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Abstract

Many biological processes are regulated by molecular devices that respond in an ultrasensitive 

fashion to upstream signals. An important question is whether such ultrasensitivity improves or 

limits its ability to read out the (noisy) input stimuli. Here, we develop a simple model to study the 

statistical properties of ultrasensitive signaling systems. We demonstrate that the output sensory 

noise is always bounded, in contrast to earlier theories using the small noise approximation, which 

tends to overestimate the impact of noise in ultrasensitive pathways. Our analysis also shows that 

the apparent sensitivity of the system is ultimately constrained by the input signal-to-noise ratio. 

Thus, ultrasensitivity can improve the precision of biochemical sensing only to a finite extent. This 

corresponds to a new limit for ultrasensitive signaling systems, which is strictly tighter than the 

Berg-Purcell limit.

I. INTRODUCTION

A wide variety of biological processes are controlled by switchlike sensors that are highly 

sensitive to specific stimuli. For example, Escherichia coli chemotaxis is driven by multiple 

flagellar motors, which spin clockwise or counterclockwise under the regulation of CheY-P. 

Recent experiments revealed that bacterial motors exhibit an ultrasensitive response (with a 

Hill coefficient of ~10) to CheY-P concentrations [1]. Another example is the mitogen-

activated protein kinase (MAPK) cascade, a well-conserved signaling module controlling 

cell fate decisions [2,3]. For instance, the MAPK pathway in Xenopus oocytes converts the 

concentration of specific hormones into an all-or-none response (oocyte maturation), with a 

Hill coefficient of at least 35 as estimated in Ref. [3]. Obviously, this ultrasensitivity allows 

small changes in the input cues to induce dramatic functional effects. As biochemical signals 

often fluctuate over time due to inherent stochasticity, signaling noise poses a limit to the 

capacity of concentration sensing. Does ultrasensitivity help the system to read out the input 

signal? Or does it amplify the input noise to the extent that it corrupts the precision of 

concentration measurement? What are the general constraints for biochemical sensing? 

These are the key questions we attempt to address here.

There has been significant interest to understand how signaling noise limits the accuracy of 

biochemical sensing [4–16]. In 1977, Berg and Purcell argued that the physical limit to 
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concentration measurements is set by the dynamics of their random arrival at target locations 

[4]: For a single sensor of linear size a, the precision of concentration measurements is 

, where c is the concentration of the molecules interacting with the sensor, 

D is the diffusion constant of the molecules, and T is the measurement time. The Berg-

Purcell limit was later generalized to an array of sensors [5,6] and the precision of 

biochemical sensing was again found to be limited by the molecular counting noise, 

independent of the number or the sensitivity of sensors. More recent studies have extended 

the problem of concentration sensing to more sophisticated tasks such as spatial and 

temporal gradient sensing [8–12] and have explored possible mechanisms that beat the Berg-

Purcell limit [14,15].

The interplay between ultrasensitivity and noise is intriguing, as small variations in the input 

may cause large output differences. However, the nonlinearity of ultrasensitive systems 

makes theoretical progress difficult. Previous studies usually assume that the fluctuation is 

small such that one can linearize the input noise in the chemical Langevin equation [17–19] 

or in the fluctuation-dissipation analysis [20]. This small noise approximation allows for 

analytical treatment but may not correctly capture the impact of noise or the sensing capacity 

of ultrasensitive systems. In this paper, we present a simple model consisting of multiple 

ultrasensitive sensors that measure a (noisy) input signal. We explicitly derive the upper and 

lower bounds for the output sensory noise. In contrast to the additive noise rule derived 

earlier [17,18,20], our result shows that the output noise is strictly bounded. We further show 

that the apparent sensitivity of the system is also constrained by the input signal-to-noise 

ratio. As a result, we find a fundamental limit to biochemical sensing for arbitrarily 

ultrasensitive systems. This new limit is strictly tighter than the Berg-Purcell limit and can 

be applied to both Poisson and non-Poisson input signals.

