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Abstract

Pharmacokinetics [PKs] and pharmacodynamics [PDs] have always been integral to the design of 

rational drug dosing regimens. Early on PK-driven approaches came under the auspices of 

therapeutic drug monitoring that progressed into population-based PK and PK/PD modeling 

analyses. Since the availability of tissue samples for measurement of drug concentrations is 

limited in patients, the bulk of such model-based methods relied on plasma drug concentrations to 

both build models and monitor therapy. The continued advances of systems biology and the 

spawning of systems pharmacology propelled the creation of enhanced PD (ePD) models. A main 

characteristic of ePD models is that they are derived from mechanistically grounded biochemical 

reaction networks. These models are commonly represented as systems of coupled ordinary 

differential equations with the ability to tailor each reaction and protein concentration to an 

individual’s genomic/proteomic profile. As patient genomic analyses become more common, 

many genetic and protein abnormalities can be represented in the ePD models, and thus offer a 

path towards personalized anticancer therapies. By linking PK models to ePD models, a full 

spectrum of pharmacological simulation tools is available to design sophisticated multidrug 

regimens. However, ePD models are not a panacea and face challenges in model identifiability, 

scaling and parameter estimation. Nonetheless, as new technologies evolve and are coupled with 

fresh ideas on model implementation, it is likely that ePD and PK/ePD models will be considered 

a viable enterprise to customize anticancer drug therapy.

The design of drug dosing schedules entails the rational choice of the drug amount, the 

frequency of administration and the context in which the drug or drugs are used that 

considers the specific patient and what other drugs may be co-administered to avoid drug-

drug interactions. Systematic approaches to these drug dosage design concerns have been in 

large part within the domain of pharmaceutical scientists that historically have relied on 

pharmacokinetic [PK] information, and more recently, pharmacodynamics [PD] data as 

well. The progression of these approaches is outlined below.
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The advent of personalized medicine and the explosion of genomic assays and bioinformatic 

tools have created a somewhat parallel domain that has led people away from PK/PD-based 

drug dosing designs. This may be temporary and simply reflect the newness of genomic-

centric personalized medicine in which drugs predicted to be effective are identified 1. 

Whether or not these drugs prove to be active in an individual patient remains to be seen, yet 

to test those drugs without a PK or PK/PD analyses jeopardizes the likelihood of success. 

Personalization of drug therapy should not stop at identifying active drugs but be extended 

to include a pharmacological step; a process in which PK and/or PK/PD analyses are also 

conducted to specify drug doses, schedules and examination of drug-drug interactions. How 

these pharmacological approaches can be implemented is discussed below.

The evolution of drug discovery and development paradigms has seen an increasing use of 

PK/PD-driven modeling and simulation [M&S] to the extent that it is a common component 

of the drug development machinery and exemplifies the learn and confirm strategy 2. This 

seemingly independent M&S development fits nicely into personalized medicine that is 

applied in late clinical trials and post-marketing analyses. Now PK/PD models and 

specifically network PD models [referred to as enhanced PD or ePD models] can be 

generated for virtual patients – for example using public databases as the TCGA (https://

tcga-data.nci.nih.gov/tcga/) – early in drug development to predict drug performance in a 

population of patients with defined genomic characteristics. Whether these predictions prove 

valuable will require new prospective investigations but it is enticing to consider their 

power. Each virtual patient and associated PK/network PD model could simulate drug 

effects that could be used to predict both favorable and unfavorable actions. Such simulated 

results could be categorized by patient and tumor type to provide a drug activity/toxicity 

profile that could be used to decide if the drug should be moved into clinical trials, and if so, 

in which patients and at what doses. The convergence of PK/PD, genomic medicine and 

systems biology ensure a rich milieu of pharmacological research in the years ahead.

Therapeutic Drug Monitoring

The design of drug dosing regimens – drug amount, frequency and duration – based on 

pharmacokinetic [PK] information has been an integral part of clinical pharmacology since 

the 1970’s 3, 4. Drugs that have provided the impetus for the rational design of drug dosing 

have either narrow therapeutic windows – risk of toxicity is high - or the achievement of 

minimally effective drug concentrations is tantamount to effective therapy. The basis for 

therapeutic drug monitoring is that drug concentrations, either plasma or target tissue drug 

concentrations, are related via mathematical functions to drug response and efficacy. 

