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Abstract
Quantification of functional connectivity in physiological networks is frequently performed

by means of time-variant partial directed coherence (tvPDC), based on time-variant multi-

variate autoregressive models. The principle advantage of tvPDC lies in the combination of

directionality, time variance and frequency selectivity simultaneously, offering a more differ-

entiated view into complex brain networks. Yet the advantages specific to tvPDC also

cause a large number of results, leading to serious problems in interpretability. To counter

this issue, we propose the decomposition of multi-dimensional tvPDC results into a sum of

rank-1 outer products. This leads to a data condensation which enables an advanced inter-

pretation of results. Furthermore it is thereby possible to uncover inherent interaction pat-

terns of induced neuronal subsystems by limiting the decomposition to several relevant

channels, while retaining the global influence determined by the preceding multivariate AR

estimation and tvPDC calculation of the entire scalp. Finally a comparison between several

subjects is considerably easier, as individual tvPDC results are summarized within a com-

prehensive model equipped with subject-specific loading coefficients. A proof-of-principle of

the approach is provided by means of simulated data; EEG data of an experiment concern-

ing visual evoked potentials are used to demonstrate the applicability to real data.

Introduction
Quantification of directed information transfer in complex brain networks has been one of the
most fundamental challenges within the field of neuroscience in the past few decades [1]. A
popular and well-established measure of connectivity is provided by time-variant partial direct-
ed coherence (tvPDC), which is calculated based on the Fourier transform of time-variant
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multivariate autoregressive (tvMVAR) model parameters [2–4]. Oftentimes, the frequential
and/or temporal variety of neuronal information transfer is of special interest. In such cases it
is necessary to use tvPDC rather than measures without frequency and/or time selectivity.

A serious drawback of tvPDC however is the immense amount of analysis output. In formal
terms, the output of tvPDC analysis for one single subject is a three-way data array (tensor)
containing the modes space, time and frequency. More practically speaking, the information
about directed information transfer between two nodes (e.g. EEG electrodes) is provided by
two time-frequency maps of tvPDC values; the multivariate tvPDC output for a network of D
nodes is consequently expanded to D(D − 1) time-frequency maps. If there are only a few
nodes that exist in the network or that are of interest, the inspection of all tvPDC maps offers
an overall view of the whole network. However, in clinical practice it is oftentimes impossible
to predefine relevant nodes and the size of the complete network is usually too large to allow
for a conjoint examination of the global network structures due to the quadratically (with D)
increasing number of tvPDC maps that have to be inspected. To avoid this interpretational
problem, the dimensionality of connectivity results is usually reduced by merging them over
several time intervals and/or frequency ranges [5]. Indeed, this offers an opportunity to simpli-
fy the detection of general patterns, but can also diminish or even destroy the benefit of time
variance and/or frequency selectivity.

In this work, we propose a linear decomposition of multi-way tvPDC tensors into their
modes in order to assess a complementary view on connectivity results, facing the challenging
handling of copious analysis output.

The concept of separating a multi-way tensor into a sum of rank-1 outer products is not
new; first proposed in 1927 [6], it was adapted for psychometrics in 1970 [7, 8]. In the field of
EEG it has been used to broaden traditional two-way decompositions such as Principal or In-
dependent Component Analysis (PCA, ICA) to encompass multi-way data [9]. For EEG data,
PCA and ICA provide a helpful means to extract event-related potentials from raw data [10–
13]. By using these techniques however, analysis of several subjects is not possible without fur-
ther effort: due to the problem of correspondence it is not clear if there is any component of
subject A which corresponds to a certain one of subject B and even if there is one, detection of
matching components is not trivial. By considering the data as a tensor with the modes space,
time and subject, a factor decomposition results in the spatial and temporal loadings (as in
PCA/ICA), together with an additional individual subject loading [14–16]. Similarly, this pro-
cedure can be used for comparison of different experimental conditions (e.g. task, stimulus, pre
vs. post state) by adding the condition as an additional mode in the model [17].

In addition to the analysis of data in the time domain (data matrix of dimensionality
channels × time), factorization can beneficially be used in the field of time-frequency analysis.
When multivariate time-domain data are transferred into time-variant frequency space, as for
example by Morlet wavelet transformation, they can be considered as a tensor with the third
mode frequency. Thus, tensor decomposition can be used to linearly separate multivariate
time-frequency information into the modes channels, time and frequency [18–20]. This en-
ables a better identification, segregation and classification of frequency components which con-
tribute to the signal. As delineated above for time-domain data, this procedure can analogously
be extended to more than three modes if data of several subjects, groups, experimental condi-
tions etc. are available.

