THE JOURNAL OF CHEMICAL PHYSICS 142, 214113 (2015)

® CrossMark
¢

A comparison of weighted ensemble and Markov state

model methodologies

Haoyun Feng,"® Ronan Costaouec,>” Eric Darve,? and Jesus A. Izaguirre’
'Department of Computer Science and Engineering, University of Notre Dame, Notre Dame,
Indiana 46556, USA

’Mechanical Engineering Department, Stanford University, Stanford, California 94035, USA

(Received 27 January 2015; accepted 19 May 2015; published online 5 June 2015)

Computation of reaction rates and elucidation of reaction mechanisms are two of the main goals
of molecular dynamics (MD) and related simulation methods. Since it is time consuming to study
reaction mechanisms over long time scales using brute force MD simulations, two ensemble methods,
Markov State Models (MSMs) and Weighted Ensemble (WE), have been proposed to accelerate
the procedure. Both approaches require clustering of microscopic configurations into networks of
“macro-states” for different purposes. MSMs model a discretization of the original dynamics on
the macro-states. Accuracy of the model significantly relies on the boundaries of macro-states. On
the other hand, WE uses macro-states to formulate a resampling procedure that kills and splits
MD simulations for achieving better efficiency of sampling. Comparing to MSMs, accuracy of
WE rate predictions is less sensitive to the definition of macro-states. Rigorous numerical exper-
iments using alanine dipeptide and penta-alanine support our analyses. It is shown that MSMs
introduce significant biases in the computation of reaction rates, which depend on the boundaries
of macro-states, and Accelerated Weighted Ensemble (AWE), a formulation of weighted ensemble
that uses the notion of colors to compute fluxes, has reliable flux estimation on varying definitions
of macro-states. Our results suggest that whereas MSMs provide a good idea of the metastable sets
and visualization of overall dynamics, AWE provides reliable rate estimations requiring less efforts
on defining macro-states on the high dimensional conformational space. © 2015 AIP Publishing

LLC. [http://dx.doi.org/10.1063/1.4921890]

I. INTRODUCTION

Computation of reaction rates in the context of molecular
dynamics (MD) has given rise to an outstanding number of
publications over the past decades. Although it is possible to
characterize reaction rates from a theoretical standpoint, accu-
rate computations of the corresponding quantities by classical
numerical methods turn out to be very costly as the size of the
molecule increases. Therefore, a host of numerical methods
designed to improve the efficiency of such computations have
been developed. We refer to Ref. 1 for a comprehensive survey.

Herein, we compare two methodologies that have at-
tracted attention over the past few years: the so-called
Weighted Ensemble (WE) and Markov State Models (MSMs)
methodologies (as an example, see Refs. 2-5 and Refs. 6-8,
respectively). Both of these methodologies rely on some under-
lying coarse partition of the state space. Thereby is meant
that the state space, the set of microscopic configurations
characterizing the molecule’s state, is split into a collection
of subsets, the so-called macro-states, each of which gathers
close microscopic configurations. Such macro-states are then
used to speed up or, equivalently, lower the cost of reaction
rates computations.
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The ways MSMs and WE methodologies make use of
this partition are very different. In the former case, it is used
to build some coarse dynamics from statistics collected over
short-time trajectories of the original system. The resulting
representation of the system’s behavior is a reduced dynamics
on the collection of macro-states. The reaction rate of the
original dynamics is then approximated by that of the coarse
one. In the latter case, the perspective is somehow different.
WE methodologies do not involve such a thing as a reduced
dynamics. They are intrinsically based on the simulation of
multiple replicas of the original microscopic dynamics over
long time intervals. The coarse partition is used in such a
way as to maintain the number of replicas in each macro-
state approximatively constant along the simulation. At fixed
computational cost, this is achieved in an unbiased manner
by killing or merging replicas at fixed deterministic times
whilst allowing these replicas to carry different probabilistic
weights, a step which is referred to as resampling. The resulting
collection of correlated trajectories together with their final
probabilistic weights is then used to compute any macroscopic
property of the system that can be expressed as an average with
respect to the equilibrium distribution. When defined in terms
of flux, the reaction rate is such a property.

In this paper, we study the way the definition of the under-
lying coarse partition affects the accuracy of both methods.
This is a crucial point since, in the case of complex molecules,

©2015 AIP Publishing LLC
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such a partition is necessarily rather coarse due to the limited
sampling on the high dimensional conformational space. Note
that, in addition, the degree of coarseness being fixed, there
are still many possible choices of partition left that corre-
spond to different possible locations of macro-states bound-
aries. We will, thus, aim at understanding in both frameworks
the way such parameters, global coarseness, and macro-state
boundary locations alter the accuracy of reaction rates compu-
tations. We show that WE methodologies are less sensitive
than MSMs methodologies to the definition of the underlying
macro-states.

In the context of MSMs as well as in the case of WE
methodologies, the several intrinsic sources of errors likely
to be modified by changes of the underlying partition are
singled out. On that ground, rigorous numerical experiments
are carried over in the case of two very simple protein-like
molecules, alanine dipeptide and penta-alanine. They illustrate
the fact that, having a definition of underlying fine partition,
both WE and MSMs generate good reaction rate estimations
that lie in reference confidence interval computed using brute
force method. However, accuracy of reaction rates computed
from MSMs does not maintain if incorrectly splitting the state
space, whereas WE estimations remain reliable on varying
definitions of macro-states.