Pharmacodynamics [PDs] defines these relationships that vary from simple linear models – 

an increase in concentration produces a proportional increase in response – to the well-

established Sigmoid Emax model 5. Once a PK/PD relationship is established, doses and 

schedules can be determined through iterative PK/PD model simulations (considered below) 

or from standard equations to achieve desired drug concentrations or cumulative exposures. 

For example, assuming a desired plasma drug concentration range or target is known, a 

simple means to adjust dose is through the use of a steady-state – rate in equals rate out – 

formula as follows;
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where F = oral bioavailability (1 if drug given intravascularly), X0 = dose, τ = dosing 

interval, CL = total systemic clearance, and Css = the targeted steady-state (or average if a 

multiple-dose regimen is used) plasma concentration. It can be seen that dose or the dosing 

interval or both on the left-hand side of the equation can be adjusted to equal the product of 

drug clearance and the targeted drug concentration on the right-hand side of the equation. 

The individual patient’s total clearance is determined directly or could be obtained from a 

population estimate that is adjusted from individual variables. For example, renally excreted 

drugs like the aminoglycoside antibiotics are dependent on the glomerular filtration rate 

[GFR], and thus, the patient’s GFR provides a means to individualize clearance from a 

population estimate, and thus, design a “personalized” dosing regimen 6. There are 

numerous variations on this theme yet the essential requirements are knowledge of the PK 

characteristics of the drug – either in the population or individual – and a PK/PD 

relationship; the latter are mostly based on a simple biomarker or even phenotypic 

responses. It can be appreciated that drugs given chronically can be monitored by 

measurement of plasma drug concentrations and dosing regimens adaptively adjusted. In 

these cases, the term therapeutic drug monitoring applies as patients are continuously 

monitored – typically plasma drug concentrations – to ensure the dosing schedule achieves 

the desired concentrations.

Pharmacokinetic-Guided Dosing for Anticancer Drugs

Model-based design of anticancer drug dosing is predicated on the same general ideas as 

therapeutic drug monitoring; however there are some important differences. Notably, many 

of the anticancer drugs are general cytotoxics in which dosing is cyclic – about once a 

month – and limited by dose-dependent hematological toxicity 7, and thus, the condition of 

steady-state and those associated equations are not applicable. Although non-hematological 

toxicities, such as kidney or liver, could be the basis for dosage adjustment, haematological 

toxicity has been most often used as the criteria to set the maximum tolerated dose or MTD. 

A classic example is the so-called Calvert formula that was developed for carboplatin 8;

where the AUCtarget is the desired unbound plasma area-under-the-curve, and represents the 

systemic exposure, and GFR = glomerular filtration rate. The selected dose is based on the 

desired target AUC and is dependent on the patient’s renal function that is the primary route 

of carboplatin elimination. Underlying this equation is data that defines successful 

carboplatin exposures and their relationship to thrombocytopenia. Over the years 

modifications to this have been implemented based on data in different populations and 

alternate parameter estimation techniques 9. Another example that embodies the essence of 

PK-guided dosing, and adaptive control, is based on the work of Ratain and co-workers 10. 

Gallo and Birtwistle Page 3

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



After evaluation of a series of linear and nonlinear regression models, they found that a 

nonlinear Sigmoid Emax-type model best characterized etoposide-induced depression of 

white blood cells [WBC] and etoposide plasma concentrations, here measured at 24 hours of 

a 72 hour continuous infusion. As is common in these analyses, a host of patient covariates 

are statistically analysed to determine whether they affect the PK or PD. In this case, 

albumin was a factor. The model was;

where the n and p subscripts refer to the nadir and pretreatment WBC, respectively, ALB = 

serum albumin concentration and C = the 24-hour etoposide plasma concentration. Another 

equation, based on PK, related the 24-hour concentration to the dose, and thus, successive 

cycles of therapy could be dose-adjusted based on measurements from the preceding cycle. 

Characteristic of these types of analyses are the use of statistical tools, such as training and 

validation patient datasets and Bayesian inference.