We propose the application of tensor decomposition to tvPDC results in order to address
the issue of deficient interpretability due to the vast number of results, supported by a segrega-
tion of underlying connectivity structures into different factors. This expands the decomposi-
tion of frequency transformed multivariate data to the decomposition of the degree of
neuronal connectivity into its spatial, temporal and frequential content. Then, the spatial mode
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includes any ordered pair of channels where a connection is possible. Consequently, for D
nodes, the spatial mode is of dimensionality D � (D − 1). The factorization then drastically re-
duces the complexity of analysis outcome and thus provides a complementary perspective on
the connectivity results. This enables an integrative view on tvPDC results in the first place.
Furthermore, this reorganization of tvPDC results can contribute to uncovering inherent inter-
action structures that would possibly remain undetected if only raw tvPDC values were exam-
ined. Time-variant connectivity networks are usually composed of multiple components which
emerge within different brain areas, time intervals and frequency bands. These separate under-
lying components can only be identified with difficulty by inspection of tvPDC, which can lead
to basic interactions being missed. By approximating the tvPDC tensor as a sum of several fac-
tors, these components are separated and elementary patterns within the tvPDC results become
more conspicuous.

Experimental data of the present proof-of-principle study were chosen in such way that
they are associated with a strong working hypothesis. This offers the possibility to define a sub-
set of electrodes which is of particular interest. Anyway, from a methodological point of view it
is nevertheless necessary to perform a multivariate AR estimation of the whole set of electrodes
in order to avoid spurious interactions arising from omitted nodes. Here, we propose the use of
tensor decomposition for an extraction of connectivity patterns that are spatially limited to the
channels of interest without disregarding the remaining electrodes. Therefore, as a first step, a
full multivariate autoregressive model is estimated and tvPDC values are calculated. This re-
tains mutual influences from any electrodes to the others. In a second step, subnetworks with a
reduced number of nodes having exactly the same connections that appear in the full network
over the reduced node set (so-called induced subnetworks [21]) are considered. The tensor de-
composition is then applied to the tvPDC subnetwork tensors (based on full multivariate esti-
mated AR parameters). This reorganization of tvPDC subsystems offers a supplementary view
on the connectivity patterns within the considered subnetwork and can help to gain an insight
into the subset-specific connectivity patterns in every mode.

Besides addressing the problematic issue of massive results, the tensor decomposition offers
an opportunity to include a group of several subjects into the analysis. This challenging issue
can be solved by adding the fourth mode subject, whereby every factor is additionally equipped
with subject-individual weights.

To provide a proof-of-principle for our approach, we utilized simulated tvMVAR processes
with a temporal, block-wise varying model structure. The applicability of tensor decomposition
to real data is demonstrated on the basis of an exemplary EEG data set including 21 healthy
subjects taken from a study investigating visual evoked potentials.

Methods

Time-variant AR and PDC computation
A D-dimensional time-variant multivariate autoregressive (tvMVAR) process with N sample
points and order p is defined by

YðnÞ ¼
Xp

r¼1
ArðnÞYðn� rÞ þ EðnÞ; n ¼ pþ 1; . . . ;N;

where Y nð Þ 2 R
D denotes the data vector of the n-th sample and the matrixArðnÞ 2 R

D�D

contains the r-th order AR parameters of sample n. The model residualsE 2 R
D�N are sup-

posed to be an uncorrelated D-dimensional Gaussian process with zero mean. In this work,
time-variant MVAR estimation was performed by means of the multivariate linear Kalman
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Filter approach [22]. Basing on a multi-linear state space model for multi-trial time series, this
algorithm integrates every trial separately and thus, data do not have to be averaged over trials
before model estimation.

A frequency-selective, directed measurement of connectivity strength in tvMVAR models is
provided by time-variant partial directed coherence (tvPDC). It is based on the Fourier trans-
form of the AR process:

Aðn; f Þ ¼ I�
Xp

r¼1
ArðnÞe�2pifr 2 R

D�D;

with normalized frequency f 2 [0,0.5] and identity matrix I 2 R
D�D. The degree of causal influ-

ence from node j to node i at sample n and frequency f can then be quantified by tvPDC, de-
fined as

pi jðn; f Þ≔
jaijðn; f ÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD
d¼1jadjðn; f Þj2

q 2 ½0; 1�; i 6¼ j;

where aij(n,f) denotes the (i,j)-th entry of A(n,f). Thus, for F considered frequency bins, the
whole tvPDC tensor consists of (D2 − D) � (N − p) � F entries.

Tensor Factor Decomposition
In the following the theoretical background of parallel factor analysis (PARAFAC), which is
the tensor decomposition approach proposed in [7] and [8] will be described. A detailed intro-
duction can be found in [23, 24]. To lessen confusion regarding denotation, we mainly follow
the nomenclature found in [20] and [23].

