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Abstract

High-throughput experimental techniques for generating genomes, transcriptomes, proteomes, 

metabolomes, and interactomes have provided unprecedented opportunities to interrogate 

biological systems and human diseases on a global level. Systems biology integrates the mass of 

heterogeneous high-throughput data and predictive computational modeling to understand 

biological functions as system-level properties. Most human diseases are biological states caused 

by multiple components of perturbed pathways and regulatory networks rather than individual 

failing components. Systems biology not only facilitates basic biological research, but also 

provides new avenues through which to understand human diseases, identify diagnostic 

biomarkers, and develop disease treatments. At the same time, systems biology seeks to assist in 

drug discovery, drug optimization, drug combinations, and drug repositioning by investigating the 

molecular mechanisms of action of drugs at a system’s level. Indeed, systems biology is evolving 

to systems medicine as a new discipline that aims to offer new approaches for addressing the 

diagnosis and treatment of major human diseases uniquely, effectively, and with personalized 

precision.

INTRODUCTION

Reductionism is a ‘divide and conquer’ approach and assumes that complex problems in 

cellular systems are solvable by reducing biological processes into more basic units 1. This 

research strategy has dominated biomedical research for many years and made great 

progress in identifying many critical components accounting for specific cellular phenotypes 

and human diseases. Owing to the complexity of biological systems, however, many 

important questions cannot be answered using reductionist approaches alone that typically 

focus on individual molecular components 2. In the past two decades, a variety of high-

throughput technologies have been developed, such as cDNA microarrays, next-generation 

sequencing, precision mass spectrometry, and yeast two-hybrid assays 3–6. These 

technologies are capable of measuring the abundance of numerous components of biological 

systems simultaneously and have generated massive amounts of ‘omics data. With the 
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accumulation of such experimental data, systems biology has emerged as a new approach to 

biology that bridges quantitative sciences and experimental biology in order to derive 

biological functions as system-level properties. Researchers increasingly realize that the 

functions of biological systems are not fully accounted for by independent individual 

components, but, rather, by the complex interactions between molecular components and 

their environment (the exposome) 7, 8. Reductionist approaches are, therefore, insufficient 

for fully addressing biological phenomena in this way. High-throughput technologies drive 

systems biology to become a valuable approach for investigating multi-dimensional 

molecular biology in complex human diseases 9.

One of the major challenges in the era of ‘omics is how to mine biological knowledge and 

generate novel mechanistic insights from the sea of high-throughput data. Obviously, 

handling such biological data requires multidisciplinary expertise from different fields, often 

including mathematics, physics, engineering, and computer science. Systems biology 

coupled with such multidisciplinary collaboration has developed many tools and approaches 

that have the potential to make a significant impact in biomedical science. These approaches 

apply a wide spectrum of mathematical formalisms across different scales, from data-driven 

methods to model-based methods, from static qualitative models to dynamic quantitative 

models, and from statistical analysis to network modeling 9. The choice among different 

approaches depends on the question to be addressed by the modeling, the availability of 

experimental data, and the intricacy of the system under consideration. Such computational 

modeling approaches play a vital role in systems biology and enable efficient in silico 

predictions that have the potential to enhance the design of mechanistic experiments.

Human diseases result from the complex interplay between perturbed molecular pathways 

and environmental factors rather than individual failing components 10, 11. Systems-based 

approaches are particularly valuable in complex diseases that have multifaceted causative 

factors, such as cancers, diabetes mellitus, and cardiovascular diseases. The rapid 

accumulation of high-throughput data and sophisticated computational modeling 

methodology in systems biology offer new opportunities to understand human diseases, 

identify diagnostic biomarkers, and develop disease treatments. For example, traditional 

disease biomarkers involve individual proteins or metabolites, without emphasizing the 

importance of changes to the system induced by interactions between gene or gene products 

that may occur in different states. Differential network analysis between diseased and 

normal conditions allows for the identification of network biomarkers and disease modules 

that account for the sensors or drivers of a disease 11, 12. In addition, pharmacology has also 

begun to apply systems biology principles to consider the effect(s) of a drug as the result of 

network interaction perturbations rather than one specific drug-protein interaction (e.g., 

termed the “silver bullet theory” of conventional pharmacology) 13–15. By investigating the 

molecular mechanisms of action of drugs at a system’s level, systems biology seeks to assist 

conventional pharmacology in a variety of drug development processes, including drug 

discovery, drug combination, and drug repurposing.

One of the valuable resources that has been overlooked by systems biologists in 

investigating human diseases is physiological and clinical data (the phenome) 16. Systems 

medicine is not simply the application of systems biology in medicine; rather, it is the 
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logical next step and necessary extension of systems biology with more emphasis on 

clinically relevant applications 17. Building on the success of systems biology, systems 

medicine is defined as an emerging discipline that integrates comprehensively 

computational modeling, ‘omics data, clinical data, and environmental factors to model and 

predict disease expression (the pathophenome) 17, 18. In this review, we will introduce high-

throughput technologies that drive the emergence and development of systems biology and 

computational modeling methods that are being developed for systems biology. We will also 

consider how complex human diseases and pharmacology benefit from systems-based 

approaches. Finally, we will discuss the evolution of systems biology and the early phases of 

systems medicine in the context of aiding physicians in addressing human disease 

complexity and, ultimately, improving clinical practice for patients.

HIGH-THROUGHPUT TECHNOLOGIES DRIVING SYSTEMS BIOLOGY

A complex system is composed of a large number of interconnected components whose 

interplay accounts for a variety of system functions. A key factor that promoted the 

emergence of systems biology is the development of various high-throughput technologies. 

These biotechnologies not only allow quantification of individual components (e.g., genes, 

proteins, microRNAs, and metabolites) of a biological system, but also afford the generation 

of massive interactomes describing the complex interactions of these components, and even 

decipher the function of the system.

DNA sequencing techniques determine the complete DNA sequence of an organism’s 

genome and the entire set of genes at a single time. Moreover, next-generation sequencing 

(NGS) now can generate DNA sequences of many organisms at a very low cost 4. Gene-

expression microarray allows global quantification of mRNA transcripts of thousands of 

genes 3. Furthermore, NGS-based RNA sequencing (RNA-seq) can not only be used to 

measure gene expression levels at a higher resolution and sample throughput, but also can 

reveal alternative gene spliced transcripts 6. For example, Gene Expression Omnibus (GEO) 

and other database repositories store massive microarray- and sequence-based gene 

expression datasets that can be reused as a basis for new biological studies 19. Similarly, 

mass spectrometry (MS) and isobaric tags for relative and absolute quantification (iTRAQ) 

can be used to determine the concentration of thousands of proteins in a single 

experiment 20, 21. The Human Protein Atlas (www.proteinatlas.org) contains 

immunohistochemistry-based maps of protein expression and localization profiles for a large 

majority of all human protein-coding genes based on both RNA and protein data in normal 

tissue, cancer, subcellular organelles, and cell lines 22, 23. Such datasets offer the possibility 

to explore tissue-specific proteomes and analyze tissue profiles for specific protein classes. 