As stated earlier the level of sophistication in dosage regimen design of anticancer drugs has 

paralleled advances in PK/PD modeling with many studies utilizing population-based PK 

and PK/PD models. Population-based PK/PD modeling emanated from the desire to account 

for interpatient variability and to provide a means to incorporate both dense and sparse data 

– standard in Phase II and III investigations - into a single modeling paradigm 11. NONlinear 

Mixed-Effects Modeling and the program NONMEM have been at the heart of these efforts, 

although other population-based programs, such as ADAPT V and Monolix, are often 

used 12. The typical strategy is to develop a PK or PK/PD model from all the measured 

plasma drug concentrations without the use of patient covariates, and then using various 

statistical tools, such as general additive modeling, obtain a model that defines relationships 

between key PK variables – total clearance is most common – and significant covariates in 

the form of an algebraic equation 13. The covariates may be categorical or continuous 

variables and include a wide range of patient variables such as body size to genotype. An 

example of a PK parameter-covariate relationship comes from a study on topotecan, a 

topoisomerase I inhibitor that causes dose-dependent myelosuppression 14. Through a 

standard model building procedure, the typical value of clearance [TVCL] was;

where weight [WT], height [HT], serum creatinine [SCR] and sex [0 for female and 1 for 

male] were patient-specific covariates that were used to calculate each patients total 

clearance. The latter could then be used to adjust dose to achieve a desired systemic 

exposure [i.e. AUC] of topotecan or as was done here used to define a Sigmoid Emax model 

relating AUC to the absolute neutrophil count [ANC]; the latter was used as a means to set 

the dose for a targeted degree of ANC suppression. These examples illustrate the primary 

operating domain for PK/PD analyses in clinical oncology in which the depth of PD 
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analyses was often limited, and since mechanistic modeling was not a primary goal, the 

stage is set for new approaches that may be applicable to next generation anticancer drugs.

PK Models

As indicated above, PK models or associated drug concentrations can provide the basis to 

design customized anticancer drug regimens. In the clinical setting, population-based PK 

models have taken precedence in this approach. Most often the PK model is a classic 

compartmental model based on measured plasma drug concentrations; however increasing 

interest in physiologically-based [PB] PK models is due to their mechanistic underpinnings 

and species-to-species scalability 15. PBPK models are tissue-centric and offer a means to 

specify tumor drug concentrations, even intracellular drug concentrations 16. This data can 

be obtained with in vitro cell studies and whole animal studies, typically mice bearing 

xenografts. In addition to such data-driven approaches to build PBPK models there are 

significant efforts to build models in silico based on a paucity of experimental data 17. The 

underlying physiological nature of PBPK models and the use of a drug’s physicochemical 

attributes facilitates these efforts. The mechanistic nature of PBPK models provides a logical 

and quite compatible link to network PD or ePD models described below 18, 19. Regardless 

of the type of PK model, its link to the ePD model provides a unified modelling platform to 

consider both PK and PD variables in drug regimen design. This modelling paradigm is a 

powerful tool that is pharmacologically based to assess the intricacies of dose- and time-

dependent events that impact the efficacy of drug therapy.

Evolution of Pharmacodynamic Models

Pharmacodynamic models of anticancer drugs, as with other therapeutic categories, have 

relied on biomarker-based models 20. Typically, a PD biomarker is the drug target protein, 

such as a kinase, or a singular downstream signalling protein that can be readily measured in 

patient samples. Unless tumor samples are available – not a routine endeavour – a surrogate 

cell or circulating tumor cell from blood would be the sample source. This mono-

dimensional biomarker mind-set reflected the clinical desire to identify a readily available 

tool to demonstrate target engagement as a surrogate for drug efficacy. Of course the 

simplicity and convenience of a biomarker is not disputed, but its value is questioned given 

the complex nature of drug action, and how efficacy is dependent upon the protein network 

downstream of the target. Acknowledgement of the complex nature of drug action opens the 

door to systems-based analyses that are being forged on various fronts. It is important here 

to distinguish between systems-based methods to personalize drug therapy based on 

genomic-centric methods versus those that use dynamic models, referred to as enhanced PD 