An L-th order tensor X 2 R
I1�I2�...�IL is an ordered set of data xi1 ;i2 ;...;iL with L indices. L is

often also referred to as number ofmodes or ways. A one-way tensor X 2 R
I is a vector, a two-

way tensorX 2 R
I�J is a matrix. TvPDC values form a three-way tensor containing the modes

space, time and frequency. The decomposition by means of PARAFAC can conceptually be
seen as a multi-linear extension of bilinear decomposition methods such as PCA or ICA. In the
PARAFAC model, every entry of a tensor is split into a sum, where each summand is an outer

product of loading vectors from each mode. For a third order tensor X 2 R
I�J�K the decompo-

sition of any entry xi;j;k 2 X is provided by

xi;j;k ¼
PM

m¼1aim � bjm � ckm þ Zi;j;k;

with factor loadings or weights aim, bjm, ckm and remaining model residuals ηi,j,k. Similar to the
number of components for PCA/ICA,M denotes the number of factors within the PARAFAC
framework. Model (###4) can equivalently be formulated in tensor form as

X ¼PM
m¼1Am � Bm � Cm þH;

with loading vectors Am = (a1,m,. . .,aI,m)
T, Bm = (b1,m,. . .,bJ,m)

T, Cm = (c1,m,. . .,cK,m)
T and ten-

sorial residuumH 2 R
I�J�K [25]. In general, for an L-th order tensor, this model can be extend-

ed to

X ¼PM
m¼1K

1
m � . . .� KL

m þH;

with X,H 2 R
I1�I2�...IL and Kl

m 2 R
Il .
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TvPDC analysis results in a third order tensorP 2 R
ðD2�DÞ�ðN�pÞ�F which can be decom-

posed into products ofM spatial loading vectors KS
m 2 R

D2�D,M temporal loading vectors

KN
m 2 R

N�p andM frequential loading vectors KF
m 2 R

F :

P ¼PM
m¼1K

S
m � KN

m � KF
m þH:

An essential benefit of model (7) is that instead of comprising (D2 − D) � (N − p) � F tvPDC
values, there are onlyM � ((D2 − D) + (N − p) + F) remaining factor loadings. This leads to con-
siderably less data than the original raw tvPDC results and is thus substantially easier to handle
and interpret.

Furthermore the incorporation of multiple subjects into data analysis is more intuitive than
for PCA or ICA, where a model modification for three- (or more) mode data is required. In the
PARAFAC framework, the extension from single to group analysis is possible in a straightfor-
ward way by including the fourth mode “subject” into the factorization procedure. When data
of multiple subjects are available, tvPDC results compose a fourth-order tensor (space, time,
frequency and subject). Its decomposition then yields an additional mode comprising a sub-
ject-individual weight for every factor.

An unfavorable property of the PARAFAC model is its scale-invariance, as for each factor
the multiplication of a loading in one mode can be compensated by analogously dividing the
associated loading of any other mode by the same coefficient. For three-way decomposition,
this leads to two degrees of freedom. Therefore, we constrained the temporal and frequential
loadings to range from zero to one which then allows an intensity interpretation of raw uncon-
strained spatial loadings.

Two-way decomposition procedures such as PCA and ICA furthermore suffer from rota-
tional invariance of decomposition results, which are overcome by restricting components to
be orthogonal or statistically independent. In [26] it is shown that this problem does not occur
in PARAFAC decomposition if it holds

PL
l¼1 rankðKlÞ � 2M þ ðL� 1Þ;

with factor matricesKl 2 R
Il�M containing the factor loading vectors Kl

m. The condition is
originally formulated by means of k-rank instead of the conventional rank. The k-rank is the
maximal number kr such that any subset of kr columns in the matrix is linearly independent.
Thus, inequality (8) is sufficient but not necessary as the rank is never lower than k-rank. Ac-
counting for a suitable interpretability of tvPDC tensor decomposition, the number of factors
is normally smaller than I1,I2 and I3 (i.e. number of channel combinations, frequency resolu-
tion and number of sample points). Consequently, the rank of all three component matrices is
M and thus the left side of inequality (8) adds up to 3M, whereas the right side equals 2M + 2.
This indicates that in the context of tvPDC the decomposition is unique up to scaling and per-
mutation ifM� 2. This constraint also applies if more than three modes are available (e.g. ad-
ditional mode subject) because the inequality can then be generalized toM� (L − 1)/(L − 2).

The determination of an adequate number of factorsM is a crucial issue. While a choice
which is too few results in an insufficient model fit, too many factors lead to an overestimation
where different estimated factors may correspond to the same underlying component or only
account for noise. There are several ways to determine the number of factorsM [27–29]. The
appropriateness of the model can for example be evaluated by using heuristics such as Akaike’s
information criterion (AIC), Bayesian information criterion (BIC) and Core Consistency Diag-
nostic, as proposed in [23]; or by generally regarding the sum of squared error, or explained
variation, or convergence of the algorithm. Furthermore an observance of the multiple cosine
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(MC) can help to assess the suitability of the resulting model [30]. As an example, cos(Ai,Aj)
denotes the cosine between i-th and j-th factor within the first mode of model (5) and provides
information on how similar factor i and j are regarding the first mode. The multiple cosine be-
tween i-th and j-th factor MCij = cos(Ai,Aj) � cos(Bi,B) � cos(Ci,Cj) then provides information
on how similar they are regarding all modes. A high absolute value of MCij indicates that i-th
and j-th factor represent the same underlying component or that obtained solutions are degen-
erate [30].