The outline of the article is as follows. In Sec. II, the gen-
eral mathematical framework is first recalled. The partition’s
influence on reaction rates computations is studied in each case.
Section III focuses on the case of Markov state models. It recalls
the way such reduced models are built and how such a building
results in two main sources of error in reaction rates estimation.
Section IV deals specifically with WE methodologies. It sums
up the expected properties of such methods and investigates
as well the way their performance depends on the underlying
partition. Inthis article, we concentrate on a particular version of
the Accelerated Weighted Ensemble (AWE) methodology. It is
based on two features: the use of colors to differentiate walkers
and that of resampling as already briefly mentioned above. Con-
trary to the case of MSMs, there is only one kind of error in the
case of AWE: the statistical variance. Section V compares accu-
racy of folding rates estimated by AWE and MSM, considering
two molecules: alanine dipeptide and penta-alanine. Itis shown
that, in the case when the partition is coarse (a situation consis-
tent with numerical practice), the location of boundaries is the
crucial determinant of accuracy of MSMs. On the other hand,
refinements and shifts of the underlying coarse partition have
little influence on the accuracy of the reaction rates estimates
from AWE.

Il. THE UNDERLYING DIFFUSION

In this paper, we shall only consider the case when the
behavior of the underlying molecule is governed by the
Langevin dynamics. The state of the molecule at time ¢ is de-
noted by (Q;, P;) € (RZ)" X (R?,)d where d denotes the number
of atoms. For any 1 <i < d, variables Q! € R} and P} € R},
refer to the position and momentum of the ith atom, respec-
tively. The trajectory of the whole system is thus defined as
the solution of the following system of Stochastic Differential
Equations (SDE):
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dQ, = M~'P,dt
2 ; (D
dP, = -VV(Q,)dt — yM™"P,drt + /%dW,

where M denotes the mass matrix, y is the friction param-
eter and 8 = 1/(kgT) with kg and T referring to the Boltz-
mann constant and temperature, respectively. Process (W;),
is a Brownian motion on R3?. The process (Q;,P:);>0 is
Markovian. Detailed discussion on its infinitesimal generator
is included in Appendix A.

In practice, we do not deal with process (Q;, P;),>q itself
but with some discrete-time approximation of it resulting from
some discretization scheme of Eq. (1), namely, (Q%, P%"); 5o
where 6t denotes the time step of the discretization.

lll. MARKOV STATE MODELS
A. Principle and related errors
1. Principle

The main idea behind MSMs is that the exact dynamics of
the system can be approximated by a reduced model that relies
on a coarse partition of the underlying state space. Most often,
this partition involves only position variables. In other words,
it is assumed that the behavior of the physical system can be
studied by focusing on clusters of microscopic configurations,
the so-called macro-states or cells. The coarse partition is thus
defined as a collection of N subsets of R} (the macro-states)
denoted by IT := {Sy,...,Sn}. It satisfies

VI<i#j<Ns, SinS;=0and Uiieng Si=R). ()

From the original continuous-time dynamics, a Markov chain
on state space ITis built. Its transition matrix P = (P;;)1 <i,j<Ng
is inferred from short-time simulations of the original system
under P, (that is at equilibrium). In brief, we have

Pji = Pji(1) = Pp(Qr € Sj|Q0 € Sp), 3

where 7 is referred to as the lag time. Since this is a simple low-
dimensional dynamics, given the two metastable states A and
B, forward and backward fluxes can be computed exactly using
transition path theory (see Ref. 9). The way to proceed can be
described very briefly. First from the approximate transition
matrix P(7), a new matrix is built L(7) := P(7) — In,. In the
case when one aims at computing the forward flux, that is the
flux from A to B, the following linear system is solved:

ST Lu(@)fu) = —tifi € S\N(B)
fi(r) =0 ifi € N(B)

where N(B) ¢ S == {1,...,Ns} denotes the set of indexes of
macro-states whose union is equal to B. When parameter 7 is
small enough, the forward flux can then be computed as the
inverse of the mean first passage

B = (Y i) fi0)
ieEN(A)

where V) still denotes the equilibrium distribution associated
to P(7) (its first eigenvector properly renormalized) and N(A)
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the set of indexes of macro-states whose union is A. Of course,
the approximate backward flux vg”A(T) can be computed in a
similar manner.

In the very general case, when partition IT is refined uni-
formly, vg(7) tends to the exact value vg. However, such a
uniform refinement is not necessary. In particular, if there is
any information available about some privileged directions
or reaction paths, refining the partition along these is often
sufficient to guarantee the convergence to the exact value.

2. Empirical estimators

It is clear from the previous paragraph that MSMs are
intrinsically biased. The underlying partition at the very basis
of these methodologies results in a deterministic error vg
— vr(7). In practice, this is not the only source of error. One
has to cope as well with statistical error resulting from finite
sampling of the system. There are several ways to approximate
the transition matrix (3).

A most general method can be described in the following
manner. Suppose that we are possessed of M independent
trajectories of the system on time interval [0,7] with T > 7.
We seek to estimate P;;, that is the probability that a walker
initially within state S; bein S; at time ¢ = 7. For all trajectories,
we first compute the average number of transitions achieved
from S; to S; over time intervals of length 7. More precisely, it
is estimated by

T-t
Ligkes ok, es;3 @) (4)

| M
T—‘z'Z

k=1 s=

Cj,-(‘r,u)) =

where w indicates that this transition count is estimated by
discrete time approximation of Langevin dynamics equation
(1), {(QF)osi <1}, < <5y denotes the set of M independent rep-
licas already mentioned. 1y.; is equal to 1 if the statement {-}
is true, 0 otherwise. Transition probability P;;(7,w) is equal
to the transition count C;;(7,w) divided by the total amount of
time spent in S,

Cji(t,w)
20 Cri(rw)’
Because dynamics equation (1) is reversible, it is further
assumed that the MSMs shall satisfy the detailed balance

condition. An improved estimator (originating from Ref. 10)
of transition probability is

Pji(T,a)) =

Cji(T,O)) + C[j(T,(L))

&)

Pjt(T,w) =N

S

> Cui(r,0) + Cu(r,0)
k=1

In the end, the approximate value of the reaction rate is then
Vr(T,w), which is calculated from L(7,w) = P(1,w) — Ing.