II. MODEL

The input of our model refers to a biochemical signal, X(t), which is fluctuating over time 

around a mean level. The input fluctuations may arise from, for example, the random birth 

(synthesis) and death (decomposition) of molecules. Without loss of generality, this input 

can be described by the following Langevin equation [21]:

(1)

where the parameter τx sets the time scale over which the input signal reverts to its mean 

level c. To prevent X(t) from being negative [21], the stochastic term in Eq. (1) is assumed to 

satisfy 〈η(X,t)〉 = 0 and 〈η(X,t)η(X′,t′)〉 = σ2X(t)δ(t − t′). In steady state, the input signal is 

found to follow the Gamma distribution:

(2)
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with the shape parameter α ≡ 2c/(τxσ2) and the rate parameter β ≡ 2/(τxσ2). By Eq. (2), the 

stationary variance of X(t) is given by  and thus the Fano factor is simply 

 (the scale parameter). By tuning τx or σ, Eq. (1) can be used to describe both 

Poisson (β = 1) and non-Poisson (β ≠ 1) fluctuations. We also observe that . So 

the shape parameter α can be interpreted as the signal-to-noise ratio. For most biological 

systems, it is expected that α ≫ 1 and hence the zero point is inaccessible, i.e., p(X = 0) = 0, 

by Eq. (2). As a common example, the input signal X(t) may refer to the number of 

molecules diffusing in an open volume. This can be described in our model by setting β = 1 

(Poisson noise) such that α = c, which denotes the average number of molecules in the 

volume.

The output of our model contains N identical receptors, which independently bind the 

chemical ligands and switch between the on and off states. As a first step, we assume that 

these receptors are so close to each other in space that they experience the same local 

concentration. In this scenario, the effect of ligand diffusion is negligible. Since all the 

receptors are regulated by the same noisy input signal, they can be correlated. A good 

example could be multiple bacterial motors under the regulation of CheY-P in the same E. 
coli. Given the small size of bacteria, it could be a reasonable approximation to assume that 

all the motors experience the same CheY-P signal. In our general model, the switching 

process is governed by X(t) through the input-dependent transition rates k+(X) and k−(X), 

which may be inferred from experiments. We denote the state of the ith sensor by Yi(t), 
which equals 1 (or 0) for the on (or off) state at time t. In many biological sensory systems, 

the input-output relationship exhibits ultrasensitivity and can be described by a Hill 

equation. In the deterministic case, this means

(3)

where h is the Hill coefficient describing the degree of the sensitivity and Kd is the 

dissociation constant at which f(Kd) = 1/2. Equation (3) constrains the possible forms of 

k±(X). For example, if the sensor has a constant off rate k− = 1/(2τy), then the on rate has to 

be k+(X) = (2τy)−1 (X/Kd)h. This can be a coarse-grained model for the cooperative binding 

of transcriptional factors to a DNA promoter [19]. Another possible scheme is 

 and , which is appropriate for modeling the 

cooperativity of bacterial flagellar motors [22,23]. Different phenomenological forms of 

k±(X) have been studied in the model but do not alter our main results or conclusions given 

that the receptor time scale is sufficiently short. For convenience, we only report the results 

for the case of k+(X) = (2τy)−1 (X/Kd)h and k− = (2τy)−1, which at h = 1 recovers the model 

we recently solved [21].

In the deterministic case (σx → 0), each sensor follows the simple telegraph process, which 

has an autocorrelation time equal to 1/[k+(X) + k−] = τy at X = Kd. Thus, τy sets the sensor’s 

time scale and is assumed to be much shorter than the input correlation time, τx. Only in this 
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scenario can the (slow) input noise appreciably affect the switching statistics of (fast) 

sensors [17,18,21–24]. The presence of input noise will change the observed input-output 

relationship, making the average output 〈Yi〉 deviate from f(〈X〉 = c), as shown in Fig. 1(a). 