Global metabolomic profiling by nuclear magnetic resonance (NMR) and liquid 

chromatography (LC) or gas chromatography (GC) coupled with MS is used to measure the 

composition and concentration of both targeted and untargeted metabolites 24. In particular, 

mass cytometry facilitates high-dimensional quantitative analysis of the effects of molecules 

at single-cell resolution 25. Such single-cell genomic analyses greatly enhance diagnostic 

and experimental analyses. Experimental data generated by these biotechnologies represent 

the levels or abundance of individual biological elements and have been deposited in major 

databases, as listed in Table 1.
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There are also biotechnologies that can detect the interactions between biological elements 

in a high-throughput manner. For example, chromatin immunoprecipitation assay (ChIP) is a 

technology that utilizes DNA microarray technology for investigating interactions between 

proteins and DNA 26, while ChIP-seq technology profiles genome-wide protein-DNA 

interactions by utilizing next-generation parallel DNA sequencing 27. ENCODE 

(Encyclopedia of DNA Elements, www.encodeproject.org/) is an international collaborative 

project whose goal is to identify all functional elements in the human genome sequence. All 

the data generated by ENCODE, including ChIP-seq, RNA-seq, and Dnase-seq datasets in 

differential tissues, can be freely downloadable for research purposes. Experimental 

strategies for discovering transcriptome-wide microRNA-mRNA regulatory interactions 

include Crosslinking and Immunoprecipitation followed by high-throughput sequencing 

(CLIP-seq), Photoactivatable-Ribonucleoside-Enhanced CLIP (PAR-CLIP), and individual-

CLIP (iCLIP) 28. Protein-protein interactions (PPIs) can be mapped by improving variations 

of yeast two-hybrid screening (Y2H) for direct binary interactions or by affinity- or 

immuno-purification to isolate protein complexes, followed by mass spectrometry (AP/MS) 

to identify indirect associations between proteins 5, 29. Rolland and colleague recently 

performed a systematic map of 13,944 high-quality human binary protein-protein 

interactions among 4,303 distinct proteins, providing unprecedented opportunities for 

understanding human diseases through the interactome 5, 30. In addition, mammalian-

membrane two-hybrid assay (MaMTH) is a technique developed recently for detection of 

integral membrane PPIs 31. Some functional protein microarrays and mass spectroscopy-

based assays can also be used to identify the phosphorylation targets of individual protein 

kinases (i.e., kinase–substrate interactions) 32. Recently, Saliba and colleagues developed a 

liposome microarray–based assay (LiMA) that measures protein recruitment to membranes 

in a quantitative and high-throughput manner, generating a large number of protein-lipid 

interactions 33. An automated high-throughput technology, LUMIER (luminescence-based 

mammalian interactome mapping), was also developed for mapping dynamic signaling 

networks in mammalian cells 34. The interactome data generated by these technologies have 

been stored in some databases, as well (Table 1).

The ultimate goal of molecular biology is to interpret how genotypes account for different 

phenotypes and diseases. High-throughput genotyping and phenotyping approaches have 

made great steps towards determining genotype determinants and their interactions in model 

organisms. For example, yeast genetic interaction studies are well established by Synthetic 

Genetic Array analysis (SGA) and Epistatic Miniarray Profiling (E-MAP) 35. Systematic 

analysis of genetic interactions in human cells is still in early stages of developmental 

application; however, Laufer and colleagues provided a detailed protocol for large-scale 

mapping of genetic interactions in human cells by combining RNA interference (RNAi) and 

automated imaging 36. In addition, advances in DNA sequencing technologies allow us to 

monitor the effects of common genetic variations in sequences at population levels. For 

example, single nucleotide polymorphism (SNP) genotyping arrays can measure genetic 

variations of SNPs among a population. Genome-wide association studies (GWAS) focus on 

examining statistical associations between common SNPs and complex phenotypic traits in a 

population, and have identified a large number of genetic loci that may be causally 

associated with major human diseases 37. SNP genotyping arrays also produce massive 
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amounts of expression Quantitative Trait Loci (eQTL), which expose potential mechanisms 

by which to explain observed associations. Such high-throughput genetic data further enable 

the investigation of complex relationships between genotypes and phenotypes (Table 1). In 

doing so, the accuracy of information is very important as a system or model works only if 

the input data are sound. There are some available software tools that assist in using the 

correct phenotype information. For example, Genome-Phenome Analyzer, launched by 

SimulConsult (www.simulconsult.com/), links curated phenome databases, clinical findings, 

and associated variants generated by whole-exome sequencing to compute a differential 

diagnosis for patients. PhenoDB (http://phenodb.net) is a Web-based portal for integration 

and analysis of phenotypic features, whole exome/genome sequence data, knowledge of 

pedigree structure, and previous clinical testing. It can also be used to format phenotypic 

data for submission to dbGaP.

Biological systems are highly dynamic and hierarchical. Each technology can only generate 

the data at one dimension of complex biological systems. However, any single type of high-

throughput data cannot fully interpret a variety of system functions. Therefore, how to 

integrate heterogeneous and large ‘omics data and mine useful knowledge to interpret 

phenotypes is critical for the success of systems biology (Figure 1). Thus, at the very least, 

systems biology must also borrow quantitative modeling approaches from multidisciplinary 

fields, which we will discuss in next section.

COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY

High-throughput technologies highlight the challenge of how to mine biological knowledge 

and generate testable hypotheses from the massive amount of available data. Tackling this 

challenge requires sophisticated quantitative modeling methods and multidisciplinary 

expertise from different fields, such as mathematics, physics, and computer science. One of 

the hallmarks of systems biology is the use of computational approaches from quantitative 

science to develop a wide spectrum of models and tools for analyzing large-scale data 

(Figure 2).

Computational methods that have been used in systems biology can be classified into data-

driven top-down methods and model-driven bottom-up methods 9. In general, high-

throughput multi-parametric ‘omics data characterize the abundance of biological elements 

across different system states. Data-driven top-down approaches integrate and analyze 

experimental data to reveal biomarkers and biologically meaningful patterns. These 

approaches can be applied to the analysis of unbiased genome-scale data with thousands of 

components to obtain coarse-grained knowledge about biological systems. For example, 

various statistical analyses have been used for identifying differentially expressed genes, 

proteins, or metabolites 38. One can further examine whether the resulting component lists 

are enriched for known gene signatures or signaling pathways 39. Statistical methods, such 

as Principle Component Analysis (PCA), Partial Linear-square Regression (PLSR), and 

Canonical Ccorrelation Analysis (CCA), are then utilized to identify functional relationships 

by checking the expression correlations between components or clustering the expression 

profiles of individual elements 40, 41. For example, Dewey and colleagues assembled all 

myocardial transcript data from the Gene Expression Omnibus (GEO) database and used 
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gene coexpression network analysis to derive functional modules and regulatory mediators 

in developing and failing myocardium that were not present in normal adult tissue 42.

