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Communication: Capturing protein multiscale thermal fluctuations
Kristopher Opron,1 Kelin Xia,2 and Guo-Wei Wei1,2,3,a)
1Department of Biochemistry and Molecular Biology, Michigan State University,
East Lansing, Michigan 48824, USA
2Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, USA
3Department of Electrical and Computer Engineering Michigan State University,
East Lansing, Michigan 48824, USA

(Received 21 April 2015; accepted 21 May 2015; published online 2 June 2015)

Existing elastic network models are typically parametrized at a given cutoff distance and often fail to
properly predict the thermal fluctuation of many macromolecules that involve multiple characteristic
length scales. We introduce a multiscale flexibility-rigidity index (mFRI) method to resolve this
problem. The proposed mFRI utilizes two or three correlation kernels parametrized at different length
scales to capture protein interactions at corresponding scales. It is about 20% more accurate than the
Gaussian network model (GNM) in the B-factor prediction of a set of 364 proteins. Additionally,
the present method is able to deliver accurate predictions for some large macromolecules on which
GNM fails to produce accurate predictions. Finally, for a protein of N residues, mFRI is of linear
scaling (O(N)) in computational complexity, in contrast to the order of O(N3) for GNM. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4922045]

Proteins are among the most essential biomolecules for
life. Many protein functions, such as structural support, cata-
lyzing chemical reactions, and allosteric regulation are strongly
correlated to protein flexibility.14 Protein flexibility is an intrin-
sic property of proteins and can be measured directly or indi-
rectly by many experimental approaches, such as X-ray crys-
tallography, nuclear magnetic resonance (NMR), and single-
molecule force experiments.10 Theoretically, protein flexibil-
ity can be computed by normal mode analysis (NMA),7,15,23,33

graph theory,19 rotation translation blocks (RTB) method,9,31

and elastic network models (ENM),4–6,16,24,32 including
Gaussian network model (GNM)5,6 and anisotropic network
model (ANM).4 A common feature of the above mentioned
time-independent methods is that they resort to matrix diago-
nalization procedure. The computational complexity of matrix
diagonalization is typically on the order of O(N3), where N is
the number of elements in the matrix. Such a computational
complexity calls for new more efficient strategies for the
flexibility analysis of large biomolecules.

It is well known that NMA and GNM do not work well
for many macromolecules. Park et al. had collected three
sets of structures to test performance of NMA and GNM
methods.27 It was found that both methods fail to work and
deliver negative correlation coefficients for many structures.27

The mean correlation coefficients (MCCs) for the B-factor
prediction of small-sized, medium-sized, and large-sized sets
of structures are about 0.480, 0.482, and 0.494 for NMA,
respectively.26,27 The GNM preforms slightly better, with the
mean correlation coefficients of 0.541, 0.550, and 0.529 for
the above test sets.26,27 Obviously, there is a pressing need
to develop innovative approaches for biomolecular flexibility
analysis.

a)Author to whom correspondence should be addressed. Electronic mail:
wei@math.msu.edu

Recently, we have proposed a few matrix-decomposition-
free methods for flexibility analysis, including molecular
nonlinear dynamics,36 stochastic dynamics,35 and flexibility-
rigidity index (FRI).26,34 Among them, FRI has been intro-
duced to evaluate protein flexibility and rigidity. The funda-
mental assumptions of the FRI method are as follows. Protein
functions, such as flexibility, rigidity, and energy, are fully
determined by the structure of the protein and its environment,
and the protein structure is in turn determined by the relevant
interactions. Therefore, whenever the protein structure is avail-
able, there is no need to analyze protein flexibility and rigidity
by tracing back to the protein interaction Hamiltonian. Conse-
quently, the FRI bypasses the O(N3) matrix diagonalization.
Our initial FRI34 has the computational complexity of O(N2)
and our fast FRI (fFRI)26 based on a cell lists algorithm3 is
of O(N). The FRI and the fFRI have been extensively vali-
dated by a set of 365 proteins for parametrization, accuracy,
and reliability. The parameter free fFRI is about 10% more
accurate than the GNM on the 365 protein test set and is
orders of magnitude faster than GNM on a set of 44 proteins.
FRI is able to predict the B-factors of a HIV virus capsid
(313 236 residues) in less than 30 s on a single desktop CPU
(AMD Phenom II X6 1100T), which would require GNM
more than 120 yr to accomplish if the computer memory is
not a problem.26 See the supplementary material for details.1