The model estimation via minimizing the error term Zi1 ;i2 ;...;iL
is frequently performed using

the alternating least squares (ALS) method. Briefly, this algorithm involves a single least square
optimization step for every mode in turn, while the other ones are kept fixed. In this study we
used the implementation provided in the N-way Toolbox for MATLAB by Andersson and Bro
[31]. Due to the positivity of tvPDC values, all weights were constrained to be nonnegative [9,
32].

Materials

Simulated Data
In a first step, we used simulated data with known connectivity structure to reveal the general
applicability and effectiveness of PARAFAC analysis in the framework of tvMVAR-based
tvPDC analysis. Therefore, we realized a time-variant MVAR process of order p = 4 with D = 5
nodes, 100 trials and varying number of sample points between N = 200 and N = 2000 sample
points. The underlying ground truth was composed out of four different network constella-
tions, adapted from [2], whereby every constellation was kept fixed for a block of one fourth of
the total number of sample points. Adjacency matrices of the model together with the corre-
sponding chronological sequences for N = 1200 are illustrated in Fig 1; a black square in the d1-
th row and the d2-th column of the spatial adjacency matrices indicates a directed interaction
from node d2 to node d1.

Real Data
The suitability of tensor decomposition in the case of real data was explored by applying PAR-
AFAC decomposition to an EEG data set of 21 subjects, derived from a study investigating

Fig 1. Ground truth model of simulated data. Upper row: spatial loadings; lower row: temporal loadings.

doi:10.1371/journal.pone.0129293.g001
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visual evoked potentials. Prior to the experiment detailed information on the aim and the pro-
cedures of the experiment was provided to each subject and written informed consent was ob-
tained. The procedure was approved by the Ethics Committee of the Jena University Hospital
(reference number 1349-06/04).

Connectivity in the visual system involves ongoing discussion as to whether visual pathways
can be divided into two visual subsystems. These are often referred to as the magnocellular sys-
tem and parvocellular system [33] or the “where” and “what” system [34]; also debated is how
connectivity in the visual network is modulated (bottom-up vs. top-down, [35]). The “where”
system is thought to assess spatial relationships and object movement, the “what” system is
thought to involve the visual identification of colors, patterns or objects. Anatomically, it is as-
sumed that the “what” system involves connections between the occipital and temporal brain
areas, whereas the “where” system involves connections between the occipital and parietal
brain regions. For this study we thus assume that connections between electrodes P7, P8, O1,
Oz, O2 reflect the “what” system, and connections between CP3, CP4, O1, Oz, O2 reflect the
“where” system.

Visual evoked potentials were elicited by non-moving sine wave vertical gratings (see
Schulte-Körne, Bartling [36] for details regarding stimulus material). Due to the stationarity of
visual stimuli, one can expect that connectivity will basically be observed in the “what” system,
rather than in the “where” system.

Forty stimuli were presented for 1100 ms each, followed by an interstimulus interval of 900
ms, during which subjects fixated on a cross appearing on a black computer screen. Subjects
were instructed to press a button to indicate their perception of the stimulus.

EEG data were recorded by Ag/AgCl electrodes over 28 active electrodes, two reference
channels, as well as three channels to register eye movement. The real data originate from a
study in which three different paradigms were acquired within the same EEG session. These
paradigms address different neuronal systems (visual, auditive and linguistic). It was therefore
important to cover the respective neuronal networks with the number of electrodes at hand.
Thus we chose an enhanced 10/20-system [37], where in addition to the classical 10/20 system,
positions FT7, FC3, FC4, FT8, TP7, CP3, CP4, TP8 and Oz were included (see Fig 2). Two elec-
trodes placed at the outer canthi of each eye were used for horizontal eye movement registra-
tion. Vertical eye movements were tracked by Fp1 as well as an electrode positioned under the
left eye. Electrode impedance was kept beneath 10 kO. Data were sampled at a rate of 500 Hz
and filtered online with a lowpass of 100 Hz and a highpass 0.1 Hz (Scan, DOSVersion, Com-
pumedics Neuroscan). EEG recordings were referenced to the right mastoid. Left mastoid was
also registered for the purpose of re-referencing. Preprocessing was performed offline using
VisionAnalyzer. Data were re-referenced against joined mastoids and ocular correction was
conducted automatically for horizontal and vertical eye movements using the algorithm of
Gratton and Coles [38]. Finally, data were segmented into intervals lasting from 500 ms before
and 1100 ms after the stimulus onset and were downsampled to 125 Hz.