3. Structure of the error

The total error for this class of methods can be decom-
posed in the following manner:

VR = Vr(T,0) = (vg = Vg(T)) + (Vvr(7) — vr(T,w)) .

J. Chem. Phys. 142, 214113 (2015)

There are thus two types of error.

e The term e|(I1,7) := vg — vg(7) is the structural error
related to the Markov state models methodology. It is
related both to the nature of the coarse partition IT and
to the presence of 7. It decays when the partition is
refined. The related convergence analysis can be found
in Refs. 11 and 12.

e The term ex(I1,7,w) = vg(7) — vr(1,w) will be
referred to as the statistical error. Its variance is related
to the width of some confidence interval. To quantify
this kind of error, we can separate the MD trajectories
into blocks and build multiple MSMs. The statistical
error is estimated by a constant times standard deviation
of vg(7)’s estimated from all MSMs.

IV. AWE METHODOLOGY
A. Principle and related errors

Weighted ensemble methodologies date back to the sem-
inal work in Ref. 2. The reaction rate is defined as the average
number of trajectories originating from the reactant state
AcC Rgd that enter the product space B C R;d per unit of time.
In Ref. 2, the first version of the weighted ensemble method-
ology was applied to the case of an out-of-equilibrium system.
The key idea of Ref. 2 is that of resampling. Such a procedure
relies on a coarse partition II that satisfies Eq. (2). Roughly
speaking, resampling is a procedure that, at some deterministic
times, either kills or merges replicas in each macro-state,
depending on whether such a macro-state is depleted or not.
It does not result in any bias because replicas are allowed to
carry different probabilistic weights. Note that, as a matter of
fact, there are numerous ways to adapt this general idea. It has
already been applied to a wide range of situations (see Refs. 4,
13, and 14, for instance) and, indeed, several versions of it have
been developed (see Ref. 3). In addition, it has been shown
that it can indeed be applied to a class of underlying dynamics
broader than expected (see Ref. 15).

The version we are going to focus on in this section orig-
inates from Ref. 1. It is closely related to the one studied in
Ref. 16. It couples two features: that of resampling as afore
described and that of colors, which is involved in the very
definition of the reaction rate in terms of trajectories when
no information about the past is available at time ¢ = 0. More
details about both are provided in the following. We refer the
reader interested in a more mathematical treatment of these
issues to Refs. 17 and 18.

1. Colors

The reaction rate is defined as the average number of
independent trajectories originating from A that enter B per
unit of time. It is the flux of replicas coming from A through
the boundary of B. As a consequence, in order to estimate the
reaction rate at some fixed time, we need information about
both the current positions of replicas and the metastable sets
they come from (either A or B). The latter is an information
about the past of trajectories.
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To keep track of it, an additional state variable has to
be introduced. This variable will be referred to as the color
of a replica (the term label is sometimes used as well). The
color associated to trajectory (Q,, P;);>¢ is denoted by (I;); »o.
It is a stochastic process such that, for ¢ > 0, I, = —1 if the
last metastable state visited by the trajectory is A and I, = 1
otherwise (the trajectory comes from B). The replica will be
said to be blue in the first case, red in the second. The reaction
rate is then the average flux of blue replicas across the boundary
of B per unit of time. The main difficulty linked with this
formalism is that at time ¢ = 0, there is no natural manner to
provide replicas in Rf]d \ (A U B) with some color. Here, we
will choose one based on an initial distribution fy(dg X dp
X di) (di refers to the canonical measure on {—1, 1}) that stands
for the push-forward measure of (Qy, Py, ly). Process (I;);>¢ is
then well-defined at all times.

The color method improves the WE method proposed in
Ref. 2, in which framework, each time a replica crosses the
boundary of B, it is killed and a new replica is issued on the
boundary of A: there are only blue walkers. This approach in
Ref. 2 has a drawback: the proper way to create new walkers on
the boundary of A is unknown. It has, thus, to be somehow esti-
mated, which may result in a bias. The color formalism does
not require such a hypothesis. The way blue walkers are created
on the boundary of A is exact: it coincides with the distribution
of red walkers entering A. In this context, whatever the initial
distribution fiy(dg X dp % di), after some time, the system as
a whole will reach some equilibrium characterized by a distri-
bution g(dq X dp X di) related to p and the forward committor
function (see Ref. 19). At equilibrium, two coupled out-of-
equilibrium systems compensate: the one associated to the
dynamics of blue replicas and the one associated to red ones.
As a consequence, this framework allows one to compute, in
an unbiased manner, quantities such as forward and backward
fluxes or free energy to which the out-of-equilibrium systems
described in Ref. 2 do not give any access.

2. Fluxes

Now that the concept of colors has been explained, we can
provide a more mathematical definition of the instantaneous
flux. For sake of simplicity, we will work with the discrete
define the instantaneous flux in the case of the continuous-
time dynamics, but such a definition gives rise to unnecessary
technicalities. Suppose then that M independent replicas of the
discrete time dynamics with time step 6t are run in parallel. The
instantaneous flux at time t = (n + 1)6¢ can be defined as

1 M
Pni1(w) = M_(St kel I{Alrliﬂzz}(w)’

where
ALy, =1y~ 1. 6)

Event {AI¥ =2} means the kth walker enters B at time
t = (n + 1)6t and it originates from A.

