. The
strategy followed for protein preparation and profiling using LC-MS approach is shown in
Fig 1. Using this approach, we identified and quantitatively analyzed the changes in relative
abundance of Bd proteins (S1 Table). Among the identified proteins, we found expression dif-
ferences of 263 proteins that were statistically significant (P value< 0.05). Of these, the expres-
sion of 104 proteins was found to have increased by more than 2-fold (Table 1) and 42 proteins
were uniquely present (Table 2) in Bd cells following exposure to T3. We observed a more than
2-fold decrease of 29 proteins (Table 3) while 26 proteins were found to be undetectable
(Table 4) in the T3-treated samples. Here we list those Bd proteins that were, (1) uniquely pres-
ent or (2) that showed greater than a 2-fold change in abundance (either increase or decrease)
following its exposure to T3.

To gain an integrated perspective of the Bd biological processes influenced following expo-
sure to T3, the complete dataset of identified proteins was classified into Mapman functional
categories. Mapman-Mercator analysis has been widely used in analyzing gene expression in
higher plants [21] and green algae, Chlamydomonas reinhardtii [28]. Mapman pathway analy-
sis in our study showed that Bd proteins that were identified are involved in metabolism and
energy acquisition, cytoskeleton signaling, and ubiquitin and autophagy-dependent degrada-
tion. Such changes in protein expression levels belonging to diverse functional groups point to
a broad fungal response when exposed to T3.

Discussion
Our experimental data support the hypothesis that exposure of Bd to T3 results in protein ex-
pression changes associated with various cellular roles in the fungus. This study shows the ex-
pression of a large number of proteins in Bd, which have been described in both genomic and
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Fig 1. Schematic illustration for the proteomics study to profile total proteins in Batrachochytrium
dendrobatidis following exposure to T3. Red boxes show regions where each sample lane of the gel was
cut into slices for peptide extraction.

doi:10.1371/journal.pone.0123637.g001
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Table 1. List of proteins that showedmore than 2-fold increase in Bd exposed to T3.

Gene accession numbera Name/predicted name of protein T3 (N-SC)Log2 relative expression

BDET_08575 prolyl endopeptidase 3.21

BDET_05763 ACTN1 protein 3.1

BDET_04253 hypothetical protein similar to glutamate carboxypeptidase 2.93

BDET_01134 hypothetical protein 2.91

BDET_07031 conserved hypothetical protein 2.9

BDET_02940 rab GDP dissociation inhibitor beta 2.85

BDET_03111 conserved hypothetical protein 2.61

BDET_02571 bifunctional purine biosynthesis protein ADE17 2.46

BDET_04126 bifunctional purine biosynthesis protein ADE17 2.46

BDET_04144 phosphoglucomutase 2.46

BDET_07811 hypothetical protein 2.41

BDET_05116 crinkler family protein 2.4

BDET_05132 crinkler family protein 2.4

BDET_08307 conserved hypothetical protein 2.36

BDET_08030 glucose-6-phosphate isomerase 2.31

BDET_06818 conserved hypothetical protein 2.26

BDET_08009 conserved hypothetical protein 2.24

BDET_04007 hypothetical protein similar to hydrolase 2.2

BDET_01275 electron transfer flavoprotein subunit beta 2.19

BDET_03579 conserved hypothetical protein 2.18

BDET_05121 crinkler family protein 2.16

BDET_01745 aminoacylase-1 2.15

BDET_00627 conserved hypothetical protein 2.14

BDET_07364 conserved hypothetical protein 2.14

BDET_03035 proliferating cell nuclear antigen 2.08

BDET_08526 conserved hypothetical protein 2.08

BDET_05736 triosephosphate isomerase 2.07

BDET_03419 hypothetical protein similar to AhpC/TSA family protein 2.07

BDET_07373 branched-chain-amino-acid aminotransferase, mitochondrial precursor 2.03

