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Abstract

Genes which confer a relative longevity advantage may be regulated at the level of transcription or 

translation. Alternatively, pro-longevity genes may mediate their effects at the level of protein 

structure-functional relationships that are beneficially optimized in long-lived species. Longevity 

associated genes (LAGs) may be operationally defined as genes that confer beneficial effects and 

are relatively more conserved among long-lived species. Global and local protein sequence 

alignments of over 10,000 genes across at least 30 mammalian species were examined to identify 

LAGs. Known LAGs, including growth hormone receptor (GHR), and breast cancer 1, early onset 

(BRCA1), have strong associations with maximum lifespan by our analysis. Several common 

categories of protein function were observed among genes ranked with the strongest associations 

with MLS identified by all regression models. These genes included those that function in the 

immune system, cell cycle regulation, and DNA damage response. We provide a ranking of genes 

with the strongest associations with species maximum lifespan (MLS) by several phylogenetic 

generalized least squares regression models, including adjustment for confounding variables such 

as body weight and gestation length.
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1. Introduction

Although phenotypic changes related to aging have been abundantly described in both 

human and other mammalian species, genetic effectors of the aging process are difficult to 

determine. Current approaches to determining the role of a gene in the aging process include 

animal models in which either gain or loss of function mutations result in changes in 

lifespan and comparative human studies of long-lived cohorts [1-4]. With respect to human 

studies, age-related genes have been identified by a variety of approaches including 

comparison of differential gene expression in older individuals (particularly centenarians) 

with younger individuals, longitudinal studies of octogenarians and nonagenarians to 

identify genes that are differentially expressed in those that reach 100 years of age, and 

determination of genes in which naturally occurring polymorphisms or mutations result in a 

change in the aging process [5].

A novel approach for identification of potentially age-related genes is to examine the 

conservation of genes in multiple mammalian species and correlate this with the maximum 

lifespan (MLS) across species. Genetic conservation of DNA or protein sequences can be 

quantified by alignment methods including the Needleman-Wunsch and Smith-Waterman 

algorithms, which account for base pair or amino acid matches as well as gaps created to 

improve overall score and substitution of amino acids with similar functional groups [6, 7]. 

Based on standard homology algorithms, the bit score (hereafter referred to as alignment 

score) for two sequences increases as similarity between the sequences increases. Highly 

evolutionarily conserved genes are those genes with sequences that are almost identical 

across species. On the other hand, genes that have a beneficial effect on lifespan may be 

functionally optimized in longer-lived species based on conservation of DNA or protein 

sequence information. In this case, it would be expected that these genes and the proteins 

they encode would be more conserved in a comparison between two longer-lived species 

and less conserved when comparing between longer-lived and shorter-lived species.

Alignment scores for sequence similarity may thus be used to determine if a gene is 

longevity-related. By comparing a reference sequence – the genetic sequence in a reference 

organism – with the homologous sequence in each of the comparison species, a score for the 

gene in each species may be obtained and compared with the species' maximum lifespan 

(MLS). As shown in Figure 1a, three relations can arise when correlating alignment scores 

with MLS: (1) the gene or protein sequence is near completely or completely conserved 

across species and independent of MLS, i.e. a Highly Evolutionarily Conserved Gene 

(HECG), (2) the gene or protein is more similar among longer lived species compared to 

shorter lived species, and (3) conversely, the gene or protein may be more similar among 

shorter lived species and less similar among longer lived species. The latter two 

relationships, at the extremes, represent the cases for longevity associated genes (LAGs).