Nevertheless, there are structures for which FRI does
not work either. In fact, structures that fail NMA and GNM
are likely to be difficult for the original FRI method as
well. One such structure is pictured in Figure 2 where the
GNM method fails to predict the high flexibility of a hinge
region in calmodulin with any cutoff distance. There are a
number of reasons for this and other types of failure. Crystal
environment, solvent type, co-factors, data collection condi-
tions, and structural refinement procedures are well-known
causes.17,21,22,30
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However, there is one more important cause that has not
been discussed in the literature to our best knowledge, namely,
multiple characteristic length scales in a single protein struc-
ture. Indeed, contrary to small molecules, macromolecular
interactions have a wide variety of characteristic length scales,
ranging from covalent bond, hydrogen bond, van der Waals
bond, residue, alpha helix and beta sheet, domain, and pro-
tein scales. Protein flexibility is intrinsically associated with
protein interactions and thus must have a multiscale trait as
well. When the GNM or FRI method is parametrized at a
given cutoff or scale parameter, it captures only a subset of
the characteristic length scales but inevitably misses the other
characteristic length scales of the protein. Consequently, none
of them is able to provide an accurate B-factor prediction.

The multiscale flexibility-rigidity index (mFRI) is con-
structed to capture the multiscale collective motions of macro-
molecules. We utilize multiple correlation kernels, with each
kernel being parametrized at specific scale to characterize the
multiscale flexibility of macromolecules. The nth flexibility
index of the ith (coarse-grained) particle is given by

f ni =
1N

j=1 w
n
jΦ

n(∥ri − r j∥; ηn
j )
, (1)

where wn
j is an atomic type dependent parameter, Φn(∥ri

− r j∥; ηn
j ) is a correlation kernel, and ηn

j is a scale parameter.
Here, ri and r j are the coordinates for ith and jth particles,
respectively. We seek the minimization of the form
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where {Be
i } are the experimental B-factors. We use general-

ized exponential kernels26,34
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)κ
, κ > 0 (3)

and generalized Lorentz kernels

Φ
n(∥r − r j∥; ηn

j ) =
1

1 +
(∥r − r j∥/ηn

j

)υ , υ > 0. (4)

In principle, all parameters can be optimized. For simplicity
and computational efficiency, we only determine {an} and b
in the above minimization process. In this work, we limit the
number of kernels to at most three and set wn

j = 1. Both gener-
alized exponential kernels and generalized Lorentz kernels are
employed. More detailed description of the mFRI is given in
the supplementary material.1

To understand the multiscale behavior of flexibility anal-
ysis, we consider a test set containing 364 protein structures
whose Protein Data Bank (PDB) identities are listed in the
literature26 and it contains test sets used in GNM studies.27

This test set omits one structure present in previous FRI studies
(PDB ID: 1AGN) due to unrealistic B-factor data. Our goal
is to examine how an additional kernel with a large length
scale impacts the flexibility analysis. To this end, we consider
two smooth Lorentz type of kernels with υ = 3. We explore
a number of scale combinations as shown in Fig. 1, which
plots the MCC values for B-factor prediction on the set of
364 structures. The low MCC values on the diagonal line