or ePD models 18, 19. The genomic-centric methods will analyse patient data from one or 

many different genomic platforms [i.e. gene expression, RNAseq, exome sequencing, 

miRNA] to categorize patients into signatures or clusters that can be associated with drug 

responders or non-responders 21–23. Integration of drug sensitivity data often from in vitro 

cell sensitivity assays with the patient clusters or molecular signatures provides a pathway to 

recommend active drugs. The appeal of genomic-centric methods is understandable given 

the increasing availability of genomic platforms including lower costs and sophisticated 

bioinformatics techniques to parse the rich data. Another interesting network approach to 
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design combination chemotherapy incorporated different types of data – genetic, proteomic 

and phenotypic – to demonstrate enhanced drug sensitivity could be obtained by sequencing 

drugs that caused EGFR inhibition and DNA damage in triple negative breast cancer 

cells 24. However, neither the genomic-centric nor the latter approaches utilized PK data and 

thus, specification of drug doses and frequency of administration, not to mention the 

potential of drug-drug interactions is limited. Nonetheless, as will be presented below, the 

initiation of personalized drug therapy with genomic analyses serves an important function 

in ePD methods so it is likely that static genomic and dynamic model-based methods will 

continue to merge or at least share certain attributes.

Systems-based models of drug action are based on the simple acknowledgment that cellular 

decisions to live or die are not accurately predicted from just the measurement of target 

inhibition even when the drug is selective for one receptor 19. Particularly in cancer where 

patients possess numerous genetic and protein abnormalities that affect cell signalling and 

terminal decisions of death, a broader systems view of drug action seems prudent. The 

desirability of a systems pharmacological view of drug action embodied in network or ePD 

models is counter-balanced by the challenges of building such models, yet the ability to 

understand how dose-dependent and time-dependent variables influence system behaviour 

and ultimately phenotypic response is a meritorious objective. As mentioned above the 

barriers to obtain genomic data from each patient will recede, and thus, both genomic-

centric and ePD-based model methods gain momentum to continue efforts to personalize 

therapy; however the more challenging task for model-based approaches is to obtain 

multiplex protein measurements. It is enzyme activities and, for example, phosphorylation 

states of proteins that determine drug response, and are a highly valued – if not essential - 

asset to define models and estimate model parameters. In lieu of patient-specific protein 

measurements, a template on how ePD models can be constructed and applied to the design 

of combination drug dosing regimens has been offered 18. A base population-based 

biochemical model can be formulated from public databases – like COSMIC and TCGA 25 – 

and current literature that will likely consist of some protein measurements. At this stage the 

model may be referred to as a reference or canonical biochemical model of a particular 

cancer type, for example, brain tumors, that defines the protein-protein interactions in the 

absence of any drug intervention. The extent of the available protein data will determine the 

degree to which genomic data is used to set initial protein concentrations. One convention 

that can be used is predicated upon the following steady-state model of transcription and 

translation;

where mss, pss = steady-state mRNA and protein levels, respectively, vtc = gene transcription 

rate, kdm, kdp = degradation rate constants for mRNA and proteins, respectively, and kts = 

translation rate constant. For example, using RNAseq data to estimate steady-state mRNA 

levels and previously available 26 degradation and translation rates, the transcription rate and 

steady-state protein concentration can be calculated. It is appreciated that there can be biases 

Gallo and Birtwistle Page 6

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that distort the linearity and quantitative nature of such transcriptomic data, but newer 

techniques are emerging that may improve such features. The calculated steady-state protein 

concentration is then set equal to the initial (total, e.g. phosphorylated plus 

unphosphorylated) concentration of that protein in the biochemical network. Of course, the 

resulting estimates of protein concentrations are only as good as the rate constant estimates, 

and those rate constants are certainly cell and tissue-type dependent. Moreover, such a 

model assumes a linear correlation between mRNA and protein levels, which is now quite 

well understood to only hold in some but not all cases 27–30, albeit a variety of studies 

typically report reasonably high correlation (~50–75%). Lack of correlation between mRNA 

and protein levels is presumably due to translational regulation, which is becoming better 

understood to play major roles in gene expression 30. More experiments in the cell type or 