Practically, the first few samples are often biased because
of an approximate choice of colors at r = 0. Therefore, when
computing the average using N samples, the first n; are dis-
carded. We will denote ¢,(w) the average obtained using M
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replicas and 7 time steps,
_ 1 =
Pn(w) = PE— kzn Pr(w).
=ni

But the mean of the instantaneous flux is not the only informa-
tion we are interested in. We would also like to estimate its
variance. However, the successive elements of the flux time
series are often correlated; the standard variance estimator
is therefore inappropriate. To get rid of correlation effects, a
block-averaging technique (see Ref. 20 for more details) is
applied. The number of blocks involved is denoted by N, and
is such that (T —t,)/N, is an integer. In the following, the
corresponding variance estimate is denoted by Xy, (¢). As a
result, we are left with the following global estimate:

In,(p(w))

that embodies informations about both the average and the
variance of the instantaneous flux. The constant is set to 1.5
for estimating the 90% confidence interval.

In the case of forward and backward fluxes, the method-
ology is similar. In the former case, as an example, the estima-
tors described above build on the time-series of instantaneous
forward fluxes

V& = ¢,(w) + constant *

¢n+1(w) -M )
(211:[:1 1{1,’;’:71}(‘“))

The instantaneous forward flux is the percentage of blue
walkers that enter B at time ¢ = nét.

poP(w) =

3. Resampling

We now consider the methodology proposed in Ref. 1.
At the bottom of it, there are two peculiar features: a new
resampling algorithm and the fact that such an algorithm is
applied to both colors. In the following, we briefly describe
the several steps characterizing this particular version of WE.

Let us first give ourselves some parameter 7; > 0 referred
to as the resampling time. At time ¢ =0, we consider
M = Ng X 2N¢ independent replicas of the system whose
positions within the extended state space de X Rf,d x{-1,1}
are chosen in the following manner. In each one of the Ng
macro-states associated to the coarse partition I1, we initially
generate 2N¢ replicas, the positions of which are distributed
according to equilibrium distribution. For sake of simplicity,
we will consider that, for cells in de \ (A U B), half of these
replicas are blue. Each replica is assigned a weight, which is
equal to the normalized equilibrium population of its macro-
state divided by 2N¢.

All replicas are then run independently till time ¢ = 7. At
that time, the resampling procedure is applied based on posi-
tions of replicas. In each cell, replicas are duplicated, killed,
or merged in order to preserve a constant number of walkers
of each color. The number of new replicas generated from an
old one is in average proportional to its relative probabilistic
weight (that is its contribution to the total weight of cell Sy
atr =17;). In addition, in each cell Sy, for each color, all new
replicas are given the same new probabilistic weight. This
weight is equal to the total weight of the cell at r = 7y (the
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sum of all the weights of replicas in Sy) divided by N¢ (the
target number of replicas for each color). Once the resampling
step is over, that is, once the new sample and its associated
probabilistic weights have been computed, the trajectories are
run anew, independently, till time # = 27, and so on.

A rigorous mathematical formulation of this algorithm is
not our purpose here. We refer to Ref. 18 for such a study and
further analyses. However, rigorous definitions of quantities
require a few more comments and notations. We define the
sample process (S;);>o by for any ¢ > 0,

SI = {(Q§9Pf’I§)OSSSI}1SkSM = {(Sf)oﬁsﬁl}lngM .

At time ¢, S; contains the set of all current trajectories from
s = 0 to s = ¢t. This sample results from previous resampling
steps. We strongly stress the fact that process S keeps track of
the entire trajectories: its value at time ¢ is the sample made
of the entire trajectories resulting from the whole procedure
above. This implies, in particular, that most often, for #; < 7,

(S )o<r<t, # Sy

It means that the restriction to time-interval [0,#;] of the kth
trajectory of sample S;, does not correspond with the kth
trajectory of Sy, (the set of all trajectories at ¢ = ¢1). The reason
is that between times #; and #,, the resampling procedure might
have been applied, which leads to trajectories being killed and
others being created.

However, there is a connection between trajectories
belonging to S, for different ¢s. Indeed, supposing that g7, < ¢
< (g + 1)7y, there exists a function ¢,(w,-) : [1,M] — [1,M]
such that, for all 1<k <M, (Sozszgr, = ST, The
past of the kth trajectory in S, coincides with the ¢4(w, k)th
trajectory of Si;r,)-. Thus, by extension, we have

k _ ot1oorg(w,k)
(Sz )Os‘y<‘rl - ST— .
1

4. Probability flux

Because each replica carries a distinct weight, the defini-
tion of instantaneous flux in Eq. (6) needs to be modified to
consider the varying weights of replicas. Define {wf}, _, _,, as
weights of replicas at time ¢, the WE estimator of instantaneous
probability flux can be computed from the sample process
(S¢)r>0 using the following equation:

1 M
‘Pn+1(w) = E ; wf“.] : I{AISHZQ}(U))- (7N

We assume that the weights sum up to 1. This definition is
analogous to Eq. (6), except that in Eq. (6), the M replicas carry
the same weight 1/M. The instantaneous flux of replicas has
been replaced by an instantaneous probability flux. We have
the following approximation:

Vr * @r(w) + constant * /Xy, (¢(w)).

In Secs. V and VI, the whole procedure that leads to this
estimator will be referred to as AWE. In addition, note that we

can build in an analogous manner estimates of the forward and

backward fluxes. Such estimates will be denoted by v~ and

vE~4. In the former case, as an example, we have

J. Chem. Phys. 142, 214113 (2015)

7£—>B ~ -?—’B(a)) + constant * \/Zy, (9478 (w)), ®)

where the instantaneous forward flux is defined as
N ("% 1(60)

(P;;\_'_IB(Q)) = Iy - ’

(Zkzl wlrf+1 ) 1{1,’;’:—1}(‘”))

that is the contribution of each blue walker is renormalized by
the total weight of blue walkers.