Here we describe an approach to identify genes related to a trait of interest based on an 

analysis of their sequence similarity in species where the trait is expressed compared to 

species where the trait is less favored. By examining the relationship between the extent of 

conservation of genes across species and the MLS of each species, we report the 

identification of genes potentially related to longevity and aging (LAGs).
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2. Methods

2.1. Data Collection

Protein sequences for genes conserved across at least 30 mammalian species were obtained 

from the OrthoMaM database as FASTA files [11]. Using MATLAB, orthologous 

sequences were compared using both the Smith-Waterman and Needleman-Wunsch 

algorithms with BLOSUM62 matrix, gap initiation penalty of 11 and gap extend penalty of 

1. Both algorithms generate an alignment score as a measure of sequence alignment and 

similarity. For each algorithm higher scores indicate a greater degree of conservation and 

lower scores indicate more divergent sequences. The Needleman-Wunsch algorithm 

performs a global alignment of sequences and is more sensitive for more closely related 

sequences [7] while the Smith-Waterman algorithm performs local alignments and is more 

sensitive for more distantly related proteins [6]. Initial analysis indicated ∼95% similarity in 

rankings of genes by the two algorithms. Orthologous genes are closely related by definition 

so alignment scores produced by the Needleman-Wunsch algorithm were used for analyses 

due to the greater sensitivity for more closely related sequences. For all comparisons, the 

human protein sequence was used as the reference sequence and any gene for which there 

was no human sequence was excluded.

2.2. Phylogenetic Generalized Least Squares (PGLS)

The caper package in R [23, 24] was used to apply the PGLS model to each gene with the 

similarity score as the dependent variable and the species maximum lifespan as the 

independent variable (univariable analysis). The PGLS model uses a phylogenetic tree to 

correct the generalized least squares model for evolutionary relatedness. The mammalian 

phylogenetic supertree was used for the PGLS model [25]. The p-value for the slope of the 

regression (pMLS) of each gene was determined. A second PGLS model was applied 

including gestation length (GL) and body weight (BW) as potential confounding variables 

(multivariable analysis) and pMLS was determined.

2.3. Residual Analysis with Phylogenetic Correction

For each gene, residuals were calculated from the regression of the alignment scores with a 

confounding variable (ResASvCV). Residuals were also calculated from the regression of 

MLS with a confounding variable (ResMLSvCV). The PGLS model was then applied with 

ResASvCV and ResMLSvCV as the dependent and independent variables, respectively, to 

determine pMLS [8]. This method was applied using BW (SpeakmanBW) and GL 

(SpeakmanGL) as confounding variables separately. These p-values were not adjusted for 

multiple comparisons but used primarily to compile a ranking of genes of interest.

2.4. Identification of Genes of Interest

For each model, genes with a pMLS of <0.01 were identified. The genes with the smallest p-

values are those orthologous genes that are most divergent when compared between longer 

and shorter lived species, and thus more conserved among long-lived species. We defined 

consensus genes as those genes with a pMLS <0.05 identified by all models. The known 

functions and mutant phenotypes of these consensus genes was determined from the 
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GeneCard gene encyclopedia which compiles various information on genes from multiple 

sources [26].

3. Results

Figure 1b shows the relationship between alignment score and MLS for BRCA1, a known 

LAG, and NADH dehydrogenase (NDUFV2), a known HECG. As can be seen from the 

figure, the LAG has a steeper slope than the HECG [34.39 for BRCA1; 0.58 for NDUFV2]. 

Based on the four regression analyses, BRCA1 has an average pMLS of 0.004 while 

NDUFV2 has an average pMLS of 0.53 where pMLS is the p-value for the slope of the 

regression model with MLS as the variable of interest.

For all analyses, smaller p-values are over-represented compared to the uniform distribution 

expected for the case where the null hypothesis (H0), no relation between MLS and 

alignment score, is true (figure 2). There is a small subset of 167 genes (out of over 10,000) 

which demonstrated pMLS ≤ 0.05 by all four methods and among these are 11 genes which 

have a pMLS ≤ 0.01 by each method applied. The gene symbols, average p-values, names, 

accession numbers, and functions of the genes which have a pMLS ≤ 0.01 by all regression 

analyses are listed in table 1 and the genes which have a pMLS ≤ 0.05 are listed in additional 

file 1.