BDET_06577 protein disulfide-isomerase erp38 precursor 2.01

BDET_07554 monothiol glutaredoxin-4 2

BDET_02020 long-chain acyl CoA ligase 1.95

BDET_02521 crinkler family missing secretion signal peptide 1.95

BDET_04065 conserved hypothetical protein 1.88

BDET_03580 ribosomal L-30 1.8

BDET_02674 crinkler family missing secretion signal peptide 1.79

BDET_02498 enolase 1.79

BDET_01981 conserved hypothetical protein 1.73

BDET_03190 deoxyuridine 5'-triphosphate nucleotidohydrolase 1.72

BDET_05854 isocitrate dehydrogenase subunit 1, mitochondrial precursor 1.72

BDET_05255 conserved hypothetical protein 1.72

BDET_06670 protein phosphatase PP2A regulatory subunit A 1.71

BDET_02031 hypothetical protein similar to 5'-methylthioadenosine phosphorylase 1.71

BDET_01967 conserved hypothetical protein 1.68

BDET_00885 conserved hypothetical protein 1.67

BDET_00733 4-hydroxyphenylpyruvate dioxygenase 1.64

BDET_06414 multidrug/metal resistance protein, ABC transporter 1.6

(Continued)
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Table 1. (Continued)

Gene accession numbera Name/predicted name of protein T3 (N-SC)Log2 relative expression

BDET_04177 phosphoribosylaminoimidazole carboxylase 1.59

BDET_00864 conserved hypothetical protein 1.59

BDET_01181 hypothetical protein similar to aminopeptidase 1.58

BDET_05762 ATP citrate synthase 1.58

BDET_06464 conserved hypothetical protein 1.54

BDET_04424 hypothetical protein similar to dipeptidyl peptidase III 1.53

BDET_00939 conserved hypothetical protein 1.53

BDET_00944 conserved hypothetical protein 1.53

BDET_06915 conserved hypothetical protein 1.51

BDET_02099 pre-mRNA-processing-splicing factor 8 1.51

BDET_02010 GPI anchor protein 1.5

BDET_06692 NIF 3 like protein 1.5

BDET_06549 tryptophanyl-tRNA synthetase 1.47

BDET_05202 hypothetical protein 1.46

BDET_00751 cell division control protein 3 1.44

BDET_04460 ubiquitin-activating enzyme E1 1 1.42

BDET_08521 peptidyl-prolyl cis-trans isomerase B precursor 1.42

BDET_05202 dihydroorotase 1.4

BDET_06814 cytochrome c peroxidase, mitochondrial precursor 1.39

BDET_02514 predicted protein 1.39

BDET_02516 predicted protein 1.39

BDET_03024 protein phosphatase PP2A regulatory subunit B 1.36

BDET_01885 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase 1.35

BDET_04151 glucosamine-fructose-6-phosphate aminotransferase 1.35

BDET_06546 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase 1.33

BDET_03560 acetyl-CoA acetyltransferase 1.33

BDET_08315 biofilm development protein YmgB/AriR 1.3

BDET_07061 phosphoglucomutase 1.3

BDET_08261 phosphoribosylglycinamide formyltransferase 1.3

BDET_01150 conserved hypothetical protein 1.29

BDET_01159 conserved hypothetical protein 1.29

BDET_03350 organic hydroperoxide resistance protein 1.29

BDET_02250 conserved hypothetical protein 1.26

BDET_04753 acyl CoA oxidase 1.25

BDET_03317 nucleoside diphosphate kinase 1 1.25

BDET_03057 isocitrate lyase 1.22

BDET_05399 protein phosphatase regulatory subunit SDS22 1.2

BDET_04703 calmodulin 1.2

BDET_06960 conserved hypothetical protein 1.2

BDET_02981 hypothetical protein 1.2

BDET_00091 conserved hypothetical protein 1.18

BDET_07377 ATP synthase F1 gamma 1.1

BDET_05222 heat shock protein 90 1.1

BDET_07409 nucleoside-triphosphatase/ nucleotide binding protein 1.08

BDET_03133 aspartyl-tRNA synthetase 1.08

BDET_01550 conserved hypothetical protein 1.07

BDET_05272 inorganic pyrophosphatase 1.07

(Continued)
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non-genomic actions of T3 in vertebrates. Additionally, this study sheds light on the possible
mechanism of how T3 may act in Bd.