The paradigm using stationary sine wave gratings evokes a complex of components com-
prising positive amplitudes around 150 ms and 250 ms at occipital electrodes (P100 and P200)
as well as negative amplitudes around 150 ms at fronto-central electrodes (N100) and 400 ms
at centro-parietal electrodes (N400). The applied channel arrangement with the grand average
of visual evoked potentials for one subject is depicted on Fig 2. Electrodes which show in-
creased activation are mainly located in occipital, inferior temporal, inferior parietal and fron-
tal brain regions which are associated with the visual network [39].
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Results

Simulated Data
The selection of the tvMVAR model order pmust be carefully determined. If p is chosen too
low, data properties are not considered adequately enough by the model, if too high, too many
parameters must then be estimated which can lead to a loss of significance or possible compu-
tational problems. However, there is a region between these extremes where different choices
of p lead to very similar network results [40]. This was confirmed by our fourth-order simula-
tion: for the choice of p = 4, all connections were identified correctly; for p< 4, connections
which rely on an AR parameter of a higher order than p were not detected; for p> 4 no more
connections emerged than for p = 4.

The Kalman Filter involves two control parameters c1,c2 where c1 regulates the adaption of
the covariance matrix and c2 defines the step-width of the random walk that is used to update
tvMVAR parameters. A suitable indication for an appropriate choice of c1 and c2 is provided
by minimummean squared model residuals [40]. Basing on this, the parameters for the simu-
lation data were set to c1 = c2 = 0.03.

The number of factorsM was monitored by means of AIC, BIC, Core Consistency Diagnos-
tic and the sum of squared error. All measures showed a sharp bend aroundM = 6 which

Fig 2. Results of one exemplary subject. EEG data (mean over trials) together with an illustration of the visual “what” and “where” pathways.

doi:10.1371/journal.pone.0129293.g002
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suggests that the number of factors should be chosen in this environment. Furthermore, there
is a steep rise of the triple cosine in this area, indicating that for higherM, different factors be-
come more and more alike. A visual inspection of the results clearly confirms this suggestion:
forM� 6 all factors correspond to underlying true connectivity patterns, while for anyM> 6
there are additional components which most likely account for noise. Fig 3 illustrates the re-
sults forM = 7. Here, the factors are ordered by explained variance, from high to low. The fac-
tor with the lowest variance explanation also yields low spatial factor loadings in combination
with diffusively distributed temporal and frequential factor loadings. Taken together, this sug-
gests that this factor accounts for background noise. All other factors correctly reflect the true
dynamic network, which will be exemplified by means of the second block of the underlying
model (Fig 1, second column): interaction 1!2 is spatially reflected by factors 3, 4 and 5. Tem-
poral loadings of block 2 are high for factors 1, 2 and 3. Combining this spatial and temporal
information, it becomes apparent that only factor 3 explains the interaction 1!2 in block 2.
Analogously, factor 1 accounts for interactions at 2!3 and 3!4, as high spatial loadings at
these locations together with high temporal loadings in block two only occur in factor 1. Final-
ly, the remaining two connections 4!5 and 5!4 derive from factor 2 since it is the only factor
which combines high weights between nodes 4/5 and high weights within the second block.
Following this reasoning, any other of the four ground truth networks can be reconstructed by
the first six factors.

The influence of sample size N on PARAFAC results accords with the influence of N on
tvPDC results: an increase of N leads to an improved performance. For tvMVAR models, it is
well-known that a raised number of samples N goes along with an enhanced accuracy of model
estimation, leading to a better network identification by means of tvPDC. This is passed on to
the benefit of tvPDC-based PARAFAC results, as they are confined by the properness of the
precedent tvMVAR model estimation.

Fig 3. TvPDC tensor decomposition of the simulated data with M = 7 estimated factors. First row: spatial loadings; second row: temporal loadings; third
row: frequency loadings.

doi:10.1371/journal.pone.0129293.g003
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The usefulness of tensor decomposition in the context of subsystem analysis was investigat-
ed by consecutively analyzing any possible subset of the five nodes. Not surprisingly, a limita-
tion of the five-dimensional simulated data to a subset before tvMVAR estimation and tvPDC
calculation causes several false-positive tvPDC results due to the hidden sources (if X has an in-
fluence on Y and Y has an influence on Z, X seems to influence Z if Y is absent). Thus, subse-
quent tensor decomposition is rendered superfluous because it would be based on incorrectly
detected connectivity patterns. If, however, the limitation to a subset is performed after
tvMVAR estimation and tvPDC calculation (induced subnetwork), these spurious interactions
are circumvented, and the following tensor factorization yields correct results for any choice
of subsets.

Real Data
TvPDC results. For empirical data, the correct tvMVAR model order is naturally un-

known. Information criteria such as Akaike’s or Bayesian information criterion (AIC, BIC) can
roughly indicate a range for an appropriate choice, but should be critically evaluated, as for ex-
ample by assessing the coincidence between Fourier spectra of the data and estimated AR spec-
tra. For the present EEG data, the suggestions provided by AIC and BIC (AIC = 15, BIC = 8)
were too low to allow for a sufficient fit between Fourier spectra of the data and estimated
parametric AR spectra. This is why we chose p = 20, where similarity between both spectra is
satisfactory, while data over-fitting is kept reasonably low.