tissue of interest will bring additional certainty to the values of the translational rate 

constants that are most appropriate for the modelling task at hand. Yet, as discussed above, 

this requires delving into protein-level measurements, so a cost-benefit analysis is prudent to 

determine whether such assumptions are reasonable or not given the particular modelling 

question. A second methodology is then used to set rate constants for biochemical reactions 

such as phosphorylation (or other post-translational modification), trafficking/transport, 

dimerization, oligimerization, etc. Here again genomic data are more abundant, but protein 

data is of course preferred, and in particular, dynamic responses to perturbations. Regardless 

of the amount or type of data available, an overriding criteria is that the chosen range of 

values for biochemical network parameters; (i) provide system behaviour consistent with 

experimentally known characteristics, (ii) are thermodynamically consistent, and (iii) are in 

the range of physically feasible values (e.g. on rate constants of bimolecular association 

reactions are not faster than the diffusion limit). Typically, simulations done in the absence 

and presence of growth factors and other perturbations, calibrated to published data, are 

needed. Distinctions of the data source are important and can readily be appreciated when 

one considers the availability of data in cells, preclinical animal models and patients. The 

canonical biochemical models will likely rely on all sources; cell, animal tumors and 

patients, and is a limitation that is not easily rectified at the current time. However, being 

cognizant of the different data sources will permit more rapid model revisions as new 

relevant data sources become available. Nonetheless, this inherent limitation of different 

scales of data can be seen as an Achilles heel of ePD modeling that unless the data are 

obtained from the same source, the models will be hard to define and the associated 

predictions may be less accurate. Naturally, more measured protein concentrations in the 

absence and presence of a drug in the pertinent tumor type will be useful to define the model 

structure and model parameters.

Even with data-driven model building, the size of systems based models causes parameter 

identifiability problems that have been fittingly referred to as sloppiness by Gutenkunst and 

coworkers 31. In practical terms this refers to the presence of multiple parameter sets that 

provide equal predictability of certain model outputs. It is important for the modeling team 

to appreciate this potential limitation and recommend additional experiments to better refine 

the system when warranted; however, as these investigators noted, rigorous experiments to 

constrain the system may not be an efficient use of resources. Another issue relevant to 

network model building is where do you draw the boundaries [see Figure 1]? Since cell 
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signalling pathways may be viewed as interconnected modules where do you terminate 

protein reactions or continue to branch to another pathway? Which interconnecting and 

feedback pathways are needed to maintain model fidelity? These decisions relate to model 

reduction and it seems that ultimately network PD models will contain both biochemically 

detailed and semi-empirical components.

Given a canonical biochemical model for a particular cancer type it can now be 

individualized with additional patient data. Without protein measurements in a specific 

patient and wanting a predictive tool to design chemotherapy, one again relies on genomic 

data to refine the canonical model into a patient-based model. The same conventions used to 

generate the initial protein concentrations and reaction rates for the canonical model are now 

applied using each patient’s genomic data. The resultant patient-based biochemical model 

can now be used in two distinct manners. First, in lieu of a set of desired drugs, global 

sensitivity analyses can be completed to identify fragile nodes that can be ranked for 

druggability. We have used Sobol sensitivity analyses in this context that produces a ranked 

list of sensitivity coefficients that are manually evaluated for potential drugs 18. PK models 

for the desired drugs are produced from literature information and linked to the biochemical 

model creating a PK/ePD model. Knowledge of the drug’s mechanisms of action is essential 

to modify the biochemical reactions consistent with the inhibitory mechanism. The PK/ePD 

model can now be used as a simulation tool in different capacities to determine drug 

therapy. In an agnostic manner, a control algorithm can be applied to the PK/ePD model to 

derive which drugs, doses and frequency of administration can be used to achieve a desired 

PD goal; for example, 80% inhibition of selected proteins. To implement this method, the 

controller has to be supplied with limits of drug doses and ranges for frequency of 

administration as well as target criteria for optimization. For example, the fractional 

inhibition of phosphorylated ERK over time could be set as a criterion for drugs acting 

through the MAPK pathway. The real power of the controller-based approach is when 

designing multidrug regimens since there can be an unwielding number of design options to 

assess “manually”. The PK/ePD model can also be used as a simulation tool without using 

sensitivity analyses if a desired list of drugs is provided. Here drug doses and schedules 

could either be varied systematically – without the use of the controller - to define treatment 

regimens based on desired outcomes or defined with the controller strategy.