Biological elements do not function in isolation; rather molecules and their dynamic 

interactions determine the function of a complex biological system. These interactions form 

different types of cellular (and subcellular) networks with characteristic topology, such as 

gene regulatory networks, microRNA-mRNA target networks, protein-protein interaction 

networks, metabolic networks, and signal transduction networks 7. Network representation 

of the interactome data simplifies complex systems and focuses on the elements and their 

interactions, enabling use of various tools from network science and graph theory to analyze 

the data 7. Investigators increasingly realize that the topological structure of biological 

networks is closely related to their functions. Therefore, local and global structural features 

can reveal key properties of biological systems. For example, it has been shown that the 

number of interactors of a protein is highly correlated with its lethality associated with any 

variation in its expression (e.g., adverse consequences of protein over- or under-expression) 

and essentiality (e.g., protein functionality), with hubs (nodes with many edges) tending to 

play important biological roles 43. Groups of densely connected proteins in the protein 

interactome (called functional modules) often correspond to protein complexes 44. Similarly, 

disease modules are groups of densely connected biological elements in the human 

interactome whose perturbation or dysfunction can be linked to a particular disease 

phenotype 8, 45. As an example, starting from a small set of seed genes relevant to asthma, 

Sharma and colleague used a network-based approach based on the comprehensive human 

interactome to determine the local neighborhood of the interactome whose perturbation is 

associated with asthma, i.e., the asthma disease module 46. Network topology can be also 

augmented with functional regulatory rules to predict the essentiality of biological 

components more accurately 47, 48. Differential network analysis, which compares the 

topological changes of biological networks over different conditions, may help to identify 

key players or disease markers 12. Network alignment across different species can identify 

conserved orthologous functional regions beyond individual genes or interactions 49. Figure 

3 illustrates some concepts of network analysis. Excellent discussions of the application of 

network modeling in biology and medicine are reviewed in references 7, 8, 11, 14, 30.

While the above-mentioned top-down methods are used for analysis of unbiased high-

throughput data, the published biological literature is also a valuable source that must be 

considered for the construction of networks since the literature covers numerous small-scale 

experiments central to specific biological processes. Probabilistic graphical models, such as 

Bayesian networks and Markov networks, can incorporate prior knowledge from the 

literature and be used to construct (imputed) causal networks from observational biological 

data 50. They can also serve as gene regulatory network models to learn network structures 

from gene expression data 51. Chu and colleagues proposed a partial correlation network 

method based on a Gaussian graphical model to analyze the association between chronic 

obstructive pulmonary disease (COPD) and other factors, including case-control status, 

disease severity, and genetic variants (see below for detailed discussions) 52. Probabilistic 

graphical models have many successful applications in systems genetics, as well 53.
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In contrast to data-driven approaches, model-driven bottom-up approaches to characterizing 

complex biological systems are used to simulate the dynamics of the system and, in turn, 

model various perturbations to the system by using relevant mathematical models. 

Biological networks that drive various biological processes are condition-specific and highly 

dynamic. Bottom-up methods model how interacting elements achieve the temporal patterns 

of cellular systems. This class of methods usually originates with the availability of data 

pertaining to biological mechanisms coupled with observational data generated from 

individual small-scale experiments and complementary information from high-throughput 

data. Continuous dynamic modeling approaches, such as those involving deterministic 

ordinary differential equations (ODE) and partial differential equations (PDE) or stochastic 

differential equations (SDE), have been widely used as bottom-up methods. These modeling 

approaches can be used to explain quantitative behaviors of a system; however, the 

construction of these models is typically hampered by a lack of temporally resolved 

experimental data and/or sufficient mechanistic details, including kinetic parameters, such as 

synthesis/degradation rates, and absolute intracellular concentrations of macromolecular or 

metabolic species, which, collectively, make these methods practical only in small or simple 

systems. By contrast, knowledge about biological networks from the experimental literature 

and high-throughput technologies is often of a qualitative nature, which has promoted the 

widespread use of discrete qualitative modeling approaches, such as Boolean network 

models, multi-valued logical models, and Petri nets 54, 55. Based on reasonable 

simplification of biological reality, discrete dynamic modeling can make qualitative 

dynamic predictions of system behaviors. As they do not require quantitative kinetic 

parameters, these approaches can be employed for relatively large and complex systems. For 

example, Ryall and colleagues developed a computational model of the cardiac myocyte 

hypertrophy signaling network with 106 species and 193 reactions, integrating 14 

established pathways regulating cardiac myocyte growth 56. They used the model to 

determine how the individual components and their interactions lead to differential 

regulation of transcription factors, gene expression, and myocyte size, and validated a 

majority of model predictions using published experimental data. Dynamic modeling can 

simulate a variety of perturbations of a biological system; specifically, knocking down or 

over-expressing certain genetic nodes and interactions, which may attract the system to a 

new phenotypic state or diseased condition. In this way, dynamic modeling informs in silico 

predictions to generate testable hypotheses, guiding targeted experimental validation follow-

up studies.

In addition to the aforementioned methods of mathematical formalism, high-throughput data 

sets are often heterogeneous, and, thus, integration techniques from computer science and 

statistical learning are required to fuse them. To address the issue of shared and integrated 

mass data, we also need a variety of computational platforms, such as biological ontology 

databases and semantic webs. Among different computational approaches in systems 

biology, whether static modeling, qualitative modeling, or quantitative modeling should be 

chosen hinges on the question to be addressed by the modeling, the availability of 

experimental data, and the complexity of the systems under consideration. For example, 

longitudinal or time-series biological data contain more dynamic information than snapshot 

data. The time aspect reflects the temporal activity of biological components and can be 
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used to construct continuous dynamic models. When time-dependent quantitative 

experimental data are not sufficient, only qualitative models can be constructed. In addition 

to making qualitative predictions of system behaviors, these models can also serve as a basis 

for developing a corresponding quantitative continuous model once more time-series data 

are available 57.

APPLIED SYSTEMS BIOLOGY: INFLUENCES IN CLINICAL MEDICINE

In the context of systems biology, diseases are viewed as the results of the complex interplay 

between perturbed molecular pathways and environmental factors rather than individual 

failing components 8, 10, 11. Systems-based approaches are particularly valuable in complex 

diseases that have multifaceted causative factors and clinical presentations, such as cancer, 

diabetes mellitus, respiratory diseases, and cardiovascular diseases 2, 58. Systems biology 

can provide new avenues for understandimg human diseases; for example, identification of 

diagnostic disease biomarkers, development of disease treatments by revealing disease 

subtypes, and identification of novel therapeutic targets for diseases.