The acquisition of Kalman control parameters c1 and c2 for the empirical data was carried
out in the same way as for the simulated data and resulted in c1 = 0.03 and c2 = 0.008.

The D2 − D = 20 time-frequency tvPDC matrices of the simulated example can be visually
inspected easily, whereas this is not possible anymore for D2 − D = 756 EEG based tvPDC ma-
trices. However, to provide an impression of the raw results, tvPDC maps of the seven channels
representing the previously described “what” and “where” pathways of the visual system, as
well as the parametric AR spectra are depicted in Fig 4.

Proof-of-principle: decomposition of induced subnetwork. In order to provide a proof-
of-principle for the application of PARAFAC to real EEG data, we specifically chose data from
an experiment in which the paradigm allows the formulation of strong neurophysiological hy-
potheses about the expected connections. As described in 3.2, the visual evoked potentials were
elicited by non-moving sine wave vertical gratings so that pronounced connectivity was basi-
cally expected in the visual “what” system. For this reason, we examined the benefit of restrict-
ing tvPDC factorization to an induced network, namely the channels which are involved
within the “where” and “what” pathways of visual processing (CP3, CP4, P7, P8, O1, Oz, O2).
It is important to emphasize that the tvMVARmodel estimation was performed before the sub-
system analysis in order to account for the influences of the excluded channels.

The number of factorsM was determined in consideration of the same quantitative mea-
sures as used for the simulated data. We regarded the values of each criterion as a function of
chosen factor numberM where we includedM = 1,. . .,20. Basing on this, we considered several
aspects. As a first clue (similar to the procedure in cluster analyses) we utilized the discrete sec-
ond derivative of the resulting functions to attain an impression of an adequate choice ofM. A
maximum value of the second derivate indicates a maximum curvature, i.e. in this context a
maximum change of improvement (quantified by the utilized criterion values) when the num-
ber of components is increased by one. This led to a choice ofM = 4. As a second indication,
on the other hand, all measures still showed a steep decrease forM> 4, pointing towards a
higher choice. Third, forM> 7 the values of Core Consistency Diagnostic showed an alternat-
ing behavior, indicating that results start to be affected by noise. Taking these hints together,
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our final decision wasM = 5. This choice was confirmed by visual inspection of the results, as
for higherM, additional factors did not yield spatial, temporal or frequential patterns which
are clearly distinguishable from the first five factors.

The results of the decomposition of the induced subnetwork are provided in Fig 5. Again,
the factors are ordered by variance explanation from high to low. It is apparent that several
courses of the temporal mode are related to stimulation onset. The most explicit temporal re-
sponse occurs in factor two. The corresponding spatial loading map of this factor clearly pat-
terns the occipital and parietal regions which form the “what” pathway, whereas there are no
high loadings at the centro-parietal nodes of the “where” pathway. This is in line with the fact
that the presented stimuli were non-moving. Frequency curves of this factor show high load-
ings in the theta band which is commonly associated with working memory [41].

The whole group of 21 probands was examined by decomposing the fourth order tvPDC
tensor containing the modes space, time, frequency and subject. The results in Fig 6 show that
in general, the response to stimulus onset in temporal domain is more pronounced in multi
subject decomposition than in single subject decomposition, whereas distinct features in the
frequential mode seem to be more smoothed. In all but factor number five, nodes of the “what”
network have higher spatial loadings than the “where” nodes. However, it may well be that the
last factor is confounded by an artifact because the subject loading of subject number 15 is ex-
cessively high. Combining the results of the temporal and spatial loadings, it is thus possible to
deduce the occurrence of high connectivities within the "what" system is a response to the

Fig 4. EEG tvPDC results of one exemplary subject between channels CP3, CP4, P7, P8, O1, Oz and O2.Maps on the diagonal depict corresponding
parametric AR spectra. Arrows in the headings indicate direction of the interaction. Stimulus onset is at 0.5 s.

doi:10.1371/journal.pone.0129293.g004
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stimulus in general, rather than subject-specifically. However, subject loadings indicate slight
variability in individual behavior, which suggests that although the path of visual information
flow applies to any subject, the degree of connectivity is subject-specific.