FIG. 1. An illustration of multiscale behavior in protein flexibility analysis.
Two Lorentz kernels (υ = 3) are used. Their scale values, η values, are listed
along the horizontal and vertical axes. The mean correlation coefficient value
for B-factor prediction on a set of 364 proteins is shown in each cell of the
matrix and color coded for convenience with red representing the highest
correlation coefficients and green the lowest. Obvious, the combination of
a relatively small-scale kernel and a relatively large-scale kernel delivers
best prediction, which indicates the importance of incorporating multiscale
in protein flexibility analysis.

indicate that two-scale methods are always better than a single
scale one. The best results are achieved at the combination
of a relatively small-scale kernel and a relatively large-scale
kernel. This behavior proves the importance of incorporating
multiscale in the biomolecular flexibility analysis. The best
MCC for the test set is 0.67, which is about 20% better than
the best GNM prediction and about 6% improvement over our
single scale FRI approach.

The improvement in the MCC for B-factor prediction on
a set of 364 proteins discussed above obscures the fact that the
proposed multiscale method is able to capture the multiscale
behaviors in many structures that fail the original FRI and
GNM. In the rest of this paper, we demonstrate utility of the
proposed multiscale method by a few case studies. A three-
scale FRI is employed.

Protein hinge regions have been shown to be correlated
with active sites and catalysis in enzymes. Flexibility has
a major role in specificity of binding of a protein to other
proteins, nucleic acids, or other molecules. An active site or
docking region that is more flexible will accommodate more
varied substrates or partners while more rigid domains are
more specific. Protein hinges are also found separating large
domains of proteins. In this context, the hinges can be very
important for protein conformational changes. The protein
featured in this section, calmodulin, is a good example of a
hinge that affects both structure and function.

The central region of calmodulin shown in Figure 2 is
a long α-helix which is unwound or kinked at the middle
when no calcium is bound to the two distal metal coordinating
domains. In both forms, with or without calcium bound, this
helix retains a large degree of flexibility based on B-factor
values from the PDB files (1CLL and 1CFD).
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FIG. 2. Top, the structure of calmodulin (PDB ID: 1CLL) visualized in
Visual Molecular Dynamics (VMD)18 and colored by experimental B-factors
(left), mFRI predicted B-factors (middle), and GNM predicted B-factors
(right) with red representing the most flexible regions. Bottom, the experi-
mental and predicted B-factor values plotted per residue. The GNM7 is for
the GNM method with a cutoff distance of 7 Å. Clearly, GNM misses the
flexible hinge region. The mFRI is parametrized at υ1= 3, η1= 3 Å, υ2= 3,
η2= 7 Å, κ3= 1, and η3= 15 Å.

Many tools exist for the prediction and analysis of hinges
in proteins using bioinformatics,13 graph theory,11,20,28 and
energetics.12 The proposed mFRI has capabilities similar to
those in these tools. The mFRI can be used to predict hinge
regions by high FRI values or predicted B-values.

A comparison of mFRI method and GNM for the B-
factor prediction of calcium-bound calmodulin is displayed in
Figure 2. B-factor prediction by single kernel FRI and GNM is
unable to accurately predict the hinge region in the middle of
the protein with any parameter. Two- and three-kernel based
mFRI methods, on the other hand, are much more accurate
in the hinge region. As more kernels are added, the accuracy
can be seen to grow but sufficient accuracy is achieved at three
kernels.

We have shown in our supplementary material1 that a
similarly good B-factor prediction for calmodulin type of
structures can be achieved by the original FRI method if the
crystal effect is taken into consideration. This result suggests
that the proposed mFRI method may be able to take care some
crystal effects.