Nonetheless, the input-output relationship can still be approximated by a new Hill equation:

(4)

where the apparent Hill coefficient h̃ is the observed sensitivity that is less than the intrinsic 

Hill coefficient h. Numerically, it is found that the value of h̃ decreases with the Fano factor 

 [Fig. 1(a)]. For a given Fano factor (fixed β), h̃ increase with h but tends to saturate as 

h → ∞. We will return to explore this issue later on.

III. RESULTS

A. Bounds on the output noise

Many biological sensing functions can be translated into the task of inferring the mean input 

level c from the observable output signal {Y1(t), …, YN(t)} over a finite time T. The 

statistical quantity of interest is:

(5)

which converges to a Gaussian distribution by the law of large numbers [Fig. 1(b)]. So we 

need to consider only the first two moments of ZT. As sensors are identical, we expect that 

〈ZT〉 = 〈Yi〉 = f̃(c), with the variance . As different sensors 

experience the same input fluctuations, their switching events are correlated. We define the 

covariance  for i ≠ j and the correlation coefficient . With the 

notation Δt = t − t′, we can evaluate the variance of ZT as follows,

(6)

where  and  denote the normalized 

autocorrelation and cross-correlation functions. In the last step of Eq. (6), we have 

introduced the following time-averaging factors:
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(7)

(8)

and used the approximation, (Δt) ≈ ρ · (Δt), with the insight that the output sensors 

should become uncorrelated as the input signal loses memory over time. This approximation 

has been verified by simulating the time traces of two sensors and calculating their 

correlation functions [Fig. 2(a)]. The correlation coefficient ρ between the output traces 

increases with the intrinsic sensitivity h and the relative noise level σx/c [Fig. 2(b)]. This can 

be seen by the assumption that all the receptors see the same slowly fluctuating input and by 

the use of small noise approximation: , 

which leads to

(9)

Accordingly, Eq. (6) may be approximated as

(10)

which is similar to the additive noise rule obtained in the previous literature [17,18,20]. 

However, it is worth noting that ρ is strictly bounded by one and cannot always scale as h2 

or (σx/c)2, as shown in Fig. 2(b). Thus, Eq. (10) tends to overestimate the effect of input 

noise in ultrasensitive systems and even explodes when h → ∞.

The input X(t) has an exponential  with correlation time τx. This allows us to calculate that

(11)

For T ≫ τx, we have . Though there may be no analytical expression for , we 

can find its bounds. As shown in Fig. 2(a), the correlation functions satisfy a general 

inequality:  <  <  for any time lag Δt. It is intuitive that the autocorrelation should 

always be larger than the cross correlation (i.e.,  > ). The relation  <  follows from the 
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condition τy ≪ τx and is valid regardless of the sensitivity h or the noise level σx/c [Figs. 

2(c)–2(d)]:  is dominated by the sensor’s intrinsic time τy over short time scales and by the 

input correlation time τx over long time scales; for Δt ≫ τy, (Δt) decays exponentially at 

the same rate as  does [Fig. 2(a)]. Since  ≈ ρ · , the above inequality implies that ρ · 

<  <  and therefore . As a result, the variance  in Eq. (6) must satisfy

(12)

This is one of our key results for biochemical sensing. Intuitively, as correlations between 

receptors arise only from the input fluctuations, the total noise of sensors should be limited 

by the input correlation property ( ). Moreover, the more correlated the receptors are (i.e., 

larger ρ), the less efficient they are in averaging out the output noise. In the absence of input 

noise (ρ = 0), Eq. (12) reduces to , indicating that  could be arbitrarily 

small as N → ∞. However, the presence of input noise will induce correlations between 

sensors and thus reduce the capability of population averaging, leading to a lower bound on 

the output noise. As ρ → 1, all the sensors perfectly synchronize their switchings and Eq. 