V. NUMERICAL RESULTS
A. Alanine dipeptide

In order to study the numerical behaviors of MSMs and
WE methodologies, we first focus on alanine dipeptide. This
molecule is usually considered a good model for representing
torsional preferences of protein backbones (see Ref. 21 for a
related discussion). Its conformation as plotted in Fig. 1 can be
displayed on a two dimensional space as a function of torsion
angles ¢ and ¢. Fig. 1 provides as well such a representation
referred to as the Ramachandran plot of the system, that is its
free energy landscape as a function of ¢ and ¢. In this case,
the metastable sets A, B € R}**> mentioned above correspond
to the unfolded and folded states of the protein, which are
referred to as Cy.4 and C,y, respectively. One possible way to
define them is represented in Fig. 1: it corresponds to the black
squares on the Ramachandran plot.

Although this system is very small, it is an interesting
test case, since its free energy landscape is not that simple:
the unfolded and folded states are connected by multiple path-
ways. The numerical experiments were obtained using the
molecular dynamics software Gromacs 4.5.3 (see Ref. 22 for
further information). The underlying force field VV is Amber
96. The temperature is fixed at 7 = 300 K. The numerical
method used to discretize Eq. (1) is the velocity Verlet scheme.

1. Brute force estimation

The reference flux is calculated from a prior database of
100 independent trajectories, that is M = 100. These trajec-
tories, of length 7' =100 ns, correspond to independent
approximations of one obtained from a velocity Verlet scheme
with 6t = 2 fs. We calculate mean flux from each trajectory and
estimate the standard error as standard deviation of the mean
flux times 1.5, which gives 90% confidence interval. The brute
force estimation of forward and backward fluxes based on this

g e

FIG. 1. Left: Structure of alanine dipeptide. Right: Ramachandran plot of
alanine dipeptide with the unfolded state C7., and folded state C7,, illus-
trated. Cool colors stand for regions with high free energy.
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FIG. 2. Relative error of MSM estimation of forward (top) and backward (bottom) fluxes comparing with brute force methodology.

set of trajectories is
Ve % ~0.021 £0.003 ns™' and ¥4 ~ 5.18 +0.69 ns~",

respectively (corresponding aggregate rate Vi = 0.021

+0.003).

2. MSMs

All the Markov state models to be considered in this para-
graph were built from the 100 MD trajectories that were also
used in the brute force estimation. All the trajectories are split
into five blocks, each containing 20 trajectories. Five MSMs
are built from the blocks. The MSM estimation of flux is equal
to the mean of five 1/MFPT, while the error of the estimation
is approximated by the standard deviation of the mean times
1.5. We first consider a MSM with a fine partition of the state
space that can be represented, in terms of (¢,y) coordinates,
as a regular mesh made of identical squares with size 30° by
30°. Note, we always define C7,, and C7,, as single states in
any kind of mesh partition in this section. The mesh partition is
only for regions out of these two states. It is expected to provide
accurate estimation of 1/MFPT. The inverse of forward and
backward MFPTs are

v~ ~0.020 £ 0.002 ns™' and v "4 ~ 5.10 £ 0.31,

respectively (corresponding aggregate rate vg = 0.020
+ 0.002). They match with the brute force estimation very well.

180

In practice, when dealing with bigger molecules, parti-
tions are much coarser than the ones considered above. There-
fore, we want to study the influence of coarseness of partitions
on accuracy of MSM estimation of flux. Four grid sizes, 30°,
60°, 90°, and 120°, on ¢ are considered, as well as on ¥ axis.
There are 16 partitions in total in this experiment, i.e., 30 by
30 and 30 by 60. Fig. 2 shows the relative error of forward and
backward flux estimation from 16 MSMs, taking brute force
estimation as the reference. Increasing grid size on ¢ worsen
accuracy of the flux estimation significantly, while increasing
grid size on ¢ does not have much effect on the accuracy. We
can conclude that the significant transition region for C7,, to
C7,, transformation is directed along the ¢ axis, particularly
through the blue region located at ¢ = 0 and y = —90in Fig. 1.

Given that coarse underlying partition leads to biased flux
estimation, we further intend to study whether the locations of
state boundaries affect accuracy significantly setting the same
number of states for underlying partition. As it is shown in
Fig. 2, the relative error is significant when grid size on ¢ is
increased to 120°. In this experiment, we generate new grid
partition by setting grid size ¢ = 120, varying size on i, and
shifting the original mesh along ¢ axis. Mesh of four sizes is
considered, 120° by 30°, 120° by 60°, 120° by 120°, and 120°
by 360°. Fig. 3 illustrates the original partition and shifted one
(shift is equal to 60°) when the original mesh is 120 by 60.

The way the reaction rate depends on the value of the
shift in each case has been represented in Fig. 4. This figure

180

FIG. 3. 120 by 60 grid partition with shift O (top) and shift 60° (bottom).
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FIG. 4. Influence of boundaries location. Average estimate forward flux (top) and backward flux (bottom) for reference rectangular partitions with different
resolutions, 120° by 30°, 120° by 60°, 120° by 120°, and 120° by 360°, as a function of the shift. The pink line with markers is the reference value.

clearly illustrates the fact that the resolution of the partition
underlying the Markov state model is not the most important
factor, since whatever its value, it is possible still to get very
close to the reference value. On the contrary, the location of the
macro-states boundaries is the crucial point. When the partition
is reasonably coarse (thus reflecting a practical situation), the
impact of boundary locations is prominent. In order to get accu-
rate rates, one needs to align macro-state boundaries with free
energy barriers. Of course, when the mesh size tends to zero,
one always obtains accurate values of dynamical quantities.
The reason is that, in this case, the boundaries of macro-states
are automatically aligned with free energy barriers.