Clinical practice: decomposition of the whole network. For the present proof-of-princi-
ple study we chose a paradigm which addresses rather basic neurophysiological/visual process-
es (as described above), thereby we were able to limit the decomposition to a hypothesis-driven
subset of tvPDC results containing several electrodes of interest. The reality of most cognitive
neuropsychological experiments is however different as oftentimes, it is not possible to formu-
late such strong hypotheses about the expected network connections. Here, PARFAC offers a
solution as an overall view of the results for the complete channel arrangement does not pose a
problem. The results of the decomposition for the complete set of our EEG electrodes (provid-
ed as supplementary material S1–S3 Figs) can be summarized as follows: on the whole, high
spatial weights are mainly located between neighboring electrodes. In particular, there are sev-
eral factors which additionally comprise pronounced spatial weights within the visual system,
complemented by the channels forming the “what” pathway. Yet, there is no factor whose tem-
poral loadings are irrefutably related to the stimulus onset. In other words: while spatial and
frequential results of subsystem analysis were confirmed to some extent, the temporal course of
the experiment could not be retrieved. On the other hand, when no clear hypothesis on the site
of interaction is available, spatial-domain results of the whole decomposition could offer a
means for the definition of relevant channels for subsystem analysis.

Discussion
The application of tvMVAR models with a subsequent calculation of tvPDC is a well-estab-
lished means to quantify effective connectivity in the neurosciences [1]. Due to its high di-
mensionality however, visualization and interpretation of results presents a major challenge

Fig 5. Tensor decomposition of induced tvPDC subset CP3, CP4, P7, P8, O1, Oz, O2 for one exemplary subject. First row: spatial loadings; second
row: temporal loadings (dashed line denotes stimulus onset); third row: frequency loadings.

doi:10.1371/journal.pone.0129293.g005
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and extracting the essence of findings is therefore oftentimes hardly feasible. To remedy this
problem we proposed an approximation of the resulting tvPDC tensor by a sum ofM outer
products [24, 42]. Thereby, the already introduced decomposition of the time-frequency con-
tent in the signal [18, 20] is broadened to include time-frequency content in connectivity prop-
erties as provided by tvPDC.

Within this procedure, resulting tvPDC tensors are rearranged, offering an advanced per-
spective on the gained connectivity results. This approach is beneficial in various respects.
First, real life network constellations are commonly composed of multiple spatial, frequential
or temporal components. Oftentimes it is hard to distinguish them by an inspection of tvPDC
and in these cases PARAFAC analysis of the results provides a complementary view on the re-
sults by the segregation of underlying components into different factors. Second, frequently
brain activity is supposed to emerge within spatially limited regions. Sometimes, there is a clear
working hypothesis about the channels that are involved in these processes and ought to be in-
cluded in connectivity analysis. However, in order to avoid spurious interactions due to disre-
garded nodes, a full multivariate model comprising the whole electrode arrangement is
indispensable. A viable option is provided by restricting PARAFAC analysis of multivariate
tvPDC results to the decomposition of an induced subset of paradigm-relevant electrodes. The
full multivariate model, applied first, incorporates all possible interactions while the subsequent
spatially bounded tensor decomposition can reveal subnetwork-immanent connectivity

Fig 6. Tensor decomposition of induced tvPDC subset CP3, CP4, P7, P8, O1, Oz, O2 for the whole group. First row: spatial loadings; second row:
temporal loadings (dashed line denotes stimulus onset); third row: frequency loadings, fourth row: subject loadings.

doi:10.1371/journal.pone.0129293.g006
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patterns. Third, the rearrangement of tvPDC results drastically reduces the number of output
data that have to be examined. This may be the most useful benefit in clinical practice, as often-
times there is no clear hypothesis about the location of relevant interactions. Then, connectivity
maps within the whole set of nodes have to be investigated which is not feasible in most practi-
cal applications due to the fairly high number of recorded electrodes. In these cases, the con-
densation of analysis output by tensor decomposition offers an opportunity to assess an
integrative view on the whole network. Furthermore, these decomposition results can subse-
quently be used to define channels of interest: if one factor shows e.g. a temporal behavior
which corresponds to a stimulus, or if the frequential mode of one factor yields high loadings
in a particular frequency band, the associated spatial map can be used to select nodes that are
fed into an ensuing subsystem decomposition.

Finally, the approach offers a straightforward possibility to extend the analysis of individual
subjects to an examination of group data. In contrast to common two-way decompositions,
this can be carried out without model modification, since the three-way tvPDC tensor can
readily be extended to a four-way tensor with the additional mode “subject”. The decomposi-
tion then yields spatial, temporal and frequential weights which apply for the whole group, to-
gether with individual subject loadings.

Time-variant five-dimensional simulations were used to demonstrate the general applicabil-
ity of the proposed procedure. It has been shown that all modeled interaction structures can be
re-identified in tvPDC decomposition results if the number of factorsM is appropriately cho-
sen; we have introduced several quantitative measures which all have proven to provide useful
hints for a proper choice ofM.