The penetration of systems biology to the medical science literature is escalating; for 

example, the number of PubMed-indexed citations relevant to this field has increased by 

ten-fold over the previous decade 59. While the preponderance of these contributions aims to 

characterize the translational relevance of novel subcellular physical interactions (i.e., 

protein-protein interactions, miRNA-mRNA interactions, and others as described in greater 

detail earlier) to patients clinically, this is not uniformly the case. A number of recent reports 

describe the application of systems biology strategies to the characterization of the 

relationships between complex diseases according to symptomatology, prevalence, and 

associated co-morbidities in the absence of consideration to pathobiological mechanism per 

se or as a method by which to validate elements of the interactome potentially relevant to the 

disease phenotype 16.

Zhou and colleagues synthesized a symptom-based network of human disease based on 

large-scale medical bibliographic records derived from Medical Subject Heading (MeSH) 

metadata and PubMed databases to demonstrate that symptom variability for a particular 

disease correlates with the density of protein-protein interactions linked to the pathobiology 

of that disease 16. For example, they observed that overlap for 78 symptoms between the 

inflammatory bowel disorders ulcerative colitis and Crohn’s disease was also common to a 

number of infectious diseases linked to the development of intestinal inflammation and 

colonic mucosal effacement that define these diseases pathologically. Specifically, symptom 

linkage paralleled a pattern of gene network connectivity between ulcerative colitis and 

Crohn’s disease and various intestinal viral, bacterial, and parasitic infections whose 

incidence is, in turn, implicated in the clinical expression of bowel inflammation in 

patients 60, 61. These findings are conceptually similar to evidence by others indicating that 

the probability among patients diagnosed with a single disease developing another specific 

condition is not random. Analyses of the Phenotypic Disease Network, which links disease 

groups within the human disease interactome according to common phenotype modules, 

suggest connected co-morbidities follow along the lines of proteomic connectivity and may 

be relevant to inform disease prognosis (Figure 4) 62. Furthermore, network analyses have 
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exposed disease similarities based on genetic connectivity not identified by classical 

population genomics alone. In a proof-of-concept analysis of 1.5 million data records, 

Rzhetsky and colleagues reported polymorphism overlap between bipolar disorder and 

schizophrenia, and between bipolar disorder and autism by up to 60% and 75%, 

respectively 59.

Despite the incompleteness of the human interactome, Menche and colleagues studied 

disease-disease relationships using network topological analysis and provided evidence that 

interactome network-based location of each disease module reflects its pathobiological 

relationship to other diseases 63. This approach has illuminated unexpected gene overlap 

between diseases that are, by convention, regarded as unrelated clinical entities. For 

example, SMARCA4 is a protein associated with myocardial infarction, which in their 

interactome is linked with the proteins ALK, MYC, and NFKB2 that are implicated in the 

pathogenesis of lymphoma. Associations such as these may account for heretofore 

incompletely explained epidemiological associations between diseases that are seemingly 

unrelated biologically, including in this instance large cell lymphoma and myocardial 

infarction, which share a comorbidity rate that is higher than anticipated based on current 

understanding of their respective pathobiologies. Furthermore, a number of diseases 

occupying overlapping modules within the interactome, but for which known 

pathobiological relationships are lacking, were also reported, including glomerulonephritis 

and biliary cirrhosis, glioma and myocardial infarction, hepatic cirrhosis and spondylitis, 

albuminuria and respiratory disease, among other pairs. Forthcoming empiric efforts are 

required to crystalize the mechanisms by which to account for disease interrelatedness 

among these phenotypes.

The extent to which these early observations may redefine the epidemiology of complex 

syndromes remains to be determined. Nevertheless, these contributions illuminate overlap in 

the biological substrate underlying convergent pathophenotypes and by so doing provide a 

novel framework for predicting disease incidence and potentially refining the natural history 

of certain syndromes. This section of the review will discuss systems biology observations 

that have already set such a course for selected lung diseases, cardiovascular diseases, 

cancer, and inflammatory disorders of the digestive tract.

Systems biology and cardiovascular medicine

Thrombosis, inflammation, cellular proliferation, and fibrosis are among the fundamental 

pathobiological mechanisms implicated in the genesis of vascular diseases that are also the 

subject of recent systems biology investigations. One general approach to investigating these 

mechanisms involves emphasis first on lynchpin signaling intermediaries that are known to 

i) regulate a particular pathobiological process, and ii) promote a rare complex human 

disease. For example, hereditary hemorrhagic telangiectasia (HHT) is a condition 

characterized by arteriovenous malformations, dysregulated fibrinolysis, and various 

vascular complications including arteriovenous shunts and thrombosis that is driven, in part, 

by dysfunctional endothelial nitric oxide synthase 64. The transforming growth factor-β 

(TGF-β) superfamily ligands are critically involved in vascular development by regulating 

endothelial cell signaling, including the co-receptors endoglin and ACVRL1. High-
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throughput interactome mapping recently identified 181 novel interactors between 

ACVRL1, the TGF-β receptor-2, and endoglin, including protein phosphatase subunit beta 

(PPP2RB). In turn, PPP2RB was shown to disrupt endothelial nitric oxide synthase 

signaling in endoglin-deficient cells in vitro, identifying a potential role for PPP2RB in the 

pathobiology of HHT 65.

Others have reported that secondary analyses of genome-wide association studies using a 

systems approach is useful for identifying key characteristics defining common, but 

complex, cardiovascular disease pathophenotypes. By establishing a network comprising 

SNPs linked to various measures of dyslipidemia (i.e., abnormal serum total cholesterol 

[TC], low-density lipipoprotein cholesterol [LDL-C], high-density lipoprotein cholesterol, 

and/or triglyceride levels) derived from the Global Lipids Genetics Consortium (P< 

5×10−8), Sharma and colleagues identified rs234706 as a novel cystathionine beta synthase 

SNP involved in expression of the total cholesterol and LDL-C trait (i.e., measurably 

elevated levels of each) 66. These findings were validated through a linkage study analyzing 

data from an unrelated registry, the Malmö Diet and Cancer Cardiovascular Cohort; liver 

tissue from CBS-deficient mice in vivo; and healthy human livers biopsied at the time of 

surgery (in which the minor allele of rs234706 was detectable). Although CBS deficiency 

was established previously to play a role in lipid metabolism, the biological significance of 

the specific SNP was not known prior to the original GWAS and its systems analysis.