(12) suggests that , independent of N. We can define the effective number of 

sensors,

(13)

which increases with N but saturates (Neff ≤ 1/ρ). Obviously, the lower bound in Eq. (12) is 

achieved as N → ∞. To verify the upper bound, we numerically generate thousands of 

sample points of ZT for various parameter sets. The sample variance  for different N, h, 

or σx/c is indeed within the theoretical bounds and tends to saturate as the input noise 

increases (Fig. 3).

We can derive an intuitive understanding of Eq. (12) by considering the limit τy → 0, under 

which the sensors switch extremely fast such that the state of each sensor at any time can be 

regarded as a Bernoulli random variable:

(14)

where f(X(t)) denotes the instantaneous probability to find the ith sensor being in the on 

state at time t. In this case,  represents the instantaneous correlation coefficient 

between two sensors. The variance of  is found to be:
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(15)

As τz ≈ τx when τy → 0, we have  which recovers the upper bound in 

Eq. (12).

B. Limit on the apparent sensitivity

As we mentioned before, in the presence of input noise, the apparent Hill coefficient (h ̃) 
increases with the intrinsic Hill coefficient (h) and tends to saturate as h → ∞. Indeed, there 

exists a limit on h̃, denoted by h̃∞, which can be obtained by taking the limit h → ∞ and τy 

→ 0. In this scenario, every sensor behaves as an indicator function:

(16)

The expectation of Yi is simply the tail distribution of the gamma probability density Eq. 

(2), i.e.,

(17)

where Γ(α,βKd) is also known as the regularized (upper) gamma function. Given an input 

distribution (fixed α and β), one can change Kd to probe the input mean level, c = α/β, with 

a sensitivity given by

(18)

This function reaches the maximum at . Therefore, for α = βc ≫ 1, the sensor is 

most sensitive near c = Kd. Alternatively, for a given indicator sensor with fixed Kd, we can 

change c (with fixed β) to examine at which level of c the sensor is most sensitive to the 

input signal. By symmetry, the maximum sensitivity should be achieved around c* = Kd + 1/

β. As shown in Fig. 4(a), the input-output relationship f̃(c) = Γ(βc,βKd) can be approximated 

by a Hill equation, , with the limit Hill coefficient given by

(19)
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Clearly, h̃∞ is determined by both the scale parameter β of the input distribution and the 

location parameter Kd of the sensor [Fig. 4(b)]. The factor of 4 in Eq. (19) arises from the 

fact that the maximum of the derivative of a Hill equation (with the Hill coefficient h) is 

given by h/4. The input signal-to-noise ratio at c* is α* = βc* = (c*/σx)2. So we have that 

βKd = βc* − 1 = α* − 1. Using the asymptotic formula  for x ≫ 1, we 

can rewrite Eq. (19) as

(20)

which increases with the signal-to-noise ratio α* of the input near c = Kd [Fig. 4(b)]. The 

asymptotic scaling,  by Eq. (20), suggests that h̃∞ is constrained by the 

relative intensity of input noise.

The above analysis suggests that, for any ultrasensitive sensors, the apparent sensitivity h̃ 

read from the input-output response is always bounded by the limit Hill coefficient, i.e., h̃ < 

h ̃∞. We have numerically tested this inequality in various parameter regimes and found that 

h̃ < h̃∞ holds in general [Fig. 5(a)]. It is also worth remarking that the above argument or 

conclusion does not depend on how we model the input process. The general limit h̃ < h̃∞ 
can be similarly obtained when assuming a different input distribution (e.g., a Poisson 

distribution).

C. General limit to biochemical sensing

The mean input level c is encoded by the output sensory signal. By the law of large numbers, 

the statistic Z̄
T should converge to . Thus, a good estimator of c 

can be found by inverting Z̄
T = f̃(c). When the integration time T is sufficiently large, the 

output noise  can be small enough so that one can use the error propagation formula to 

examine the accuracy (δc/c) of this estimator. By further using Eq. (12), we have that

(21)

where . Equation (21) shows that ultrasensitivity (h̃) could help the 

system read out the input level. However, this effect is limited due to the constraint h̃ < h̃∞. 