EEG recordings during a visual task were used to demonstrate the feasibility and benefit of
the approach in the case of empirical data. On the basis of an explicit hypothesis, PARAFAC
analysis was restricted to a delimited subset of electrodes after full-dimensional tvMVAR esti-
mation and tvPDC calculation. The decomposition outcome clearly revealed several event-re-
lated factors, as associated curves in the temporal mode undoubtedly reflected the stimulus
onset. Furthermore, the results of the spatial mode supported the assumption that for this ex-
periment, information transfer is mainly located in the “what” pathway rather than in the
“where” pathway which is in accordance with the non-moving stimuli of the experimental
setup. This finding was substantiated by the extension of PARAFAC analysis to the group of 21
probands, where the stimulus onset in the temporal mode and high loadings of the “what”
pathway in the spatial mode were even more distinctive than by the application of subject-indi-
vidual tensor decomposition.

Oftentimes, it is not possible to establish a hypothesis which enables to focus on several re-
gions of interest. For such cases however, factor decomposition enables a view into the entire
channel arrangement. Yet for the present data, it becomes apparent that no clear stimulus-re-
lated patterns emerge if the complete set of tvPDC results is decomposed. A reason for this ef-
fect may be that the event-induced sub-network is limited only to a small portion of the whole
electrode system. Thus, it only accounts for a minor portion of explained variance in model (7)
and might therefore be neglected by the ALS estimation. Consequently, quantitatively superior
interactions possibly subdue connectivity patterns that are actually relevant for the present
topic of interest. However, it also became apparent that even after the decomposition of the
whole electrode scheme, high loadings between the nodes comprising the visual areas and the
“where” pathway can be retrieved in the spatial mode. In the case when no hypotheses about
the location of relevant interactions is available, this in turn enables a data-driven definition of
electrodes for a subset analysis, which then allows a more subtle insight into experiment-relat-
ed connectivity patterns.
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Nevertheless, there are several issues which should be kept in mind when applying the
above suggested procedure and interpreting the results.

In some cases, there is a considerable difference between EEG amplitudes of several chan-
nels and/or several subjects. Scale-invariant alternatives are then required to avoid misinterpre-
tations due to this imbalance in signal power [43]. Therefore, it is necessary to monitor these
data properties prior to an interpretation of tvPDC values or any further results basing on
them. The individual EEG amplitudes in the present data only showed small variations con-
cerning electrodes and probands. This evaluation was clearly confirmed by a comparison be-
tween tvPDC results and the corresponding scale-invariant generalized tvPDC [44], as both
measures closely resemble each other for the present data–which consequently also applies to
the subsequently performed tensor decompositions.

In this work, quantification of node interaction was executed by means of tvPDC. However,
dependent on research questions or data characteristics, tvPDC is not always the most appro-
priate choice and it is then advisable to prefer other suitable connectivity measures as for in-
stance transfer entropy, Granger causality or directed transfer function [43]. In these cases, too,
tensor decomposition could beneficially be applied in order to condense the information con-
tained in network analysis output, as the presented decomposition approach is not limited to
tvPDC or tvMVAR in general.

A critical point is that all analyses have been conducted in sensor space. EEG signals are
usually affected by volume conduction which induces correlated sensor activities at neighbor-
ing sensors by superposition of underlying brain source activities, leading to misinterpretations
of obtained connectivity results [45, 46]. It has been demonstrated that procedures like PCA
and ICA can beneficially be used to decompose EEG data into source signals and mixing dipole
signals [47]. Based on this, connectivity analysis can be performed in source space rather than
at sensor level [48]. It is worthwhile to investigate how far a de-correlating preprocessing step
or source-modelling affects PARAFAC results. In this context, it is of special interest if the
PARAFAC approximation of tvPDC values leads to a model in which connectivity patterns re-
sulting from volume conduction and connectivity patterns based on source activity are separat-
ed into different model factors.

Finally, PARAFAC is the last step of a long processing scheme requiring a well-considered
choice of an adequate mathematical model, correct model estimation and the selection of an
appropriate measure of connectivity. In particular, there are many parameters which have to
be tuned during the proposed analysis process. TvMVAR estimation requires appropriate Kal-
man filter settings that have to balance between fast adaptation and smoothness of estimated
AR matrices. Furthermore, a reasonable selection of the model order p is mandatory to achieve
a sufficient model fit while avoiding an over-estimation [40]. In the same way, the number of
factorsM for PARAFAC estimation must be chosen with care. For both p andM, there are sev-
eral concepts to determine the theoretically optimal number [27, 49], but any suggestion
should be critically evaluated by the experienced user, as the numerically optimal choice is not
always the expediently optimal one.

Supporting Information
S1 Fig. Tensor decomposition of tvPDC for all 28 EEG electrodes and the whole group of
subjects. First row: spatial loadings; second row: temporal loadings (dashed line denotes stimu-
lus onset); third row: frequency loadings; fourth row: subject loadings.
(TIF)
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S2 Fig. Tensor decomposition of tvPDC for all 28 EEG electrodes and the whole group of
subjects.MatlabFIG-file of spatial loadings.
(FIG)

S3 Fig. EEG channel labels. Ordered electrode designation corresponding to channel combi-
nations within spatial maps of tensor decomposition of tvPDC for all 28 EEG electrodes.
(TIF)
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