Cyan fluorescent protein (CFP), shown in Figure 3, is
a homolog of the famous green fluorescent protein (GFP).
Isolated from the crystal jellyfish in the 1990s,29 GFP enabled
a revolution in biochemistry by allowing the tagging and
tracking of a wide range of molecules. CFP was found later in
Anthozoa coral species which have turned out to be a good
source of fluorescent proteins with varied emission spectra.25

In this example, we examine the flexibility of an engineered
CFP from Clavularia coral2 (PDB ID: 2HQK), mTFP1. It is
clear in Figure 3 that GNM B-factor predictions contain a large
error around residues 50-60 which is very pronounced at the
recommended cutoff of 7 Å and is still somewhat problematic
when the cutoff is changed to 8 Å, the best alternate parameter
found by searching incrementally outward from 7 Å in either
direction. mFRI on the other hand has no issue with this
particular region. Upon further inspection, it is clear that the

FIG. 3. Top, a visual comparison of experimental B-factors (left), mFRI
predicted B-factors (middle), and GNM predicted B-factors (right) for the
engineered cyan fluorescent protein, mTFP1 (PDB ID:2HQK). Bottom, the
experimental and predicted B-factor values plotted per residue. The GNM
naming convention indicates the cutoff used for the GNM method in Å,
i.e., GNM7 is the GNM method with a cutoff distance of 7 Å.

offending region is the small, alpha-helical region suspended
in the center of the beta-barrel. It is not surprising that this
sort of configuration would be highly cutoff parameter depen-
dent in a scheme such as GNM, which has hard cutoffs for
connectivity. It would appear that this structure is dominated
by short range interaction but the region of residues 50-60 is
affected to a large degree by mid-range interactions, i.e., there
are at least two important scales of interaction in this case. It
follows then that mFRI, which has kernels to capture short-
and mid-range interactions, would perform better than GNM7
or GNM8 parameterizations alone in B-factor predictions,
Figure 3, which is exactly what we see from the results.

A similar situation exists with the structure 1V70, a prob-
able antibiotic synthesis protein, which is shown in Figure 4.
As in the last example, the problematic portion for B-factor
prediction comes at the end of a protein chain. In this case,
there is an overestimation of flexibility for residues 1-10
when using GNM. Again, varying parameters from the rec-
ommended 7 Å results in marginally better results; however,
no parametrization is able to reach the accuracy of mFRI.

The final example is a biologically important molecule,
ribosomal protein L14, a component of the 60S ribosomal
subunit.8 Depicted in Figure 5, L14 is a structurally diverse
protein containing regions of alpha helix, beta-barrel, parallel
beta strands, and a beta-hairpin motif. The pattern of flexibility
predicted by GNM for this structure is shown to be over-
exaggerated, i.e., rigid areas are predicted to be more rigid
than they actually are and vice versa. This pattern exists in
most GNM results due to the use of a hard cutoff in the
Kirchhoffmatrix. Such a hard cutoffwill inevitably lead to the
overestimation of bond importance near the edge of the cutoff;
therefore, if a large number of interactions exist for a particular
atom near the cutoff point, there is likely to be a large error in
the estimation of flexibility for that atom. This is likely what is
happening with the errors in GNM calculation of the proteins
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FIG. 4. Top, a visual comparison of experimental B-factors (left), mFRI pre-
dicted B-factors (middle), and GNM predicted B-factors (right) for a probable
antibiotic synthesis protein (PDB ID:1V70). Bottom, the experimental and
predicted B-factor values plotted per residue.

FIG. 5. Top, a visual comparison of experimental B-factors (left), mFRI
predicted B-factors (middle), and GNM predicted B-factors (right) for the
ribosomal protein L14 (PDB ID:1WHI). Bottom, the experimental and pre-
dicted B-factor values plotted per residue.

in Figures 3–5; the protein at the end of the chain may be near
the edge of the cutoff distance for many interactions with the
bulk of the proteins. While adjusting GNM’s cutoff distance
may temper the error being introduced, it cannot eliminate
it completely unless they change to a soft-decaying kernel
method such as FRI. Nevertheless, soft-decaying kernel based
methods can only alleviate the problem. They do not deliver
satisfactory B-factor predictions unless a multiscale strategy
is employed. We note that it is not obvious how to incorporate
a multiscale strategy in matrix diagonalization based methods.
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