3. AWE

In this section, we investigate the way changes in the
underlying partition impact the performances of AWE, in the
same spirit as the study led in Sec. V A 2. The time step
involved in the algorithm is 6¢ = 2 fs. The resampling time step
is 7 = 20 ps. For all partitions, the target number of replicas
in each cell is N¢ = 30.

We first compute flux from AWE with fine underlining
partition, that is a 30° by 30° partition in terms of (¢,¥)
coordinates. The C7,, and C7,, are still defined as two el-
ements in this partition. Weights of walkers in AWE are

0.035

0.031

0.0251

Folding Rate [ns_1]

0.015f

FAWE 120by60 grid
AWE 120by60 grid shift60
Brute Force

0.01 .
0 12

4 6 8 1
Total Simulation Time 1 s]

initialized according to a MSM that is built from MD trajec-
tories with total length of 2 us. To match with computational
complexity in brute force estimation, here we consider AWE
with 368 resamplings (2 us + 109 cells x 10 walkers x 20 ps
% 368 resamplings ~ 10 us). The corresponding values of
forward and backward fluxes are

vA~5 % 0.020 £0.003 ns™' and ¥E74 ~ 4.7 + 0.36 ns ™,

respectively (corresponding aggregate rate vg = 0.020
+ 0.003).

We considered two partitions: 120 by 60 grid and the
same grid partition with a 60° shift along the ¢ axis, rep-
resented in Fig. 3, with 30 walkers in each cell. In Fig. 5
we have plotted the average forward and backward fluxes
estimates corresponding to ¢, = f(¢) from 664 iterations of
AWE, which matches to 10 us MD simulations. On each
curve, the best estimator of the average reaction rate ¢ corre-
sponds to the last point (average of instantaneous fluxes over
the whole trajectory). It is then clear that in both cases, the
estimate average @r is close to the reference value Vg (red
curve). AWE made significant improvement on accuracy of
backward flux estimation, comparing with brute force meth-
odology. Due to resampling, in AWE, same computational
resources are used to compute forward and backward fluxes.
However, in brute force, most trajectories are working on

6.5
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2
©
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£
o
L 450
c
=}
ar FAWE 120by60 grid
AWE 120by60 grid shifté0
-Brute Force
3.5 : .
2 10 12

4 6 8
Total Simulation Time [ s]

FIG. 5. Average forward 1[7,?%3 (top) and backward flux g2 —4 (bottom) estimates as a function of time ¢ = nét for partitions 120 by 60 grid and 120 by 60
with shift 60 on ¢ axis. The red curve on each plot corresponds to the related average estimator and confidence interval (one standard deviation) computed from

brute force simulations.
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FIG. 6. Errors of mean forward (top) and backward (bottom) fluxes estimated using block averaging method.?’

transitions from unfolded to folded states, which seldom con-
tribute to the computation of backward flux.

To ensure correct estimation on standard error of AWE
flux estimator, Fig. 6 shows convergence of the standard esti-

mates 1.5 - /X N, (¢(w)) for both forward and backward fluxes
as a function of N, the number of blocks involved in the block
averaging procedure.?’

Fig. 7 shows an explicit comparison between MSMs and
AWE flux estimators, using five partitions: 30° by 30° grid,
120 by 60 grid with 60° shift on ¢ axis, 120 by 360 grid with
60° shift, 120 by 60 grid with 0° shift, and 120 by 360 with 0°
shift. In Appendix B, convergence of flux estimation calculated
by AWE using 120 by 360 grid partitions is validated. Fig. 7
explicitly illustrates that AWE provides reliable flux estimation
on all partitions, whereas MSMs only provide correct estima-
tion on fine grid partition and the coarse partition with one of
the state boundaries located at ¢ = 0. Significant bias occurred
using MSMs with 120° by 60° with 0° shift grid partition.

B. Penta-alanine

Penta-alanine is a more complex biological system
comparing to alanine dipeptide. It consists of five alanine
residues and 66 atoms. This is the first AWE application based
on decomposition of such high dimensional conformational
space. All three methodologies, brute force estimation, MSM,
and AWE, are based on MD trajectories generated by simula-
tion tool Gromacs4.5.3 using force field Amber96 with implicit
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solvent. The folding rate under temperature 300 K is studied
in this experiment.

Five alanine residues of penta-alanine construct five ¢ — ¢
spaces, and on each of them the distribution of free energy
can be visualized. We categorize a conformation to folded or
extended state according to the ¢ and ¢ angles of the mid-
dle three alanine residues (ignore the two alanine residues at
terminal). If all three alanine residues are helical, the confor-
mation is considered as folded. On the other hand, if all three
alanine residues are coiled, the conformation is categorized to
extended. Fig. 8 shows the Ramachandran plots of the middle
three alanine residues (¢;,¥;)1 <; <3, with the helix C7,, and coil
a g states marked for each residue.

1. Brute force estimation

Five trajectories, each with length 3 us, time step
o0t =2 fs, are generated by MD simulation with general
setup introduced in the previous paragraph. Three of them
are initialized from extended structure and the other two are
initialized from conformations from folded state. From each
trajectory, we calculate a folding rate (transition rate from
extended to folded state). Mean of the five folding rates is
considered as a reference value, which will be used to validate
the rate estimation by MSMs and AWE. The 90% confidence
interval of brute force estimation is

ve~B %~ (0.033 +0.005) ns".

The relative error is around 15%.