Interestingly, increasing the intrinsic Hill coefficient h increases the sensitivity (h̃), which 

tends to reduce the sensing error, but with fluctuations in the input it also increases the 

correlations between receptors (ρ) and hence decrease the effective number of sensors (Neff), 

which tends to raise the sensing error. This tradeoff demonstrates the interplay between the 

sensitivity and the efficiency of sensors when the input is noisy. From numerical 
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experiments, it is also found that the sensing error overall decreases with increasing h but 

saturates as h → ∞, as can be seen in Fig. 5(b).

Is there some fundamental limit to biochemical sensing? If the input is directly observable 

and we estimate the mean concentration from the sample X(t) over a time window T, then 

the total variance is  and the sensing limit is . If X(t) 
is not directly observable and the mean level c has to be inferred from some output, then the 

actual sensing error must be larger than the sensing limit, i.e.,

(22)

This inequality sets the lower bound for the measurement error in biological sensing 

systems. This lower bound is solely determined by the input properties (σx, c, and ). In 

fact, the general inequality Eq. (22) can easily recover the Berg-Purcell limit. When X(t) 
refers to the number of molecules diffusing (with diffusion coefficient D) in an open volume 

of radius R, the input correlation time is [4]: , which is the typical time for 

molecules within the volume to be renewed by diffusion. For T ≫ τx, we also have 

. The number of molecules in this volume is a Poisson random variable, 

satisfying (σx/c)2 = 1/c where c ≡ 4π R3c̄/3 is the average number of molecules in the 

volume with c̄ denoting the mean concentration. Plugging all these results into Eq. (22) leads 

to the following inequality,

(23)

which recovers the Berg-Purcell limit for the perfect monitor that counts the number of 

molecules inside itself [4]. According to Eq. (23), no matter how many or how sensitive 

receptors are used, the sensing error is always bounded from below by the counting noise. In 

fact, one can view Eq. (22) as a generalized form of the Berg-Purcell limit, as it can be 

applied to both Poisson and non-Poisson process.

Unlike the perfect monitor, an ultrasensitive sensor usually responds only to a narrow range 

of the input signal. Such sensors are able to provide accurate measurements near Kd, but 

become insensitive to the stimuli away from Kd. The Berg-Purcell limit does not capture 

such locally sensitive property, whereas our Eq. (21) does. One can obtain valuable insights 

by considering the extreme scenario where each sensor behaves as an indicator function Eq. 

(16). In this limit, we have ρ → 1, Neff → 1, and h̃ → h̃∞ such that Eq. (21) becomes
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(24)

where . For βc ≫ 1, we have  at c = Kd.

Comparing Eq. (24) with Eq. (22), one can see that if h̃∞ were larger than , then the 

sensing limit given by Eq. (24) would be able to beat the fundamental limit Eq. (22) at c = 

Kd. However, using Eq. (19), one can verify that the inequality  always holds 

for βKd > 1. By Eq. (20), we have that

(25)

In other words, the sensing error (δc/c) by an indicator sensor near Kd is roughly 25% higher 

than the sensing limit of a perfect monitor. This can be understood as the information gained 

by an infinitely sensitive receptor (h → ∞) is still less than the information collected by the 

perfect monitor, which records everything.

The above arguments lead to a new sensing limit near Kd for ultrasensitive systems:

(26)

Figure 6 gives a numerical comparison of the lower bound of δc/c in Eq. (26) to that in Eq. 

(22). One can see that our newly derived sensing limit (dashed red line) is strictly larger than 

the Berg-Purcell limit (solid blue line). Interestingly, the presence of input noise helps 

increase the dynamic range of sensing: without the input noise, the ultrasensitive receptor 

would be very precise at c = Kd, but almost useless elsewhere; the presence of noise 

effectively increases the accuracy of signaling in the neighborhood of Kd. We also plot in 

Fig. 6 the upper bound (dotted green line) of δc/c given by Eq. (21) for a single sensor (N = 

1) with the apparent Hill coefficient h̃. The key implication of the above theoretical 

arguments is that, for a sensor with known Kd and the apparent sensitivity h̃, its accuracy of 

biochemical measurements near Kd should be bounded as follows:

(27)

The above simple inequality has been tested by numerical simulations (black symbols in Fig. 

