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ABSTRACT Fluorescence correlation spectroscopy (FCS) methods are powerful tools for unveiling the dynamical organiza-
tion of cells. For simple cases, such as molecules passively moving in a homogeneous media, FCS analysis yields analytical
functions that can be fitted to the experimental data to recover the phenomenological rate parameters. Unfortunately, many
dynamical processes in cells do not follow these simple models, and in many instances it is not possible to obtain an analytical
function through a theoretical analysis of a more complex model. In such cases, experimental analysis can be combined with
Monte Carlo simulations to aid in interpretation of the data. In response to this need, we developed a method called FERNET
(Fluorescence Emission Recipes and Numerical routines Toolkit) based on Monte Carlo simulations and the MCell-Blender
platform, which was designed to treat the reaction-diffusion problem under realistic scenarios. This method enables us to set
complex geometries of the simulation space, distribute molecules among different compartments, and define interspecies reac-
tions with selected kinetic constants, diffusion coefficients, and species brightness. We apply this method to simulate single- and
multiple-point FCS, photon-counting histogram analysis, raster image correlation spectroscopy, and two-color fluorescence
cross-correlation spectroscopy. We believe that this new program could be very useful for predicting and understanding the
output of fluorescence microscopy experiments.
INTRODUCTION
Fluorescence correlation spectroscopy (FCS) methods (1–7)
are widely used to explore the dynamics of biological pro-
cesses (8). FCS consists of the analysis of intensity fluctua-
tions caused by fluorescently labeled molecules moving
through the small observation volume of a confocal or
two-photon excitation microscope. Since the temporal win-
dow of these fluctuations is given by the processes that
determine the mobility of the molecules and their photophy-
sics, this technique has been extensively applied to study
diffusion, transport, chemical reactions, etc. (reviewed in
Elson (9)). Analysis of fluorescence intensity fluctuations
also provides the local concentration of fluorescent mole-
cules and their brightness, which can be used to detect the
formation of molecular complexes (10,11). The great inno-
vations made in fluorescence fluctuation measurements will
probably produce new and useful approaches to be applied
to an increasingly wide range of subjects (8).

For simple cases, such as molecules following Brownian
motion, FCS analysis yields analytical functions that can be
fitted to the experimental data to recover the phenomenolog-
ical parameters (e.g., diffusion coefficients and chemical
rate constants). Unfortunately, many dynamical processes
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in cells do not follow these simple models, and in many in-
stances it is not possible to obtain an analytical function
through a theoretical analysis of a more complex model
(9). In such cases, the analysis can be combined with Monte
Carlo simulations (for example, see Dix et al. (12) and the
SimFCS program from the Laboratory for Fluorescence
Dynamics, University of California, Irvine (UCI), Irvine,
CA; http://www.lfd.uci.edu/globals/). A comparison of
experimental data and the predictions of a reduced, simu-
lated model could provide important clues about the dynam-
ical processes hidden in the FCS data.

Most of the Monte Carlo methods used to simulate FCS
experiments consist of ad hoc tools designed for specific
scenarios, which makes it difficult for an inexperienced
user to adapt the routine to a different situation. Moreover,
these routines usually assume homogeneous systems and
do not allow inclusion of a user-defined geometry (12,13),
which is necessary to describe, for example, the complex
architecture of cells.

In this work, we present FERNET (Fluorescence Emis-
sion Recipes and Numerical routines Toolkit), a new, to
our knowledge, toolkit we designed to simulate the output
of a variety of FCS-based techniques in user-defined sce-
narios. This program works in combination with the
MCell-Blender platform (14–16), which was designed
to treat the reaction-diffusion problem under realistic
http://dx.doi.org/10.1016/j.bpj.2015.04.014
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scenarios. The program can be used on standard desktop
computers with no special hardware requirements, and
allows the user to define the architecture of the space and re-
actions among species, opening up a wide range of possible
simulation scenarios. We believe that this new program will
be useful for predicting and interpreting the output of fluo-
rescence fluctuation experiments.
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FIGURE 1 (A and B) Schematic representation of the MCell-FERNET

workflow (A) and FERNET routine (B).
MATERIALS AND METHODS

Simulation of dynamical processes

MCell is a tool that was designed to capture the complexity involved in bio-

logical processes such as signaling and metabolic pathways, which include

interactions between various components in solution and/or in structures.