Genomic action of T3 in Bd
In vertebrates, in addition to nuclear receptor regulators that control transcriptional activity in
a hormone dependent manner, the action of thyroid hormone receptor can be controlled by
other proteins [29]. Our study provides evidence for certain cellular proteins in Bd that may
control the transcriptional activity of thyroid hormone receptor (TR). These TR-interacting
proteins primarily consist of transcription modulators and cytoskeletal element regulators such
as cyclin dependent kinases, 26 S proteasome subunit p45, ubiquitin-proteasome pathway
components including SCF ubiquitin ligase complex subunit culA and cullin, cytoskeletal ele-
ments such as actin binding protein, tubulin and alpha-actinin. Additionally, a TR interacting
protein- 13 (TRIP-13) (BDET_00690) has been identified in Bd. However, expression of this
protein did not change following exposure to T3.

Non-genomic action of T3 in Bd
Membrane receptors play an important role in non-genomic actions of T3 [29]. These recep-
tors could be proteins such as integrin or the G-protein coupled receptor (GPCR). Additional-
ly, it has been shown that rapid response to T3 is moderated by the mitogen activated protein
kinase (MAPK) signaling pathway [30]. Mitogen-activated protein kinases (MAPKs) belong to
a family of serine-threonine protein kinases. These kinases are known to play important roles
in the signal transduction of a large number of external stimuli and in development and differ-
entiation processes [31]. Like other eukaryotic cells, fungi including yeast and human patho-
gens such as Candida albicans respond to several extracellular stimuli using highly conserved
MAPK signaling cascades. Although not statistically significant, we observed a decrease in
abundance of the protein Fuz7, a homolog of the yeast protein Ste7 which is found to be in-
volved in the pheromone response pathway in the fungus [32]. In the case of the plant patho-
gen, Ustilago maydis, Fuz7 codes for a MEK/MAPKK homolog. Additionally, this protein has
been implicated in a pathway that responds to plant signals [33]. The Fuz7 (BDET_06700) pro-
tein is known to be a key protein in the MAPK signaling pathway, which is mediated by G-
proteins. It has been shown that GPCRs are involved in this signaling pathway, which results
in a corresponding decrease in the receptor and subsequent hormone response. Thus reduced
abundance of the Fuz7 protein in this study may be due to desensitization of a GPCR.

Action of T3 on plasma-membrane transport function
Na+/H+ transporter. The sodium-proton exchanger protein, which is known to play an

important role in non-genomic action of T3 in vertebrates, was among uniquely present

Table 1. (Continued)

Gene accession numbera Name/predicted name of protein T3 (N-SC)Log2 relative expression

BDET_03724 conserved hypothetical protein 1.07

BDET_00078 tubulin alpha-6 chain 1.06

Statistically significant expression at P <0.05.

The values are given as T3 normalized spectral count (N-SC) Log2 relative expression.

To calculate the absolute fold change, the conversion is applied as 2^ (T3 N-SC).
aAs given according to the www.broadinstitute.org.

doi:10.1371/journal.pone.0123637.t001
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Table 2. List of uniquely present proteins in Bd exposed to T3.