All methods incorporate a correction for phylogeny in order to account for the greater 

sequence similarity expected for more closely related species. The first approach of applying 

the phylogenetic generalized least squares (PGLS) method to the regression of alignment 

score versus MLS assumes that correlation with confounding variables, in addition to MLS, 

does not exclude genes from being considered LAGs. The second approach, applying the 

PGLS method to the multiple regression of alignment score versus MLS, gestation length 

(GL), and body weight (BW), accounts for both confounding variables in one model. The 

third and fourth approaches remove the effect of a single confounding variable (GL and BW, 

respectively) as previously described by Speakman [8]. Because pMLS is necessarily 

positive, any gene for which pMLS is sufficiently small is considered a potential LAG, 

regardless of slope.

Of the 167 consensus genes, those genes with a pMLS <0.05 identified by all models, 36 (22 

%) were related to the immune system and 24 (14 %) were related to cell cycle regulation 

(Table 2). Additionally, 64 genes were identified from the Mouse Genome Database (MGD) 

as having known phenotypes when mutated in mice [9]. Table 3 shows the categories of 

phenotypes displayed when these genes are mutated and the numbers of genes with mutant 

phenotypes in those categories. Many genes resulted in more than one phenotype when 

mutated. Of the 64 genes identified, 35 genes resulted in an altered immune phenotype when 

mutated and 29 genes resulted in a phenotype with a known effect on mortality and aging in 

mice [9].

4. Discussion

We have presented a novel approach for identification of potential LAGs through the use of 

multiple regression models comparing global alignment scores of protein sequences with 
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species maximum lifespan. This approach is complementary to, but much less expensive and 

faster than traditional approaches that are based on animal models or human studies. We 

have applied this approach to 10,411 genes conserved across more than 30 mammalian 

species. Many of the consensus genes function in pathways of the immune system, 

inflammation, DNA maintenance, and DNA damage response -- pathways that have been 

implicated in multiple pathological processes related to aging.

Some known LAGs may have been excluded from analysis based on the availability of 

sequence data. Of the 25 genes in the GenAge database [10] that are known to be related to 

aging through direct evidence in humans or mammalian models, 12 were excluded from 

analysis (5 due to sequence data being available for fewer than 30 species, 7 because 

sequence data was not available in the OrthoMaM database[11]). Of the remaining 13, 

BRCA1 and IL6 were identified as consensus genes (pMLS<0.05 among all methods) while 

PLAU, GHR, EPS8, and SLC13A1 were identified with a pMLS<0.05 by at least one method. 

For some LAGs, their primary protein sequence may be so essential that even minor 

alterations would adversely affect function or even be lethal. These genes may still impact 

longevity through expression level, which is regulated by other proteins (e.g., transcription 

factors), as well as adjacent or distant cis-acting sequences, or epigenetic factors, and thus 

not captured by analysis of the primary protein sequence alone. Our approach does not 

identify those genes which exert their impact on aging or longevity primarily through 

expression level, and thus some LAGs may be not identified by this method.

Among the consensus genes, BRCA1 is a known LAG which has been shown to have 

different genotype frequencies in centenarian populations compared to controls [3]. BRCA1 

functions in transcription, DNA repair, cell cycle regulation, and DNA damage response 

(DDR). Mutations in BRCA1 are associated with early onset breast cancer. In addition to 

BRCA1, the FANCB and FBXO6 genes are among our identified consensus genes involved 

in DDR. FANCB encodes a core component of the Fanconi Anemia core complex which is 

involved in a DNA repair and maintenance pathway with BRCA1 and BRCA2 [12]. FBXO6 

is involved in the regulation of the ubiquitination and degradation of CHK1 which 

phosphorylates and accumulates in response to DDR resulting in cell cycle arrest [13]. 

Growing evidence suggests that accumulation of DNA damage contributes to degenerative 

changes associated with aging. This is supported by the facts that inhibition of DNA damage 

can delay cellular senescence [14], while DNA damage that generates a DDR can result in 

cellular senescence [15].