EAWE
r*MSMs
-Brute Force

Unfolding Rate [ns™']
[e:]

30by30 (60,60) (360,60) (60,0) (360,0)
Partition

FIG. 7. Compare AWE with MSM estimations on forward (top) and backward (bottom) fluxes on five different partitions: first partition is 30 by 30 grid and

(360, 60) represents grid partition with ¢ =360 and a shift on ¢ axis with 60°.



214113-9 Feng et al.

-150 -100 -50 50
>

100 150

2. MSMs

This section studies performance of MSMs estimation on
varying settings of underlying partitions. Since penta-alanine
consists of five pairs of ¢ — angles, grid partition on such
high dimensional space is infeasible. For example, if we simply
decompose each ¢ —y space into 4 cells, there will be 4°
= 1024 states in total. In fact, only a small subset of this 10
dimensional ¢ — space is accessible by the dynamics of
penta-alanine. Therefore, K-centers clustering algorithm?3 im-
plemented in MSMBuilder2.6.0** is applied to cluster trajec-
tories into K separate states. If sufficient number of states
are considered, k-centers clustering algorithm should ensure
Markovian property among states. However, it is hard to have
sufficient number of states for high dimensional systems.

MSMs are constructed using the five MD trajectories,
setting different K’s for clustering. We manually ensure the
folded and extended states are defined in a way consistent
with Fig. 8 over any k clusterings. Therefore, the folding rates
estimation is comparable with brute force method. To estimate
statistical error, five MSMs are built, each using single MD
trajectory with length 3 us. 90% confidence interval of flux
estimation is computed by 1.5 times the standard deviation of
five MSMs flux estimations.

Performance of MSMs model with varying coarseness of
underlying partition is studied in this section. Fig. 9 shows the
90% confidence interval of flux (1/MFPT) estimation made by
MSM with varying number of states from 10 to 190. Lag time
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0.05f

0.045r-

Flux [ns™"]
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FIG.9. 1/MFPT of penta-alanine estimated by MSM with increasing number
of states defined on conformational space.
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FIG. 8. Structure of penta-alanine with
the middle three ¢ and ¢ angles makes
as (¢;,¥)1<i<3- Ramachandran plot
on the middle three alanine residues.
‘Warmer color represents higher popula-
tion and lower free energy.

-150 -100 -50 100 150

is set to 0.5 ns for all partitions. Appendix C explains the reason
why this time lag is chosen for all experiments. The MSM
estimation is sensitive to coarseness of underlying partition.
With increasing number of states defined, accuracy of MSM
improves. MSM with the finest partition (190 states) provides
an good flux estimation at

v~ =0.032+0.002ns7!,

which falls into the reference interval. Comparing with brute
force estimation, the relative error reduces from 15% to 7%.
However, with less than 50 states defined, MSM estimation
does not fall into the confidence interval of reference flux
estimation. Penta-alanine is still a simple system consisting of
66 atoms. However, for a complex biological system consisting
of thousands of atoms, defining fine partition on such high
dimensional space requires long-term MD trajectories, which
introduces a very large computational cost.

3. AWE

In this section, we study the performance of AWE on esti-
mating folding rate of penta-alanine under different coarseness
of underlying partitions. AWE consists of two stages: running
short MD simulations and resampling. The MD simulation for
each walker has the same setup as the experiment of brute force
method in Sec. V B 1. Resampling is applied in every 0.5 ns.
For the 12 states AWE, 30 walkers are maintained in every
state, while 10 walkers are maintained for 102 states AWE.

0.05
-Brute Force
~FAWE 12 states
.04
0.045 AWE 102 states
l, 0.04
A=A | I
% 0.035 1
o /f)_r
o> 0.03 At l
£ |
°
S 0.025 | l
[
0.02
.01 : ‘
00 50 2 12 14

4 6 8 10
Total Simulation Timefu s]

FIG. 10. AWE folding rate estimation with increasing total simulation time.
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FIG. 11. Compare AWE with MSM built on partitions with different coarse-
ness. X axis indicates number of states defined by k-centers clustering algo-
rithm.

A 3 us MD trajectory is used for initializing AWE, includ-
ing running K-centers clustering algorithm to define underly-
ing partition and initializing walkers and their weights accord-
ing to first eigenvector of the transition matrix built on the MD
trajectory. To compare with brute force and MSM, we want to
match the total simulation time of AWE to 5 x 3 us = 15 pus.
Here, AWE with two different partitions, 12 states and 102
states, is discussed in detailed convergence and error anal-
ysis. For the 12 states partition, 64 iterations of resampling
are considered (3 us + 500 ps x 12 states X 30 walkers x 64
resampling = 15 us). For AWE with 102 states, 24 itera-
tions of resampling is considered (3 us + 500 ps x 102 states
x 10 walkers X 24 resampling ~ 15 us). Fig. 10 illustrates
convergence of folding rate estimation with increasing total
simulation time.

The folding rate estimated by 64 iterations AWE sampling
with 102 states is

va~B = (0.034 + 0.003)ns~".
The folding rate estimation by AWE with 12 states is
Ve 8 =(0.033 + 0.002)ns .

The relative statistical error reduces from 15% to around 6%,
comparing to the brute force estimation. Fig. 10 shows that
when using varying number of states, AWE estimations always
converge to reference interval after certain number of resam-
plings.

Fig. 11 explicitly compares impact of partition on MSM
and AWE flux estimations using four different partitions: 12,
52,102, and 152 states partitions. Convergence of AWE esti-
mations over total simulation time is included in Appendix B.
With more than 102 states defined on conformational space,
both MSM and AWE provide an estimation in the reference
interval. Using coarser partitions, MSM estimation contains a
significant bias, while AWE estimation remains reliable.