aGene accession number Name/predicted name of protein

BDET_00207 conserved hypothetical protein

BDET_00091 conserved hypothetical protein

BDET_00370 hypothetical protein

BDET_00520 hypothetical protein

BDET_00578 cell division protein kinase 2

BDET_00617 diphosphomevalonate decarboxylase

BDET_01201 succinate dehydrogenase iron-sulfur protein

BDET_01306 hypothetical protein similar to glutathione transferase zeta 1

BDET_01576 cytochrome c1, mitochondrial precursor

BDET_01620 hypothetical protein similar to alcohol dehydrogenase superfamily

BDET_01772 leiomodin-1

BDET_02033 ran-specific gtpase-activating protein 1

BDET_02201 peptidyl-prolyl cis-trans isomerase pin1

BDET_02231 hypothetical protein similar to oxidoreductase

BDET_02645 conserved hypothetical protein

BDET_02736 leukotriene A-4 hydrolase

BDET_02989 predicted protein

BDET_03180 hypothetical protein

BDET_03405 conserved hypothetical protein

BDET_03430 ribonuclease p protein subunit p30

BDET_03541 conserved hypothetical protein

BDET_03674 acyl-binding protein

BDET_03762 valyl-tRNA synthetase

BDET_04022 conserved hypothetical protein

BDET_04238 phosphate induced protein

BDET_04676 xanthine dehydrogenase/oxidase

BDET_05174 novel protein containing Initiation factor 2 subunit family domain

BDET_05329 conserved hypothetical protein

BDET_05479 mt-GrpE

BDET_06040 conserved hypothetical protein

BDET_06411 phosphate induced protein

BDET_06369 predicted protein

BDET_06502 crinkler family protein

BDET_06621 acetoacetyl-CoA synthetase

BDET_06834 alanine aminotransferase 2

BDET_07584 Na/H exchanger

BDET_03192 NADH dehydrogenase ubiquinone alpha

BDET_07703 cytochrome oxidase

BDET_07599 conserved hypothetical protein

BDET_08178 cysteinyl-tRNA synthetase

BDET_08421 10 kDa heat shock protein, mitochondrial

BDET_08720 crinkler family protein

aAs given according to the www.broadinstitute.org.

doi:10.1371/journal.pone.0123637.t002
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proteins in Bd exposed to T3. A previous study showed that a sodium-proton antiporter in hu-
mans was regulated by T3 [34]. Sodium-proton exchangers pump Na+ ions either out of cells
or into cells in exchange for H+ [35]. A recent study in two pathogenic species of Candida elu-
cidated the role of a membrane Na+/H+ exchanger in salt tolerance [36]. Since Bd lives in fresh
water environments, the role of Na+/H+ exchanger in this fungus is not very clear. However,
we have observed that a subtilisin-like protease (SSP), one of the possible pathogenicity factors
in Bd, requires sodium ions for its optimal activity [12]. Taken together, our observation sug-
gests that a Na+/H+ transporter (BDET_07584) may be important for Bd SSP function possibly
during pathogenicity.

Ca2+ATPase, Calmodulin and Calreticulin. In eukaryotes, Ca2+ pumps and transporters
have been shown to be important in maintaining the resting cytosolic free Ca2+ concentration
[Ca2+] at very low levels. It has been shown that certain hormones and environmental signals

Table 3. List of proteins that showed 2-fold decrease in Bd exposed to T3.

aGene accession number Name/predicted name of protein T3 (N-SC)Log2 relative expression

BDET_00978 long-chain acyl-CoA synthetase 7 -2.66

BDET_06102 Rpb (RNA-polymerase) -2.54

BDET_07602 rRNA 2'-O-methyltransferase fibrillarin -2.24

BDET_03865 importin beta, transportin -2.09

BDET_00308 conserved hypothetical protein -1.97

BDET_06700 dual specificity protein kinase FUZ7 -1.95

BDET_01880 calreticulin -1.84

BDET_00694 conserved hypothetical protein -1.83

BDET_03549 CTP synthase -1.79

BDET_06886 vacuolar sorting protein -1.59

BDET_08238 shwachman-bodian-diamond syndrome protein -1.59

BDET_03021 conserved hypothetical protein -1.50

BDET_07660 26S proteasome subunit p45 -1.39

BDET_05219 pyrD -1.29

BDET_04706 proline dehydrogenase family protein -1.29

BDET_03460 60S ribosomal protein L2 -1.24

BDET_04352 glutaminyl-tRNA synthetase -1.23

BDET_04880 pullulanase -1.20

BDET_06734 conserved hypothetical protein -1.20

BDET_08256 G-protein beta -1.16

BDET_06205 NAD-dependent epimerase/dehydratase family protein -1.13

BDET_00517 conserved hypothetical protein -1.16

BDET_07664 conserved hypothetical protein -1.00

BDET_02151 conserved hypothetical protein -1.00

BDET_00579 conserved hypothetical protein -1.00

BDET_01641 conserved hypothetical protein -1.00

BDET_08055 26S protease regulatory subunit 8 -1.00

BDET_03232 conserved hypothetical protein -1.00

BDET_00482 polyadenylate-binding protein 1 -1.00

Statistically significant expression at P <0.05.