An alternative methodology by which to target human disease using network medicine 

methodology involves the initial construction of a large-scale interactome, which may be 

derived from analysis of the curated literature, biosample data, or a combination thereof 

according to methods described earlier. A substantial effort is underway to assemble 

interactomes relevant to vascular inflammation and thrombosis in order to characterize 

further the pathogenesis of relevant cardiovascular diseases, particularly myocardial 

infarction (MI). The National Institutes of Health-sponsored consortium MAPGen 

(www.mapgenprogram.org), for example, consists of five university centers with access to 

large human sample repositories and clinical data from international, multi-centered 

cardiovascular trials that are anticipated to generate broad and unbiased inflammasome and 

thrombosome networks. These large-scale individual networks and sub-networks created by 

overlap between them are currently being analyzed to define unrecognized protein-protein 

interactions pertinent to stroke, MI, and venous thromboemoblic disease. The selection of 

specific protein(s) or protein product(s) from this data set or other networks of similar scale 

for validation experimentally is likely to hinge on the strength of association, location of 

targets within the network, their proximity to other important protein/products, and/or data 

linking naturally-occurring loss- or gain-of-function mutations of the putative target to 

relevant clinical disorders, among other factors.

While systematic analysis of data from the MAPGen project is forthcoming, other reports 

from smaller cardiovascular disease datasets have emerged. For example, proteomic analysis 

of circulating microvesicles harvested from patients with acute ST-segment elevation 

myocardial infarction or stable coronary artery disease was performed by mass 

spectrometry 67. Using this approach, investigators were able to identify 117 proteins that 

varied by at least 2-fold between groups, such as α2-macroglobulin isoforms and fibrinogen. 
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Protein discovery was then subjected to Ingenuity® pathway analysis to generate a protein-

protein interaction network. Findings from this work suggest that a majority of microvesicle-

derived proteins are located within inflammatory and thrombosis networks, affirming the 

contemporary view that myocardial infarction is a consequence of these interrelated 

processes.

Parenchymal lung disease

Owing to the complex interplay between numerous cell types comprising the lung-

pulmonary vascular axis, a number of important pathophenotypes affecting these systems 

have evolved as attractive fields for systems biology investigations 68. Along these lines, 

chronic obstructive pulmonary disease (COPD), which comprises a heterogeneous range of 

parenchymal lung disorders, has been increasingly studied using network analyses to parse 

out differences and similarities among patients with respect to gene expression profiles and 

subpathophenotypes. Using the novel diVIsive Shuffling Approach (VIStA) designed to 

optimize identification of patient subgroups through gene expression differences, it was 

demonstrated that characterizing COPD subtypes according to many common clinical 

characteristics was inefficacious at grouping patients according to overlap in gene 

expression differences 69. Important exceptions to this observation were airflow obstruction 

and emphysema severity, which proved to be drivers of COPD patients’ gene expression 

clustering. Among the most noteworthy of the secondary characteristics (i.e., functional to 

inform the genetic signature of COPD) was walk distance, raising the possibility that 

unrecognized biomarkers could be identified through a research approach that predicts 

functional capacity in this or other similar diseases.

Along these lines, Davidsen and colleagues reported their recent findings using a systems 

biology approach to identify novel factors that promote skeletal muscle dysfunction in 

COPD 70. They analyzed differences in gene expression profiles in whole lung and hind 

limb skeletal muscle tissue harvested from swine exposed to chronic hypoxia, chronic 

cigarette smoke, or a combination of these factors to develop a genome-wide transcriptome 

(151,072 transcript sequences) relevant to COPD. These data were subjected to enriched 

KEGG pathway analyses, which, in turn, predicted that the systemic cytokines CXCL10 and 

CXCL9 may be important markers of dysregulated metabolic function in skeletal muscle in 

COPD. The investigators confirmed their hypothesis by demonstrating that circulating 

CXCL10/9 levels are significantly different in plasma from COPD patients as compared to 

healthy controls, providing evidence in support of these factors as potential biomarkers 

indicative of extrapulmonary end-organ damage in chronic lung disease.

The mechanistic underpinnings of lung injury responses have also been addressed using a 

combination of network biology strategies in order to understand better the pathways 

resulting in airway remodeling. In a unique experimental design, airway biopsy samples 

from lungs of patients exposed remotely to sulfur mustard or unexposed controls were 

subjected to microarray gene expression analysis and combined with genes corresponding to 

biological factors linked to airway remodeling identified from curated literature searches 71. 

From these datasets, protein-protein interaction and gene regulatory networks could be 

synthesized, which were ultimately merged to create functional modules. In that study, 
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matrix remodeling proteins, particularly matrix metalloproteinase (MMP)-9, were centrally 

located and well connected within the network. The observation identifying CYP11B1 (11-β 

hydroxylase), STARD10 (steroidogenic acute regulator protein-related lipid transfer 

protein), and pro-fibrotic proteins (i.e., TGF-β) as putative airway remodeling proteins in 

that analysis was consistent with findings from whole lung transcriptome analysis involving 

patients with pulmonary arterial hypertension 72. Moreover, these findings are in agreement 

with data from our laboratory 73 demonstrating activation of steroidogenesis signaling 

pathways, including aldosterone biosynthesis, in pulmonary vascular cells subjected to 

chronic hypoxia in vitro and its link to upregulation of TGF-β- and MMP-dependent 

signaling pathways that promote pulmonary vascular remodeling.

Cancer biology

An overarching goal of contemporary cancer therapeutics is the design of personalized drugs 

to match treatment targets with patients’ particular disease pathobiology. Angiogenesis and 

cellular plasticity are principal processes implicated in tumor growth, and, therefore, have 

evolved as the subject of key investigations aiming to identify targets within the framework 

of this personalized medicine approach. Intrinsic disorder proteins (IDPs) contain unique 

amino acid sequences that inhibit energetically favorable three-dimensional structures. 

Relative to normal proteins, IDPs demonstrate increased plasticity and tend to participate in 

the dysregulation of many cellular processes that define cancer biology, including cellular 

proliferation and dedifferentiation. Building on this concept, Malaney and colleagues 

studied the protein suppressor and IDP, PTEN 74. They used PONDR-FIT software to 

develop a series of interactomes comprising the IDP network that included PTEN and 

associated interactors, including PTEN phosphorylating kinases. Other levels in the analysis 

accounted for mutated amino acid combinations favoring abnormal protein function by 

introducing hydrophobicity, aromaticity, and redox-sensitive properties properties. Forty 

PTEN-associated proteins emerged from the analysis, of which 25 appear to interact with 

the intrinsically disordered region of PTEN at the carboxy-tail. The interactome was also in 

agreement with a number of previous publications in the cancer literature: 13 cancer-related 

proteins were also identified as strong IDP candidates and, in turn, formed a small, but 

potentially important, “PTEN-Cancer interactome.”

One evolving area of converging research streams is that of factors influencing treatment 

resistance to some cancers. As one example of this property of many malignancies, genetic 

data were collected from 71 patients registered in the Long-HER study, which characterized 

clinical responsiveness to the monoclonal antibody, trastuzumab, for the treatment of 

metastistic breast cancer. From this dataset, a number of expression profile differences 

involving PTEN and PTEN-associated genes were observed between treatment responders 

and non-responders, including intermediates involved in activation of the proliferative and 

anti-apoptotic kinase mammalian target of rapamycin (mTOR) 75. A number of reports have 

aimed to use similar methodologies to identify generic markers that distinguish tumor 

benignity from malignancy. For example, elevated concordance rates were observed in one 

study between tissue and plasma proteins differentially expressed in benign vs. malignant 

serous ovarian tumors and measured by liquid chromatography-mass spectrometry. 