The immune system has been shown to exhibit age-related changes termed 

immunosenescence and resulting in a persistent state of low-grade inflammation [16]. 

Conversely, immune function and lower levels of inflammatory cytokines are preserved in 

extremely long lived mice compared to old and very old [17]. We provide 3 examples from 

our consensus genes with important roles in the immune system: CD3EAP, CD8B, and 

IL7R. CD3EAP encodes a binding protein associated with the epsilon subunit of the T cell 

receptor (TCR) CD3 complex and is involved in signal transduction through the TCR 

pathway regulating activation, differentiation, and function of T cells [18]. CD8B is a 

consensus gene which encodes the precursor to the beta subunit of the CD8 coreceptor. CD8 

functions in T cell activation through interaction with the major histocompatibility complex 
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(MHC) during MHC/TCR-peptide interaction [19]. The gene IL7R encodes the IL7 receptor 

subunit alpha precursor, part of the IL7 receptor heterodimer, and mutations in IL7R result 

in a form of severe combined immunodeficiency characterized by the absence of T-cells in 

the presence of B cells and natural killer (NK) cells [20, 21]. Our finding, of immune related 

genes among the consensus LAGs, provides further support of a role for the immune system 

in aging.

Semeiks & Grishin used a similar rational to look at longevity selected positions within 

proteins [22]. In contrast, our method examines specific genes and based on the entire 

sequence determines if there is a correlation to longevity. While the two approaches may 

have similar rationales, our approach identifies specific genes based on the global sequence 

and alignment rather than motifs within those genes [22]. Of note, both methods identify a 

subset of genes with similar functions in development, inflammation, and immune fidelity. 

Additionally, both methods identify BRCA1 as a LAG.

We note that using the unadjusted p-value levels of 0.05 and 0.01 to identify those genes for 

further investigation regarding mechanisms is quite liberal, in the sense of identifying more 

genes than would be selected based on a stricter criterion of statistical significance. For 

example, a simple Bonferroni correction would identify statistically significant associations 

if p<0.000005, which did not occur for any of our candidate genes. We recognize that this is 

a limitation of the methods used. A second limitation is the small number of available 

species used, which affects the statistical power to detect true associations. We have 

partially addressed these limitations by focusing on ranking and selection.

5. Conclusions

We provided a ranking of genes with the strongest associations with species MLS by several 

phylogenetic generalized least squares regression models. Using our models, we observed 

non-uniform distributions of p-values for the correlation of alignment score and MLS. 

Among the consensus genes identified by our method we found subsets of genes with roles 

in immune fidelity, inflammation, development, and DDR.
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Highlights

• We identify longevity associated genes (LAGs) by multiple regression analyses.

• We evaluated over 10,000 homologous genes across 30-39 mammalian species.

• We provide a ranking of genes with the strongest associations with species 

maximum lifespan (MLS).

• Known LAGs have strong associations with species maximum MLS.

• LAGs were commonly related to immune function, cell cycle, and DNA damage 

response.
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Figure 1. Relationships of alignment scores for homologous genes and maximum lifespan
(a) Alignment scores for three hypothetical genes were plotted against the maximum 

lifespan (MLS) of the species. Hypothetical LAGs may have a steep, positive or negative 

slope and a correlation approaching ± 1. The hypothetical highly evolutionarily conserved 

gene (HECG) is a horizontal line indicating that the gene is completely conserved across all 

species. (b) The alignment scores for the known LAG, BRCA1, and the HECG, NADH 

dehydrogenase (NDUFV2), are plotted against species MLS. As can be seen from the figure 

BRCA1 has a steeper slope compared to NDUFV2.
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Figure 2. Distribution of p-values (pMLS) suggests de facto relationship between protein 
homology and MLS
The distribution of p values for the slope of the regression model with MLS as the 

independent variable of interest for univariable (a), multivariable including confounders (b), 