The values are given as T3 normalized spectral count (N-SC) Log2 relative expression.

To calculate the absolute fold change, the conversion is applied as 2^ (T3 N-SC).
aAs given according to the www.broadinstitute.org.

doi:10.1371/journal.pone.0123637.t003
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cause a surge in Ca2+ concentration which further triggers several downstream signaling pro-
teins such as protein kinase C (PKC) and Ca2+ /calmodulin (CAM)- binding kinases [37], [38].
Several studies have demonstrated the role of Ca2+-modulated signal cascades in biological
processes including, circadian rhythms, differentiation, cell cycle and stress responses in eu-
karyotic cells [39–42].

Our study showed changes in the abundance level of diverse calcium signaling proteins in-
cluding Ca2+ATPase (BDET_ 06015), calmodulin (BDET_04703) and calreticulin
(BDET_01880). We detected a 2-fold increase in abundance of Ca2+ATPase, a calcium pump-
associated enzyme (Table 1). In eukaryotes, this protein is involved in maintaining intracellular
calcium concentration at extremely low levels [43] and the activity of Ca2+ ATPase is moderat-
ed by thyroid hormone [44]. We also detected a 2-fold increase in calmodulin, a cytoplasmic
intracellular Ca2+ binding protein, which is involved in the modulation of plasma membrane
Ca2+ ATPase activity. Calmodulin is also important for the ability of thyroid hormone to en-
hance the activity of this ATPase [45].

As a Ca2+ receptor, calmodulin modulates several intracellular proteins in diverse signaling
pathways [46]. Calmodulin has been reported in zoospores of the aquatic chytrid, Blastocla-
diella emersonii [47]. The Ca2+-calmodulin complex has been shown to play a key role during

Table 4. List of uniquely present proteins in Bd exposed to methanol control.

aGene accession number Name/ predicted name of protein

BDET_05257 oligopeptide transporter opt family

BDET_08499 extracellular elastinolytic metalloproteinase

BDET_04809 pre-mRNA splicing factor

BDET_04728 mrna turnover protein 4 homolog

BDET_03527 hypothetical protein

BDET_02501 hypothetical protein

BDET_06402 hypothetical protein

BDET_02113 conserved hypothetical protein

BDET_04582 multiple coagulation factor deficiency isoform

BDET_00183 TatD Dnase family Scn1

BDET_00782 retinoid dehydrogenase

BDET_01194 zuotin

BDET_01995 RNA polymerase

BDET_02205 cyclophilin

BDET_02773 deoxyhypusine hydroxylase

BDET_03497 transporter SEC 24

BDET_03858 expressed protein

BDET_05019 chromosome segregation protein SudA

BDET_05542 septin

BDET_05655 ARM repeat containing protein

BDET_06581 SCF ubiquitin ligase complex subunit CulA

BDET_06582 cullin-1

BDET_06665 transporter SEC 24

BDET_07485 actin-binding protein

BDET_08328 U2 small nuclear ribonucleoprotein A

BDET_01389 conserved hypothetical protein

aAs given according to the www.broadinstitute.org.

doi:10.1371/journal.pone.0123637.t004
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growth and sporulation in this fungus [48]. The high abundance of calmodulin following T3

treatment in this work suggests its role in maintaining low Ca+ levels in Bd. Additionally, in
fungi; calmodulin has been implicated in stress responses, virulence, and morphogenesis. For
instance, in fungal plant pathogensMagnaporthe grisea and Colletotrichium trifolli, calmodulin
has been shown to be essential for the growth of specialized infection structures known as ap-
pressoria [49], [50]. Thus the increased abundance of calmodulin following T3 exposure sup-
ports a role of this hormone in pathogenicity of the fungus.