A number of these ideas have been documented in a recent paper highlighting a general 

design pipeline for customized chemotherapy using the VEGFR network as an example 18. 

The design pipeline that incorporated both the Sobol sensitivity analyses and a controller-

based algorithm to produce a PK/ePD model output are shown in Figures 2 and 3. The most 

compelling features of the drug regimens are the non-uniform dosing schedule – no drug is 

administered daily – and the relatively low doses used to achieve the target 80% inhibition 

of both pAKT and pERK, two PD criteria. The model was also used to query how common 

genetic abnormalities, such as loss of PTEN or a PI3K mutation, would influence the 

multidrug schedules. In each case, the PI3K inhibitor – BKM120 – was not preferentially 

selected, as would be by a genomic-centric analysis. The controller is able to consider drug 

toxicity, and in the VEGFR project, total drug doses formed a penalty function that 

counterbalanced the efficacy component based on pAKT and pERK inhibition. One can 

imagine more sophisticated toxicity models that could be used in conjunction with target 
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organ models to quantitatively define therapeutic windows as suggested in the cell-type 

specific PK/PD modeling approach. In general, the controller-based regimens were not 

intuitive and suggest this type of model-based chemotherapy offers a fresh perspective on 

dosing regimen design.

Conclusion

Drug development and dosage regimen design both benefit from PK/PD analyses and 

models. There is an increasing reliance on PK/PD to both preserve valuable financial 

resources and expedite the drug development pipeline. This advantage may be enhanced by 

the earlier use of PK/ePD models – possibly through the use of virtual patients – that 

provides a continuum to translate preclinical findings to patients and benefit the decision 

process. The rational design of anticancer drug regimens has also made use of PK/PD 

models and will likely grow as more diverse targets and molecularly targeted agents are 

developed. Both standard PK/PD and newer PK/ePD models can be applied throughout the 

drug development pipeline and to patient therapy post-approval. Traditional PD models rely 

on biomarkers whereas ePD models are broader and more detailed. It is premature to favor 

one modeling technique over the other and unnecessary as each can have complimentary 

roles. For instance, an initial ePD model may identify key nodes in the system that permit 

model simplification to a more manageable biomarker type model that can be more readily 

supported with patient data. At the same time, cancer biology and drug action are 

sufficiently complex that to capture these processes for each patient may require a 

mechanistic ePD model. Moreover, since drug combinations are the norm, their interactions 

may not be fully assessed with simple models. Certainly ePD models will require more data 

and modeller skill to bring to fruition, and ultimately to gain acceptance by the scientific 

community. Nonetheless, their mechanistic appeal and integration with systems biology 

should support a rich scientific conversation on how such models are built and applied to 

both drug development and dosage regimen design.
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Figure 1. 
Hypothetical cell signalling pathways that form the basis of an enhanced pharmacodynamic 

[ePD] model. Each shape is a protein with the rectangles representing receptor tyrosine 

kinases within 3 parallel and interconnected “units”. The central unit is the drug target 

pathway. Should the ePD model be confined to the central unit or also include the 2 other 

units? This idealized network illustrates a potential problem in defining the boundaries of 

the model.
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Figure 2. 
Pipeline to construct and utilize PK/ePD models to design multidrug regimens. The 

parameter estimation, sensitivity analyses and optimization-based controller steps are 

distinct computational steps and can be extensive. Modified from reference 18.
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Figure 3. 
A) Optimization-based control multidrug regimen applied to the VEGFR biochemical 

pathway for a 28-day cycle. The five drugs available are shown in the legend. A relative 

dose of 0 is the lowest dose possible and a value of 1 the maximum defined from clinical 

data. B) The corresponding pERK and pAkt profiles expressed as the fractional response. 

The profiles show some adulations – particularly for pERK – but both proteins met the 80% 

inhibition criteria set for the controller. From reference 18.
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