6).
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IV. CONCLUSION

In conclusion, we have presented results, both analytical and numerical, for biochemical 

sensing in ultrasensitive systems. First, we demonstrate that biochemical noise does not 

accumulate additively but is largely limited by the noise-induced correlated property of 

ultrasensitive sensors. This contrasts with previous belief from the linear-noise 

approximation, which tends to exaggerate the impact of the input noise. Second, we show 

that the input noise also constrains the apparent sensitivity of the system. Thus, although 

ultrasensitivity is able to improve the sensing accuracy, it cannot beat the physical limit set 

by the molecular counting noise. Finally, our analysis leads to a sensing limit for 

ultrasensitive systems, which is more appropriate for ultrasensitive signaling systems. In 

sum, the results we present in this paper provide insights about the interplay between noise 

and ultrasensitivity in biochemical signal detection.

Acknowledgments

We would like to thank Yuhai Tu, David A. Kessler, and two anonymous referees for all the valuable comments in 
the earlier stage of this work. This work was supported by the National Science Foundation (NSF) Grant No. 
DMS-1068869, by the National Institutes of Health (P01 GM078586), and by the NSF Center for Theoretical 
Biological Physics (Grant No. NSF PHY-1308264). H.L. was also supported by the CPRIT Scholar program of the 
State of Texas.

References

1. Cluzel P, Surette M, Leibler S. Science. 2000; 287:1652. [PubMed: 10698740] 

2. Huang CY, Ferrell JE. Proc Natl Acad Sci USA. 1996; 93:10078. [PubMed: 8816754] 

3. Ferrell JE, Machleder EM. Science. 1998; 280:895. [PubMed: 9572732] 

4. Berg HC, Purcell EM. Biophys J. 1977; 20:193. [PubMed: 911982] 

5. Bialek W, Setayeshgar S. Proc Natl Acad Sci USA. 2005; 102:10040. [PubMed: 16006514] 

6. Bialek W, Setayeshgar S. Phys Rev Lett. 2008; 100:258101. [PubMed: 18643705] 

7. Wang K, Rappel W-J, Kerr R, Levine H. Phys Rev E. 2007; 75:061905.

8. Rappel W-J, Levine H. Phys Rev Lett. 2008; 100:228101. [PubMed: 18643461] 

9. Endres RG, Wingreen NS. Proc Natl Acad Sci USA. 2008; 105:15749. [PubMed: 18843108] 

10. Hu B, Chen W, Rappel W-J, Levine H. Phys Rev Lett. 2010; 105:048104. [PubMed: 20867888] 

11. Hu B, Chen W, Rappel W-J, Levine H. Phys Rev E. 2011; 83:021917.

12. Mora T, Wingreen NS. Phys Rev Lett. 2010; 104:248101. [PubMed: 20867338] 

13. Skoge M, Meir Y, Wingreen NS. Phys Rev Lett. 2011; 107:178101. [PubMed: 22107586] 

14. Endres RG, Wingreen NS. Phys Rev Lett. 2009; 103:158101. [PubMed: 19905667] 

15. Govern CC, ten Wolde PR. Phys Rev Lett. 2012; 109:218103. [PubMed: 23215617] 

16. Kaizu K, de Ronde W, Paijmans J, Takahashi K, Tostevin F, ten Wolde PR. Biophys J. 2014; 
106:976. [PubMed: 24560000] 