This program has several advantages with respect to other simulation tools

because the standard approximation for reaction-diffusion systems ignores

the discrete nature of the reactants and the stochastic character of their in-

teractions, whereas techniques based on the chemical master equation, such

as the Gillespie algorithm (17), assume that at each instant the particles are

uniformly distributed in space.

The MCell package (http://mcell.org) includes optimized routines to sup-

port Brownian dynamics to model the diffusion of individual molecules in

volumes or surfaces, ray tracing of random walk motion vectors to detect

collisions among molecules, ray marching to propagate rays after colli-

sions, and Monte Carlo probabilities to decide which collisions lead to re-

action events (14–16). The particles move diffusively and it is assumed that

if a reaction exists, it follows a Poisson process and happens instanta-

neously. This allows one to decouple the reaction event from the diffusive

motion of the particle. The time step of the algorithm is determined such

that only single particles or pairs of particles have to be considered, avoid-

ing complex reaction rules.

To deal with the definition of the complex environment for the simula-

tion, MCell is combined with CAD program Blender (http://www.

blender.org) using the CellBlender plugin. Blender provides a broad spec-

trum of modeling, texturing, lighting, animation, and video postprocessing

functionalities in one package. The combination of these tools allows one to

create realistic 3D scenarios that can be used to simulate the complexity of

the underlying biological processes.
Obtaining fluorescence intensity traces with
FERNET

FERNET generates fluorescence intensity traces and images from MCell

simulations according to the algorithm schematized in Fig. 1. For the sim-

ulations presented in this work, we considered a Gaussian confocal volume;

however, the size of the observation volume can be easily modified, as indi-

cated in File S1 in the Supporting Material. At every simulation time step,

the program evaluates the position of each particle and calculates the prob-

ability of emission (g) as follows (5):

gðx; y; zÞ ¼ exp

 
�2
�ðx � x0Þ2 þ ðy� y0Þ2

�
u2

xy

þ�2ðz� z0Þ2
u2

z

!
;

(1)

where uxy and uz are the radial and axial waists of the point spread function

(PSF), respectively, and (x , y , z ) is the center of the confocal volume.
0 0 0

To determine whether the molecule is excited, the value of g is compared

with a random number between 0 and 1; if the former is greater, the mole-

cule is considered to be promoted to an excited state. To determine whether
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the excited molecule emits photons, a random number between 0 and 1 is

compared with the value of q, defined as q¼ ε
0, k, where ε0 is the molecular

brightness (in counts per second per molecule) and k is the dwell time be-

tween emission events. The molecule emits if the random number is higher

than q. The user can set the values of ε and k as desired; we included as

default parameters ε0 ¼ 105 cpsm and k ¼ 200 ns (12).

To determine the number of photons emitted by the molecule during the

sampling time set by the user (ts), the program repeats this last step ts/k

times, assuming that the position of the simulated molecule is approxi-

mately constant during ts. This statement may not be true for fast-moving

molecules; therefore, the program compares ts with the mean residency

time for the fastest molecule (tD): if tD < 10 ts, the program suggests

that ts be modified to correctly sample the simulated system.

This procedure is repeated with all of the molecules at every simulation

time step, and the intensity trace is then calculated by adding up the photons

emitted by the molecules at each time step.

To ensure that the fluorescence experiments were simulated in the equi-

librium condition, we first ran MCell, let the system evolve to equilibrium,

and set the obtained concentration of the species as initial parameters for the

MCell-FERNET routine.
Correlation functions and photon-counting
histogram analysis

Correlation functions and photon-counting histograms (PCHs) were calcu-

lated from the simulated intensity traces using specific correlation software

(SimFCS; Laboratory for Fluorescence Dynamics, UCI) or custom-made

MATLAB (The MathWorks, Natick, MA) routines.