Calreticulin is an essential Ca2+ binding protein in the endoplasmic reticulum [51] and is in-
volved in two major functions in the ER lumen including chaperoning and regulation of Ca2+

homoeostasis [52], [53]. Additionally, this protein has been involved in several cellular process-
es such as cell adhesion, migration and signal transduction [54], [55]. Our observation of a de-
crease in abundance of calreticulin in response to T3 implies that the hormone may cause a
significantly reduced Ca2+ storage capacity in the ER in the fungus. Our observation also sug-
gests a role for Ca2+ in physiological changes in Bd including reduced cell motility which may
trigger chitin synthase actively favoring the transition from a wall less, motile zoospore to a
walled sporangium.

Action of T3 on mitochondria
In the current study, we detected a higher abundance of enzymes involved in mitochondrial ox-
idative phosphorylation in the T3 treatment. For example, proteins that are implicated in oxi-
dative phosphorylation including cytochrome c oxidase (BDET_07703) and NADH
dehydrogenase subunit (BDET_03192) are uniquely present following fungal exposure to T3.
We also observed an increase of 2-fold in the F1-ATPase subunit (BDET__07377) in Bd ex-
posed to T3. This observation is consistent with that of mammalian systems where T3 stimu-
lates mitochondrial respiration resulting in increased ATP production.

Fatty acid metabolism
Among the proteins that showed a dramatic increase in expression (3.9-fold change) was the
long chain acyl CoA ligase (BDET_02020). We also found an increased (2.4-fold change) abun-
dance of acyl CoA oxidase (BDET_04753). The role of fatty acid β-oxidation in fungal patho-
genesis is highly suggested by the abundance level of lipid metabolism-associated genes when it
infects its host. Successful fungal pathogens, such as C. albicans utilize proteins for respiratory
catabolism such as long chain acyl CoA ligase and acyl CoA oxidase for efficient nutrient ac-
quisition and energy production in vivo [56]. Abundance of these enzymes in Bd exposed to T3

suggests that the hormone treatment may influence fungal acquisition of nutrients or use fatty
acids as an energy source.

Central carbohydrate metabolic processes
Exposure to T3 also stimulated expression of proteins involved in carbohydrate metabolism. A
protein similar to phosphoglucomutase (BDET_07061) showed a 2.5-fold increase compared
to the control. This protein plays a role in the reversible interconversion of glucose-1-
phosphate to glucose-6-phosphate. In Aspergillus nidulans, phosphoglucomutase has been im-
plicated in asexual development of the fungus [57]. Our observation of an increased expression
of phosphoglucomutase suggests that in response to T3, this protein may aid the fungus in its
developmental processes such as the transition from zoospores to walled reproductive thalli.
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Pathogenicity-associated proteins
Exposure to T3 also showed an increase of seven proteins (BDET_06502, BDET_08720,
BDET_05121, BDET_05116, BDET_05132, BDET_02674, and BDET_02521) that are highly
similar to that of the crinkler family proteins or crinkler-like effectors (CRN) when compared
to the control. Microbial effectors are implicated in the destruction of host defenses and thus
are capable of changing the host cell metabolism [58]. These proteins were assumed to be pres-
ent only in Oomycetes, a significant group of pathogens in fish and plants. In general, CRN ef-
fectors consist of a signal peptide, a translocator domain that helps the entry of CRN proteins
into host cells, and a C-terminal domain that is found to be involved in host protein interac-
tion. These effectors are denoted as crinkler proteins due to their involvement in leaf crinkling
and cell death. Interestingly, Bd causes similar effects on amphibian skin [59]. The possibility
that Bdmight have acquired these genes from Oomycetes through horizontal gene transfer has
been discussed [60]. Our observation suggests that crinkler proteins may play a key role in Bd
virulence and may be regulated by T3. A recent genome-wide study in Bd showed an increased
expression of Bd crinkler and CRN genes in the frog skin. Interestingly, this study also demon-
strated a dramatic expression of CRN genes in the Bd zoospore as compared to reproductive
thalli [61]. Our observation in the current study suggests a comprehensive analysis of CRN
genes in Bd.