SpeakmanGL (c), and SpeakmanBW (d) models is shown. For each model, smaller p-values 

are over-represented compared to the uniform distribution expected for the case where 

alignment score and MLS are truly unrelated. The uniform distribution for this data is 

represented by the horizontal line.
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Table 1
Summary of Consensus Genes (pMLS ≤ 0.01) by all methods ranked by average p-value

Symbol Avg p-value Name Accession # Summary

CRNN 7.51E-04 Cornulin GC01M152381 Heat shock protein and survival factor 
involved in cell cycle regulation

TEX101 1.82E-03 testis expressed 101 GC19P043892 May play a role in signal transduction

HYLS1 2.15E-03 hydrolethalus syndrome 1 GC11P125753 Component of centrioles and required for cilia 
formation

CCDC30 2.18E-03 coiled-coil domain containing 30 GC01P042929 Unknown function

ANUBL1 2.67E-03 zinc finger, AN1-type domain 4 GC10M046112 zinc finger protein

CD3EAP 2.70E-03 CD3e Molecule, Epsilon Associated Protein GC19P045909 Component of t-cell receptor complex and 
RNA polymerase I

CD8B 2.97E-03 CD8 beta GC02M087042 part of coreceptor on cytotoxic T-cell

BRCA1 3.93E-03 Breast cancer 1, early onset GC17M041197 Involved in transcription, DNA repair, cell 
cycle regulation and DDR

BPI 5.00E-03 bactericidal/permeability increasing protein GC20P036888 Bactericidal activity

MRPL49 5.45E-03 mitochondrial ribosomal protein L49 GC11P064889 mitochondrial ribosomal protein

IL7R 6.74E-03 interleukin 7 receptor GC05P035892 Regulator of immune system function
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Table 2
Summary of consensus gene (pMLS ≤ 0.05) function

System Class Symbol

Immune system and inflammation Cytokine/Chemokine CCL1, CXCL17, CYTL1, IFNG, IL17A, IL17A, IL6

Immune Receptor CD226, CD3EAP, CD4, CD8B, HLA-DOA, IL28RA, IL4R, IL7R, SLAMF1, 
SLAMF9, FAIM3

Modulation ADAMDEC1, GAB3, GC, GPR18, HIVEP1, IFNG, IL7R, PTPRJ, STAT2, 
TAPBP, TNFRSF11A, TNIP3, TRAFD1, ZC3H12A

Innate immunity BPI, IL28RA, LBP, LPO, MAVS, RNASEL

Inflammation F2, IL17A, IL6, ZC3H12A

Cell Cycle Regulation BRCA1, C11orf82, CDC25C, CENPC1, CENPT, CEP55, CRNN, MAP4, MCC, 
DLEC1

DNA maintenance BRCA1, EME1, FANCB, MBD4, NEIL2

DDR BRCA1, FBXO6

Apoptosis C11orf82, HIVEP1, PPP1R15A, FAIM3

Growth ARHGAP31, PTPRJ

Chromosome CDCA2, CENPT, NCAPH, OFD1, AUNIP

Centromere MLF1IP, SGOL2
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Table 3
Known mutant phenotypes of consensus genes (pMLS ≤ 0.05)

Phenotype n

Immune system phenotype 35

Cellular phenotype 34

Homeostasis/metabolism phenotype 29

Mortality/aging 29

Growth/size phenotype 25

Hematopoietic system phenotype 25

Nervous system phenotype 17

Behavior/neurological phenotype 13

Digestive/alimentary phenotype 13

Endocrine/exocrine gland phenotype 13

Skeleton phenotype 13

Muscle phenotype 12

Respiratory system phenotype 12

Cardiovascular system phenotype 11

Embryogenesis phenotype 11

Integument phenotype 11

Reproductive system phenotype 11

Liver/biliary system phenotype 9

Renal/urinary system phenotype 9

Taste/olfaction phenotype 8

Tumorigenesis 8

Craniofacial phenotype 6

Limbs/digits/tail phenotype 5

Vision/eye phenotype 5

Adipose tissue phenotype 4
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