Subsequent hierarchical pathway analysis focusing on 20 proteins suggested that 14-3-3 
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zeta/delta, 14-3-3 beta/alpha, alpha-actinin 4, HSP60, and PCBP1 are candidate markers of 

tumor malignancy 76.

Unopposed angiogenesis is yet another fundamental pathological mechanism responsible for 

growth and propagation of various solid tumors that has also been the subject of network 

analyses. Indeed, characterizing the protein-protein response pattern to vascular endothelial 

growth factor (VEGF) treatment in vascular endothelial cells in vitro has contributed to early 

iterations of the “angiome” 77. Others have developed networks focusing on identifying 

interactors of alternative, but critical, proangiogenic proteins 78, including MMPs 79, 

epidermal growth factor 80, vonWillebrand factor 81, and hypoxia-inducible factor 

(HIF)-1 82 to expand the number of potential treatment targets for various cancer subtypes, 

including prostate, pancreatic, and breast adenocarcinoma.

Diseases of the gastrointestinal tract

Ulcerative colitis and Crohn’s disease are two overlapping clinical pathophenotypes 

characterized by inflammatory changes to the colon in the former, and the colon, small 

intestine, and/or other (extra)intestinal sites in the latter that together affect 1:250 

individuals 83. In the setting of particular clinical clues or epidemiological factors, the 

diagnosis of one of these disease entities is often suspected. However, demonstrating 

specific pathological findings on mucosal biopsy is often required to reach a definitive 

diagnosis. Despite some gains in the therapeutic approach to these diseases, including 

monoclonal antibody therapy in the case of Crohn’s disease, the pathobiological substrate of 

either is poorly understood and in the absence of effective risk stratification methods or non-

invasive disease trajectory modifying interventions, surgical bowel resection remains the 

definitive treatment in many patients.

Owing, in part, to observations indicating differences in levels of sulfur-reducing bacteria in 

ulcerative colitis patients, one contemporary pathophysiology paradigm for these diseases 

points to differences in the gut microbiome profile 84. In support of this hypothesis is a 

recent deep sequencing analysis of fecal flora from a large cohort of controls and treatment-

naïve Crohn’s disease patients prior to the initiation of antibiotic therapy illustrating key 

contributors of the mucosal microbome in new-onset disease. Specifically, dysbiosis 

involving bacteria linked to oxidative resistance, gastrointestinal ulcer formation, and 

inflammatory invasion of intestinal epithelial cells to include Escherichia, Fusobacterium, 

Haemophilus and Veillonella among others comprised the microbial signature of untreated 

Crohn’s patients. Interestingly, concordance in the dysbiotic signature of rectal and illeal 

samples demonstrated through network methodologies in that study raises the possibility 

that options other than colonoscopy (i.e., invasive)-requiring biopsy exist for disease 

diagnosis 85.

Tuller and colleagues demonstrated significant overlap in the protein-protein interaction 

network derived from circulating peripheral lymphocytes harvested from patients with 

Crohn’s disease and ulcerative colitis 86. This observation matches genome studies 

identifying 163 loci common to various forms of inflammatory bowel disease 61 and clinical 

practice experience in which distinguishing these entities is not possible in up to 15% of 

cases despite multi-modality assessment. By contast, early efforts in the complex process of 
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leveraging ‘omics-based methods for the purposes of diagnostics in these diseases appear 

promising. In one large-scale proteomic project that aimed to validate the clinical diagnosis 

of Crohn’s disease and ulcerative colitis by spectral analysis of mucosal tissue from 312 

spectral peaks distinguishing these diseases using conventional statistical analyses, a (non-

probabilistical) Support Vector Machine (SVM) algorithm weighted signal relevance for 25 

peaks. Using this methodology, spectral accuracy was 60.4% and 93.3% for diagnosing 

Crohn’s disease and ulcerative colitis, respectively 87. Additional efforts are required to 

refine and validate these and other similar techniques 88, identify the spectra-linked proteins, 

and assess their diagnostic applicability to real world practice.

SYSTEMS PHARMACOLOGY

Systems-based approaches that integrate data from multiple levels can not only facilitate 

human disease studies, but also are beneficial to drug design, drug combination, and drug 

repurposing. Traditional drug discovery involves cell-based or target-focused screening of 

chemical compounds in a very expensive and lengthy process. By contrast, many drugs exert 

their effects by modulating biological pathways rather than individual targets. Large-scale 

genomes, transcriptomes, proteome, interactome data, and their integration with 

metabolomic data and computational modeling have now enabled a systems-level view of 

drug discovery and development 14. In Table 2, we provide a list of public resources that can 

support drug discovery by using systems-based approaches. Systems pharmacology aims to 

understand the actions and adverse effects of drugs by considering targets in the context of 

their biological pathways and regulatory networks 13, 15.

Drug combination therapy is a therapeutic intervention in which more than one drug therapy 

is administered to the patient. Mathematical modeling and clinical data show that some drug 

combination treatments have higher efficacy, fewer side effects, and less toxicity compared 

to single-drug treatment (rational polypharmacy) 89, 90. However, experimental screening of 

drug combinations is very costly and often only identifies a small number of synergistic 

combinations due to the large search space. Complex dependencies of drug-induced 

transcription profiles explored by mathematical models provide rich information for drug 

synergy identification. The DREAM consortium launched an open challenge to develop 

computational methods for ranking 91 compound pairs based on gene-expression profiles of 

human B cells treated with individual compounds at multiple time points and 

concentrations 91. Among the 32 methods the consortium assessed, four performed 

significantly better than random guessing, indicating that computational prediction of drug 

combination is possible. Zhao and colleagues reported a simple correlation-based strategy to 

reveal the synergistic effects of drug combinations by exploring the same data set 92. Jin and 

colleagues developed an enhanced Petri net model to recognize the synergistic effects of 

drug combinations from drug-treated microarray data 93. Rosiglitazone is an anti-diabetic 

drug that has been reported to increase the risk of cardiovascular complications, including 

myocardial infarction (MI). Zhao and colleagues searched for usage of a second drug in the 

FDA’s Adverse Event Reporting System (FAERS) that could mitigate the risk of 

rosiglitazone–associated MI and found that the combination of rosiglitazone with exenatide 

significantly reduces rosiglitazone-associated MI. Using cell biological networks and the 
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data from a mouse model, they identified the regulatory mechanism underlying the 

mitigating effect of exenatide on rosiglitazone-associated MI 94.