In addition to crinkler proteins, we identified proteins that may be implicated in proteolysis
and thus fungal pathogenesis. For example, prolyl endopeptidase (peptidase S9)
(BDET_08575) showed a 9.3-fold increase, aminopeptidase P (peptidase M24) (BDET_01181)
had a 3-fold increase, and the dipeptidyl peptidase III (peptidase M49) (BDET_04424) had a
2.9-fold increase. Additionally, leukotriene A-4 hydrolase (M1) (BDET_02736), was uniquely
present in Bd exposed to T3. Interestingly, these proteases were also identified in a recent study
wherein anuran skin was exposed to supernatant of Bd zoospores which caused disruption of
intercellular junctions in frog skin [62]. Like other successful pathogens, Bdmay use proteases
to modulate immune responses in amphibians. Genomic analysis of Bd has indicated an in-
tense expansion of the fungalysin metallopeptidase and serine peptidase gene families in the
fungus [63]. Serine proteases are important virulence factors in parasites and pathogenic mi-
crobes [64]. Bd-infected Silurana tropicalis showed an increase in expression of serine prote-
ases [15] and a recent in vitro study showed a Bd subtilisin-like serine protease impairs frog
antimicrobial peptides [16]. These observations suggest that these proteases are important in
impairing vertebrate innate immunity. In this study, we identified a dramatic increase in both
metalloprotease and serine peptidase proteins. Thus our study provides further evidence for
proteins that may inhibit innate immune responses in the susceptible host species [13], [15],
[65]. Previous studies with Bd-infected frogs showed a clear down-regulation of adaptive im-
munity in the animals [13], [15]. A recent study demonstrated Bd is capable of impairing host
lymphocyte responses and inducing apoptosis [14]. In another study Ellison et al showed that
Bd-infected frogs had lower expression of many genes involved in adaptive immunity including
B-cell related genes, T-cell markers and many T-cell receptor components [66].

Mechanisms by which fungi cause immunosuppression involve the manipulation of host-
immune receptors [67] and the discharge of toxins [68]. Bdmay release toxic components [69]
that impede immune responses in vitro and these components may be produced from the Bd
cell wall [14]. In this study, we used whole-cell extracts and thus the proteins identified include
mixed life-stages of Bd consisting of both cell walled sporangia and wall-less zoospores. A fur-
ther proteomics study that separates developmental stages of Bd (zoospores and sporangia)
may provide clearer evidence for gene expression changes associated with immunosuppression
caused by Bd.
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Heat shock proteins (Hsps)
In the current study, we observed a significant up-regulation of Bd proteins that are implicated
during survival of stress conditions. These proteins include heat shock proteins Hsp10
(BDET_08421) Hsp 90 (BDET_05222) and Hsp101 (BDET_04470). Hsps are cellular chaper-
ones that play a key role in protein folding homeostasis, revival and degradation of impaired
proteins [70], and in thermo tolerance [71] [72]. Hsp90 is a vital and remarkably conserved
chaperone in all eukaryotes and controls the role and stability of a variety of proteins including
nuclear steroid receptors and protein kinases [73]. A recent study has shown that Hsp90 plays
a key role in regulating morphogenetic switch from yeast to hypha and is temperature depen-
dent [74]. In the case of aquatic chytrid fungus, B. emersonii, the expression of genes encoding
cytoplasmic and endoplasmic reticulum Hsp90 proteins (Hsp90A and Hsp90 B) has been doc-
umented in response to thermal stress [75]. In addition to response to heat shock at 38°C, the
levels of Hsp90A have been increased at physiological temperature (27°C) both during fungal
germination and sporulation. The increase in expression of Hsp90 in our study suggests that
Hsp90 might be involved in the morphological switch from zoospore to thallus. A recent study
reported the up-regulation of several BdHsps including Hsp90 in frogs infected with Bd imply-
ing a role of Hsps under stress conditions [11].