VI. CONCLUSION

In this paper, we have shown through numerical experi-
ments that MSMs are very sensitive to the location of the macro-
states that attempt to capture the coarse-grained dynamics. In
particular, if the energy barrier along the transition pathway lies
“inside” a macro-state, rather than at the boundary, a significant
biasisintroduced, whereby MSM underestimates the rate. Gen-

J. Chem. Phys. 142, 214113 (2015)

erally speaking, the bias can be directly related to the height of
the barrier within the macro-state that contains it.

One solution, that has been advocated in the MSM litera-
ture, is to make the state partition very fine. However, this intro-
duces a very large computational cost and makes it difficult to
relate results of the analysis to the macroscopic understanding
of the underlying dynamics. Another remedy is to seek to
properly align the boundary of the macro-states with important
transition regions and saddle points of the free energy. How-
ever, in practice, this is difficult to achieve.

On the other hand, AWE, a formulation of weighted
ensemble that uses colored walkers to compute fluxes, is
much less sensitive to the precise boundaries of coarse-grain
dynamics. This suggests that whereas a MSM can provide a
good idea of the metastable sets and give a rough estimate of
rates, the computation of dynamics quantities may be better
done using AWE.

Generally speaking, the AWE method is a strict general-
ization of MSM in the following sense. Starting at ¢t = 0 with
some initial distribution of walkers, we can run one “step” of
AWE (that is trajectories of length 7 before the first resampling
is performed). Then, the rate can be estimated using the tran-
sition matrix $;;. Up to now, this simulation is in fact strictly
identical to a MSM calculation, and therefore the estimate is
exactly the same. What AWE is recognizing is that this initial
estimate may be biased. If we estimate that the bias is small
enough for the purpose at hand, we can stop the simulation
here. If not, a resampling is applied and the calculation is
continued. Through this process, the distribution of walkers
inside the macro-states is progressively relaxed so that, upon
convergence, we can recover the “exact” rate with no bias.

So, AWE has really no disadvantage compared to MSM.
If we estimate that the bias in MSM is satisfactory, we can stop
AWE before the first resampling and get a method identical to
MSM. If we decide that the bias is too significant, we apply
the full AWE method and get a more accurate estimate after a
number of resampling steps.

We would like to point out that several optimizations are
possible that were not considered in this paper. (1) The transi-
tion matrix can be used to estimate the rates (for the forward,
backward, and global relaxation rates) instead of computing
the average of the flux. This may provide a more accurate esti-
mate in some cases. (2) The convergence of AWE can be im-
proved by using the equilibrium distribution, as estimated from
the transition matrix, to update the macro-state weights (this
procedure is distinct from the AWE resampling we are using).
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by 360 with shift 60 on ¢ axis. The red lines marked the 90% confidence interval of reference value estimated by brute force methodology.
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APPENDIX A: INFINITESIMAL GENERATOR
OF LANGEVIN DYNAMICS

The infinitesimal generator of process (Q;, P;);>o gener-
ated by Langevin dynamics in Eq. (1), denoted by £ and acting
on a subset of functions defined on de X R;’f’ (namely, D(L)
the domain of £), satisfies

oW —p -V + MYV -V + M’I%V,, (Vo + MBpy) =0

170(0» ) = Mo

where p refers to some arbitrary initial conditions.

Dynamics equation (1) possesses an invariant distribution
p(dg x dp) such that, if (Qg, Py) ~ p, process (Qy, P;);0 is
ergodic. Such a measure satisfies £*p = 0. When gy # p, the
rate at which the distribution ¥ (¢, -) converges towards p is thus
related to the spectrum of L. For a rigorous formulation of
these statements, see Ref. 25.

APPENDIX B: CONVERGENCE
OF AWE EXPERIMENTS

Fig. 12 shows convergence of the average forward flux and
backward flux of alanine dipeptide over the total simulation
time of AWE on partitions 120 by 360 grid and 120 by 360
with shift 60 on ¢ axis. This validates that the flux shown in
Fig. 7 is estimated from converged AWE.

Fig. 13 shows convergence of the average folding rate
of penta-alanine over total simulations time, estimated using
AWE with 52 and 152 states k-means partitions.

APPENDIX C: IMPLIED TIME SCALES
OF PENTA-ALANINE VS. LAG TIME

This section shows how to choose right lag time 7 for
building MSMs for penta-alanine. If a small lag time is chosen,

- aY
L=-p-V,+M'VV -V, + M ]E(—VP+M,Bp)'Vp.

Note that state variable g = (¢1,...,q94) € Rgd is associated
to the position process Q, whereas variable p = (p1,...,pq)
€ Rf,d is associated to the momentum process P. Under appro-
priate assumptions on V, there exists a probability measure
on R}¥ x R, namely, y/(t,dq x dp) characterizing the distri-
bution of (Q;, P;). It is the solution of the backward Fokker-
Planck equation that involves the formal adjoint operator of
L, denoted by L,

; (AT)

(

the Markovian property will not be guaranteed, while it leads
to bias of MSMs estimation. On the other hand, choosing
large lag time leads to significant statistical error of MSMs
estimation. Fig. 14 shows the first ten implied time scales of
penta-alanine calculated from 10 states MSMs and 190 states
MSMs, respectively. We want to choose the earliest point when
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FIG. 13. Average folding rate estimates of penta-alanine as a function of
time ¢ =ndt for 52 and 152 states k-means partitions. The red lines marked
the 90% confidence interval of reference value estimated by brute force
methodology.
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Relaxation Timescale vs. Lagtime (190 states partition)
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FIG. 14. Implied time scales vs. lag time [ns] of penta-alanine calculated from 10 states MSMs (top) and 190 states MSMs (bottom).

the implied time scales reach plateau, which is 0.5 ns for both
the MSMs models.
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