Owing to the high cost and lengthy time necessary for developing a new drug, drug 

repurposing, which aims to identify new indications of existing drugs, offers a promising 

alternative to de novo drug discovery. Many network-based methods have been developed 

for predicting drug repurposing. Two core concepts that support drug repurposing are drug-

target interactions and target-disease associations. As shown in Figure 5A, a single drug may 

have multiple targets, and identification of new drug-target interactions that connects with 

causal genes for another disease may, therefore, be helpful for drug repositioning. In 

addition, by revealing new relationships of an existing target with another disease, a drug 

may be repositioned. Some methods utilize drug-induced transcriptional profiles for drug 

repurposing. For example, to pursue a systematic approach to the discovery of functional 

connections among diseases, genetic perturbation, and drug action, Lamb and colleagues 

have created a reference collection of gene-expression profiles from cultured human cells 

treated with bioactive small molecules 95. By using pattern matching methods to mine the 

data, this Connectivity Map (also known as CMap) resource can be used to find connections 

among small molecules sharing a mechanism of action, or structural or physiological 

processes. One of the successful applications of CMap for drug repositioning was conducted 

by Iorio and colleagues 96. In this study, an automatic approach that exploits similarity in 

gene expression profiles following drug treatment was developed to predict similarities in 

drug effect and mode of action. A drug network displaying similarities between pair of drugs 

was next constructed and partitioned into groups of densely interconnected nodes. Based on 

this network, Iorio and colleagues correctly predicted the mode of action for nine anticancer 

compounds and discovered an unreported effect for a well-known drug, fasudil (a Rho-

kinase inhibitor). Using CMap data, a large set of drug-induced transcriptional modules was 

identified in another study 97. By utilizing conserved and cell-type-specific drug-induced 

modules, the investigators further predicted gene functions of some regulators and revealed 

new mechanisms-of-action for existing drugs, providing a starting point for drug 

repositioning.

Examples mentioned above demonstrate that drug-induced high-throughput gene expression 

profiles combined with proper computational methods are very useful for drug combination 

and drug repositioning. In addition to transcriptional profiles, drug-target networks and 

protein-protein interaction networks have been widely utilized for drug target 

identification 98. Such methods often use node similarity or structural features of biological 

networks. For example, Keiser and colleagues constructed drug-target networks and used a 

statistics-based chemoinformatics approach that explores the chemical similarities between 

drugs and ligand sets to predict thousands of drug-target unanticipated associations 99. 

Hwang and colleagues developed a novel network metric called bridging centrality to 

identify bridging nodes critically involved in connecting modular subregions of a protein 

interaction network. They showed that bridging nodes are promising drug targets from the 

standpoints of efficacy and side effects 100. Metabolite profiles and metabolic networks have 

been used in drug discovery studies, as well 101. In addition, some methods have been 

developed for predicting the adverse side effects of drugs using network models 102, 103.
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PERSONALIZED MEDICINE

Personalized medicine, a medical model of customized healthcare in which an individual 

patient is provided with treatments tailored to his/her genomic makeup, has been discussed 

for many years. Advances in next generation sequencing and DNA variation arrays facilitate 

the generation of personalized patient data, such as individual human genomes and 

individual SNP profiles, which offers unprecedented opportunities for personalized 

medicine. By integrating various ‘omics data sets and GWAS loci/eQTLs, personalized 

medicine is making promising progress. For example, the Cancer Genome Atlas (TCGA) 

research team has used the latest sequencing technologies and sophisticated bioinformatic 

analytical methods to identify somatic variants in the genomes of thousands of tumor 

samples from at least 20 tumor types 104. Chen and colleagues presented an integrative 

personal ‘omics profile that combines genomic, transcriptomic, proteomic, metabolomic, 

and autoantibody profiles from a single individual over a 14-month period 105. This 

longitudinal analysis revealed various medical risks and individual disease states, including 

type II diabetes, rhinovirus, and respiratory syncytial virus infections, demonstrating the 

possibility of predictive and preventive medicine enabled by systems biology and whole 

genome sequencing.

EVOLUTION OF SYSTEMS BIOLOGY INTO SYSTEMS MEDICINE

Building on the successes of systems biology, systems medicine is defined as an emerging 

discipline that more comprehensively integrates computational modeling, ‘omics data, 

physiological data, clinical data, and environmental factors to model disease expression 

predictively 17, 18. Systems medicine integrates basic research and clinical practice, and 

emphasizes translational and clinical research. As shown in Figure 6, the basic elements of 

systems medicine include systems-based approaches to human diseases and pharmacology 

and exploration of personalized patient clinical data space, including physiological data and 

environmental data. In addition to systems biology and network-based drug discovery, new 

high-dimensional patient data are another factor driving the emergence of systems medicine. 

Parallel to an explosion in the number of high-throughput molecular and cellular data sets, 

the digital revolution has induced a massive accumulation of electronic heath data that 

capture thousands of clinical measurements collected in medical practice 106. This valuable 

resource of longitudinal patient records has been overlooked by systems biologists in 

investigating human diseases due to tight privacy-based regulation of medical data. 

However, if made publically available, this data resource will provide rich information about 

individual disease states after integration with molecular data. In addition, each patient is 

different and needs personalization of medical treatment. To this end, environmental factors, 

such as diet, gender, age, and family histories, and physiological factors, such as tissues, 

organs, or whole body must be considered in a clinical practice context for systems 

medicine. This means that physicians must deal with large-scale non-linear, multi-

dimensional data. Integration of such heterogeneous clinical data requires more 

sophisticated computational modeling strategies, but will make personalized medicine and 

personalized healthcare highly possible.
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Systems medicine is highly comprehensive and integrative, and utilizes all types of 

nonlinear information. Different from the collaborations in systems biology that focus on 

data integration and experimental validation, systems medicine is expected to be led by a 

team covering much broader range of expertise and requires large-scale interdisciplinary 

collaborative efforts from clinicians, patients, biomedical researchers, computational 

scientists, government, pharmaceutical industry and police makers. For example, a physician 

cannot make diagnostic decisions even if he/she is faced with thousands of data points of 

‘omics data and clinical data. Multidisciplinary collaboration should utilize expertise from 

quantitative sciences to make the data readily accessible and easy to understand by 

physicians, and develop friendly computational tools for physicians to use the data. Also, 

sharing personal medical records will have great personal and societal benefits, but requires 

necessary ethical regulations, the cooperation of patients, and the participation of policy-

makers. As a practical example, an innovative integrated health system has been proposed to 

combat major non-communicable diseases (NCDs) (cardiovascular diseases, cancer, chronic 

respiratory diseases, diabetes, rheumatologic diseases and mental health) by using systems 

medicine approaches and strategic partnerships 107. It includes several key components, 

such as understanding environmental, genetic, and molecular determinants of the diseases; 

practice-based interprofessional collaboration; carefully phenotyped patients; development 

of unbiased and accurate biomarkers for comorbidities; etc. The strategy takes a holistic 

systems medicine approach to tackle NCDs as a common group of diseases, and is designed 

to allow the results to be used globally and also adapted to local needs and specificities. In 

short, the ultimate goal of systems medicine is to transform reactive medicine and healthcare 

to a P4 medicine that is predictive, preventive, personalized, and participatory 108, and 

provide a powerful approach to developing novel therapeutic interventions and addressing 

major human diseases uniquely, efficiently, and with personalized precision.