The correlation function was calculated as

GijðtÞ ¼
�
dIiðtÞ , dIjðt þ tÞ��

IiðtÞIjðtÞ
� ; (2)
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where dI(t)¼ I(t)�<I(t)> represents the fluctuation of the intensity (I), the

brackets indicate the time average, and t is the lag time. The subscripts i and

j refer to the detection channels. If i ¼ j, then Gii represents the autocorre-

lation function (ACF), whereas i s j corresponds to the cross-correlation

function (CCF).
RESULTS AND DISCUSSION

We first ran simulations of molecules passively diffusing in
a 3D homogeneous medium and calculated the ACF and
PCH from the intensity trace recovered in this simple
simulation condition (Fig. 2). The continuous lines in the
figure represent the best fit of the PCH obtained by using
the theoretical PCH function (11) and the fitting of the
ACF data to the equation expected for 3D Brownian diffu-
sion (18):

GðtÞ ¼ g

N

1�
1þ 4Dt

62
o

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ 4Dt

z2o

�s ; (3)
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FIGURE 2 Simulation of FCS routines. (A and B) Single-point FCS: a

simulation of 300 molecules (ε ¼ 105 cpsm) passively moving with D ¼
40 mm2/s in a cube (side length ¼ 6 mm) was run with ts ¼ 10 ms during

100 s. The ACF (A) and PCH (B) data calculated from the intensity trace

obtained with the FERNET routine were fitted as described in the text

(continuous lines), resulting in the parameters detailed in Table 1.
where D is the diffusion coefficient of the molecules, t is the
lag time, N is the mean number of molecules in the confocal
volume, g is a geometric factor that depends on the detec-
tion profile for a Gaussian volume g ¼ 0.35 (18), and uo

and zo are the radial and axial waists of the PSF,
respectively.

Table 1 shows that both the diffusion coefficient (D) and
brightness of molecules (ε) are correctly recovered, illus-
trating the robustness of the routine presented in this work
for single-point FCS measurements.

To show the extra possibilities provided by the ability of
MCell to create spatial features, we defined two compart-
ments separated by a permeable barrier (Fig. S1 A in the
Supporting Material) and considered different diffusion
coefficients and brightness levels for molecules in each
compartment. Thus, whenever a molecule moves from one
compartment to the other (e.g., when moving between
cellular compartments with different rheological proper-
ties), the diffusion coefficient changes. This process was
simulated as a reaction occurring on the membrane: every
time a molecule hit the membrane, there was a probability
of destroying this molecule and creating a second one
with different D and ε values at the same position on the
other side of the membrane.

We then calculated the ACF and PCH curves at different
positions of the sample as could be done using different
multifocal FCS techniques (2,19,20). Fig. S1 shows pseudo-
color images of the D, N, and ε values recovered at every
analyzed position either by fitting Eq. 3 to the ACFs or by
PCH analysis. These maps closely resemble the simulated
data, with the exception of the positions intersecting the bar-
rier, which presented intermediate values as expected.

FERNET also includes the possibility of moving the
observation volume, allowing simulations of both the image
acquisition (Movie S1) and different scanning-FCS routines
(1,5–7). Fig. S2 shows the results obtained in a simulated
raster-image correlation spectroscopy (RICS) experiment
(12). We fitted the correlation matrix as shown in Digman
et al. (6) and obtained the expected values of D and N
(Table 1).

Two-color cross-correlation FCS (FCCS) is powerful
extension of FCS that allows one to detect interactions
between molecules (reviewed in Bacia et al. (4)). Thus,
TABLE 1 Simulated and recovered parameters of PCH and

RICS analyses

Experiment Parameter Simulation

Correlation

Analysis PCH Analysis

Single-point FCS D (mm2/s) 40.00 39.79 5 0.35 –

N 0.31 0.29 5 0.01 0.31 5 0.01

ε (cpm) 1.00 – 0.92 5 0.02

RICS D (mm2/s) 40 40.72 5 0.56 –

N 0.27 0.28 5 0.01 –

Values are expressed as mean 5 standard error from 10 independent

simulations.

Biophysical Journal 108(11) 2613–2618
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we included in the program the possibility of simulating
multicolor measurements (see configuration details in
Document S2).

To illustrate how this tool could be used to explore inter-
actions, we considered different scenarios involving the
binding of molecules to fixed targets. Previous works
showed that such simulations are extremely helpful for
exploring the interaction of transcription factors (TFs)
with chromatin in living cells (13,21). First, we analyzed
simple cases in which two molecules (e.g., different TFs
labeled with spectrally well-separated fluorophores) inter-
acted with different binding sites (Fig. 3 A) or competed
for the same targets (Fig. 3 B). While the ACFs of the
two molecules were very similar and showed the diffusion
(tdiff ~0.2–0.5 ms) and binding (tbinding ~10 ms) compo-
nents expected according to Michelman-Ribeiro et al.
(13), these different scenarios could be clearly distinguished
through the cross-correlation analysis.