Hsp10, a fungal equivalent of E. coli GroES has been known to function in association with
Hsp60 to form a chaperonin that favors mitochondrial folding [76]. Additionally, Hsp10 has
been shown to have a role in defending cells from various stresses due to infection and inflam-
mation [77],[78]. In pathogenic fungi such as C. albicans, the role of Hsp10 remains unknown.
The significance of the increase of Hsp10 in our study is not clear; perhaps this protein, like in
other eukaryotes, might be involved in mitochondrial protein folding. Hsp101, a member of
Hsp100/ClpB family of chaperones is vital for resistance to high temperature stress. The cyto-
solic Hsp101 in yeast and plants contributes to thermo tolerance [79–81]. It is important to
note that Clp proteins are essential to cells that are not only exposed to heat stress, but also
other forms of environmental stresses. It has been shown that Hsp101 in yeast, in addition to
heat stress confers resistance to chemicals including ethanol and arsenite [82]. The increased
abundance of Hsp101 in our study suggests that exposure to T3 may create chemical stress con-
dition and that Hsp101 may allow Bd to tolerate the host immune response.

Mapman-Mercator pathway analysis
Mapman analysis revealed a high abundance of enzymes that are involved in amino acid bio-
synthesis, suggesting that when Bd is exposed to T3, the fungal cells may require increased pro-
tein synthesis for thallus formation. The transition from zoospore to thallus in Bd is important
for fungal colonization of the host. However, this transition is an energy-expensive process,
which requires a large supply of resources for repeated mitotic cell divisions and cell wall syn-
thesis. Amino acids could conceivably be used as an energy source. During the infection pro-
cess, Bdmust obtain nutrients from its hosts and the fungus may primarily depend on amino
acids generated by proteases. Recent studies have identified and characterized Bd proteases
that may be involved during infection [16], [83]. In addition to serving as a source of carbon
and protein building blocks, amino acids play other roles in fungi. For example, in the case of
Allomyces, certain amino acids play an essential role in making sugars including fructose and
mannose and thus may serve as sources for both carbon and nitrogen [84]. In mammalian sys-
tems, iodothyronines such as T3 are considered as a special class of amino acids from two tyro-
sine residues and that amino acid transporters play a key role in thyroid hormone uptake into
several tissues [85], [86]. Our results indicate that increased amino acid synthesis in the fungus
may further aid in thyroid hormone transport.
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Analysis of central metabolic pathways showed a variation in protein abundance changes
for those proteins involved in the tricarboxylic acid (TCA) cycle. For example, succinate dehy-
drogenase (SDH) was found in relative abundance, while malate dehydrogenase (MDH) was
less abundant in Bd following its exposure to T3. The enzymes implicated in the glycolytic
pathway were found to be up-regulated. It was also observed that the enzymes involved in the
glyoxylate cycle including malate synthase (MS) and isocitrate lyase (ICL) were up-regulated in
Bd following its exposure to T3. The glyoxylate cycle is involved in lipid metabolism and in
fungi is a peroxisome-associated process. In Bd, as zoospores are released from the zoosporan-
gium, they contain several lipid globules that are partly surrounded by the microbody, a key
characteristic of Bd [3]. The lipids present in the zoospores might be broken down using the
beta-oxidation pathway present on the peroxisome. These degradation products might be fur-
ther processed through the glyoxylate cycle to maintain growth of new sporangia. A similar ob-
servation was also made in a nematode-trapping fungus, Arthrobotrys oligospora [87]. Using
proteomics and genomics approaches, Yang and coworkers demonstrated the up-regulation of
these enzymes in A. oligospora in response to nematode extract [87]. A previous study has
demonstrated that glyoxylate cycle is essential for fungal virulence [88]. Additionally, our cur-
rent study is consistent with that of C. albicans in that while the fungus infects macrophages,
these key enzymes were found to be up- regulated [89].

In summary, the proteomics data described in our study help to understand cellular re-
sponses of Bd following its exposure to a host-derived morphogen. This response relies on the
expression of a particular group of proteins or genes allowing the fungus to adapt to its envi-
ronment. Our results implicate proteins involved in metabolism and energy, protein fate, trans-
port, stress responses and pathogenesis in Bd that respond to exposure to T3. These
observations provide a basis for further experimental exploration.
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