17. Shibata T, Fujimoto K. Proc Natl Acad Sci USA. 2005; 102:331. [PubMed: 15625116] 

18. Tanase-Nicola S, Warren PB, ten Wolde PR. Phys Rev Lett. 2006; 97:068102. [PubMed: 
17026206] 

19. Lu T, Ferry M, Weiss R, Hasty J. Phys Biol. 2008; 5:036006. [PubMed: 18698117] 

20. Paulsson J. Nature (London). 2004; 427:415. [PubMed: 14749823] 

21. Hu B, Kessler DA, Rappel W-J, Levine H. Phys Rev E. 2012; 86:061910.

22. Park H, Oikonomou P, Guet CC, Cluzel P. Biophys J. 2011; 101:2336. [PubMed: 22098731] 

23. Hu B, Tu Y. Phys Rev Lett. 2013; 110:158703. [PubMed: 25167320] 

24. Hu B, Kessler DA, Rappel WJ, Levine H. Phys Rev Lett. 2011; 107:148101. [PubMed: 22107236] 

Hu et al. Page 11

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2015 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 1. 
(Color online) (a) The input-output relationship 〈Yi〉 versus 〈X〉 = c. The output 〈Yi〉 
obtained from simulations (symbols) can be approximated by the Hill function f̃(c) with the 

apparent Hill coefficient h̃ depending on the Fano factor . (b) The distribution of ZT in a 

simulation with τy = 1, τx = 10, and T = 100. The solid red line is the fitting of a Gaussian 

distribution (with standard deviation 0.11).
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FIG. 2. 
(Color online) (a) The correlation functions , , and  versus the time lag Δt. Parameters 

used in this simulation: h = 5, c = Kd, σx/c = 0.2, τy = 1, and τx = 10. (b) The correlation 

coefficient ρ versus the Hill coefficient h for different levels of input noise σx/c. (c)  < , 

regardless of h. (d)  < , regardless of σx/c.
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FIG. 3. 

(Color online) (a)  versus σx/c for a single sensor with h = 5 and h = 10. In these 

simulations, we used τy = 1, τx = 10, and T = 100. By Eq. (12), the upper bound of  for 

N = 1 is  at c = Kd. (b)  versus σx/c for two sensors (N = 2) with h = 10 at c 

= Kd. Here, the upper and lower bounds of  are  and , respectively. 

Both bounds (dotted lines) depend on the correlation coefficient ρ which is shown in Fig. 

2(b).

Hu et al. Page 14

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2015 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 4. 
(Color online) (a) The input-output relationship, 〈Yi〉 = Γ(βc, βKd), can be approximated by 

the Hill equation, , with h̃∞ given by Eq. (19). (b) The limit Hill 

coefficient, h̃∞, as a function of the signal-to-noise ratio α* = βc* = (c*/σx)2 at c* = Kd + 1/β 
for fixed β = 1.
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FIG. 5. 
(Color online) (a) h̃ versus h for two different values of β: β = 1 (solid red line) and β = 1/3 

(dashed blue line). (b) δc/c versus h at c = Kd for β = 1 (solid red line) and β = 1/3 (dashed 

blue line). The dotted lines correspond to the limit values of h̃ in (a) and δc/c in (b) under the 

limit h → ∞. We have used Kd = 100, τy = 1, τx = 10, and T = 100 in numerical 

simulations.
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FIG. 6. 
(Color online) A numerical comparison between the lower bound (solid blue line) in Eq. 

(22) and the lower bound (dashed red line) in Eq. (26). The dotted green line corresponds to 

the upper bound of δc/c in Eq. (21) for a single sensor (N = 1) with h̃ = 10. The black 

symbols represent the Monte Carlo simulation results of δc/c by a sensor with the apparent 

sensitivity h̃ ≈ 10 under the Poisson noise (i.e., β = 1) at different mean concentration levels. 

The sensing error δc/c was calculated using the error propagation formula in Eq. (21). These 

black symbols fall between the bounds as indicated by Eq. (27). Other parameters used here 

include Kd = 100, τy = 1, τx = 10, and T = 100.
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