To show how the versatility of MCell allows one to
include user-defined reactions, we considered other interac-
tions that may affect the binding of molecules with targets.
In the first case, molecule A (red circle in Fig. 3 C) interacts
with molecule B (green rectangle in Fig. 3 C), and the A-B
complex binds to the target. This case is similar to a TF
whose DNA-binding efficiency is influenced by its interac-
tion with other proteins (e.g., the estrogen receptor requires
calmodulin to bind DNA (22,23). Fig. 3 C shows that the
CCF presents two components that are compatible with
the free diffusion of complexes and their binding to the tar-
gets. Also, we simulated a sequential recruitment of A and B
to the binding site (e.g., the glucocorticoid receptor bound to
chromatin recruits co-regulators involved in receptor-medi-
ated promoter activation (24). The ACFs obtained for the
green and red channels were different due to the sequential
Biophysical Journal 108(11) 2613–2618
binding of molecules (Fig. 3 D). In addition, there was a
clear, positive cross correlation in a timescale compatible
with the binding process.

Recent improvements in microscopy cameras have re-
sulted in more efficient detection and higher acquisition
speeds, allowing the simultaneous and parallel collection
of intensity traces with a millisecond time resolution. This
development constitutes the basis of imaging-FCS, in which
microscopy techniques such as total internal reflection fluo-
rescence microscopy and selective plane illumination mi-
croscopy, which confines the excitation to a thin z section
of the sample, are combined with FCS (25–27). Given the
relevance of these new techniques, we also included in the
program the possibility of simulating FCS experiments
with camera detection (Fig. S3).

The above examples illustrate how the program can help
the user to predict the results of FCS experiments, to ratio-
nalize how relevant information can be extracted from ex-
periments, and to understand how different parameters of
either the system or the data acquisition could influence
the output of the experiments.

For a correct interpretation of the experimental data, these
analyses should be combined with an adequate selection of
the model based on a strict statistical study that also con-
siders the influence of noise in fluorescence fluctuation mea-
surements and cell-to-cell variability. In recent years, the
Bathe group (25,26,28) has developed a Bayesian inference
procedure for testing multiple competing models to describe
temporal ACFs. This procedure enables the systematic and
objective evaluation of different models for FCS data,
appropriately penalizing model complexity as the signal/
noise ratio decreases.

This group also proposed a statistical blocking procedure
(25) that can be easily applied to experimental data to
FIGURE 3 Detecting interactions with two-

color FCS. Simulations of two-color FCS ex-

periments were run considering two populations

of molecules tagged with spectrally separated

fluorescent probes (depicted as red circles and

green rectangles). The fluorescence intensity

of these molecules was assumed to be collected

in independent channels (red and green symbols,

respectively). (A–D) The ACFs of the intensity

obtained for the red (B) and green (,)

channels, and the CCFs (gray symbols) were

calculated for the following scenarios: (A)

noncompetitive binding, (B) competitive binding,

(C) complex formation and binding, and (D)

sequential binding. The diffusion and binding

model proposed by Michelman-Ribeiro et al.

(13) was fitted to the ACF and CCF curves in

those scenarios in which the assumptions of the

model were fulfilled (continuous lines). The

simulated and recovered parameters are summa-

rized in Table S1. To see this figure in color,

go online.
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properly estimate the correlated noise present in ACF
curves. This step is essential for an unbiased model selection
and parameter estimation.
CONCLUSION

In this work, we have presented, to our knowledge, a new
simulation platform based on MCell that allows one to
simulate advanced fluorescence microscopy experiments.
Because of the easy-to-program options provided by MCell,
the MCell-FERNET platform could also be adapted to
include a wide variety of photochemical and photophysical
processes such as photobleaching and/or photoswitching
reactions (12,29), binding to uniform or asymmetrically
organized targets (Movie S1), and complex interactions
among molecules. We believe that this program could be
extremely useful for predicting and understanding the
output of fluorescence microscopy experiments.

FERNET and the customized version of MCell can be
downloaded from our website (http://www.dc.uba.ar/
FERNET).
SUPPORTING MATERIAL

Three figures, one table, user manual of FERNET toolkit, one movie, and

one zip file containing the parameters used for the simulations presented

in Fig. 3 are available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(15)00393-8.
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