Conclusion

Many diseases involve the complex interaction between genetic and environmental factors 

that are difficult to dissect using reductionist approaches. High-throughput technologies and 

predictive computational modeling drive the emergence and development of systems 

biology. Ever since its inception, the application of systems biology has penetrated 

biomedical disciplines rapidly, from basic research to human diseases and pharmacology. 

With the accumulation of individualized clinical measures, genetic variants and 

environmental data, systems biology is evolving from bench to bedside by integrating more 

types of heterogeneous data and recruiting diverse expertise from broader fields, which have 

promoted the emergence of systems medicine. Systems medicine aims to offer a powerful 

set of methodologies to improve our understanding of disease pathogenesis and to design 

personalized therapies to address the complexity of human diseases. Although systems 

medicine is in its early stages and faces many challenges, it will no doubt revolutionize the 

practice of medicine and healthcare.
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Figure 1. High-throughput data and their hierarchical relationships in describing cellular 
phenotypes or human diseases
Each type of biological data represents a certain dimension of complex biological systems. 

Interpretation of cellular phenotypes or human diseases using systems biology approaches 

requires integration of all heterogeneous high-throughput data types.
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Figure 2. An overview of computational modeling methods used in systems biology
Computational approaches in systems biology apply a wide spectrum of mathematical 

formalisms across different scales, ranging from data-driven top-down methods to model-

driven bottom-up methods, and from static qualitative models to dynamic quantitative 

models.
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Figure 3. Illustration of some concepts of network analysis
(A) Network biomarker. Different from traditional individual biomarkers, a network 

biomarker is a subnetwork consisting of two or more differentially expressed components in 

control samples vs. disease samples. (B) Differential network analysis examines the same 

network over two different conditions, highlighting the topological changes induced by 

diseases. (C) A disease module represents a group of nodes whose perturbation can be 

linked to a particular disease phenotype. (D) Network alignment compares two networks 

from different species and aligns orthologous components and their interactions.
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Figure 4. Directionality of disease progression
(figure from Hidalgo et al. 62)

A. Distribution of λ1→2 B. Disease precedence Λi as a function of disease prevalence Pi. The 

inset shows the same plot after removing the trend from disease precedence (Λi* = 

Λi+496.08log10(Pi)-2446.2) C. Disease connectivity calculated from the φ-PDN as a 

function of Λi*. The yellow line shows the best fit for the 518 diseases with a prevalence 

larger than 1/500 (yellow circles) while the red line shows the best fit for the 463 diseases at 

the center of the cloud (red points). The correlation coefficient is represented by r and its 

associated p-value by p. D. Percentage of patients who died 2 and 8 years after being 

diagnosed with a disease with a given detrended precedence Λi*. The yellow lines show the 

best fit for all the 518 diseases (yellow circles) while the red lines show the fit for the 434 

(top panel) and 465 (bottom panel) diseases at the bulk of the cloud.
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Figure 5. An example of network-based drug repositioning
(A) Drug repositioning by identifying new drug-target interactions (the dotted line). (B) 

Drug repositioning by identifying new target-disease associations (the dotted line).
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Figure 6. Basic elements of systems medicine
System medicine is far more than systems biology of human diseases. It comprehensively 

integrates computational modeling, ‘omics data, physiological data, clinical data, and 

environmental factors to address major human diseases uniquely, efficiently, and with 

personalized precision.
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Table 1

A list of high-throughput technologies and the data they generated, with representative databases

Biotechnologies Experimental data Representative databases

DNA-seq, NGS DNA sequences, exome sequences, genomes, genes GenBank109, DDBJ110, Ensembl111

Microarray, RNA-seq Gene expression levels, microRNA levels, 
transcripts

GEO112, Expression Atlas113

MS, iTRAQ Protein concentration, phosphorylations GPMdb, PRIDE, Human Protein Atlas22

C-MS, GC-MS, NMR Metabolite levels HMDB, GMD

ChIP-chip, ChIP-seq Protein-DNA interactions, transcript factor binding 
sites

GEO112, TRANSFAC, JASPAR, ENCODE, 
modENCODE

CLIP-seq, PAR-CLIP, iCLIP MicroRNA-mRNA regulations StarBase114, miRTarBase

Y2H, AP/MS, MaMTH, maPPIT Protein-protein interactions HPRD115, BioGRID116, DIP, IntAct, and MINT, 
CCSB interactome database

Protein microarray Kinase–substrate interactions RegPhos, PhosphoPOINT

SGA, E-MAP, RNAi Genetic interactions HPRD115, BioGRID116

SNP genotyping array GWAS loci, eQTL, aberrant SNPs GWAS Catalog, GWASdb, GTEx, dbGAP, 
dbSNP HGMD

LUMIER, data integration Signaling pathways, metabolic pathways, molecular 
signatures

KEGG, ConsensusPathDB, BioCart, Pathway 
Commons, MSigDB, Reactome, BiGG
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Table 2

Publicly available data resources that could be used for drug discovery, drug combination, and drug 

repositioning.

Resources Descriptions URL

DrugBank A database that combines detailed drug data with comprehensive 
target information over 7740 drug entries.

http://www.drugbank.ca/

PharmGKB A comprehensive resource that curates knowledge linking genetic 
variations, drug response, and pathways.

https://www.pharmgkb.org/

FDA Orange Book A list of approved drugs and drug combinations with their 
therapeutic equivalence evaluations.

http://www.accessdata.fda.gov/scripts/cder/ob/

European Medicines 
Agency (EMA)

An agency of the European Union that report 950 human 
medicines and their therapeutic areas.

http://www.ema.europa.eu/ema/

SIDER A side effect database that contains information on 996 marketed 
medicines and their recorded adverse drug reactions.

http://sideeffects.embl.de/

DrugMatrix A toxicology reference database that store the results of 
thousands of highly controlled and standardized toxicological 
experiments.

https://ntp.niehs.nih.gov/drugmatrix

CMap A collection of over 7,000 genome-wide transcriptional 
expression profiles from cultured human cells treated with 
bioactive small molecules.

https://www.broadinstitute.org/cmap/

STITCH A database of protein–chemical interactions that integrates many 
sources of experimental and manually curated evidence.

http://stitch.embl.de/

Therapeutic Target 
Database (TTD)

A database to provide information about therapeutic protein and 
nucleic acid targets, targeted diseases, pathway information and 
the drugs directed at each of these targets.

http://bidd.nus.edu.sg/group/cjttd/

PROMISCUOUS A resource of protein-protein and drug- protein interactions that 
aims to provide a uniform data set for drug repositioning and 
further analysis.

http://bioinformatics.charite.de/promiscuous/
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