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Abstract Radioactive iodine (RAI) is a key therapeutic mo-
dality for thyroid cancer. Loss of RAI uptake in thyroid cancer
inversely correlates with patient’s survival. In this review, we
focus on the challenges encountered in delivering sufficient
doses of I-131 to eradicate metastatic lesions without increas-
ing the risk of unwanted side effects. Sodium iodide
symporter (NIS) mediates iodide influx, and NIS expression
and function can be selectively enhanced in thyroid cells by
thyroid-stimulating hormone. We summarize our current
knowledge of NIS modulation in normal and cancer thyroid
cells, and we propose that several reagents evaluated in clin-
ical trials for other diseases can be used to restore or further
increase RAI accumulation in thyroid cancer. Once validated
in preclinical mouse models and clinical trials, these reagents,
mostly small-molecule inhibitors, can be readily translated
into clinical practice. We review available genetically
engineered mouse models of thyroid cancer in terms of their
tumor development and progression as well as their thyroid
function. These mice will not only provide important insights
into the mechanisms underlying the loss of RAI uptake in
thyroid tumors but will also serve as preclinical animal models
to evaluate the efficacy of candidate reagents to selectively
increase RAI uptake in thyroid cancers. Taken together, we
anticipate that the optimal use of RAI in the clinical manage-
ment of thyroid cancer is yet to come in the near future.

Introduction

The ability of thyroid follicular cells to concentrate
iodine allows the use of radioactive iodine (RAI) to
ablate post-surgical thyroid remnants and to eradicate
residual, recurrent, and metastatic thyroid cancer cells.
Thyroidal RAI accumulation is mainly contributed by
Na+/I− symporter (NIS)-mediated iodide influx [1, 2].
Since NIS expression is often reduced in malignant
thyroid tissues [3], much effort has been focused on studying
NIS modulation in thyroid cells with the hope that NIS ex-
pression and function can be restored and further enhanced in
thyroid cancer cells. Accordingly, most RAI administered
would be delivered to targeted thyroid cancers to ensure the
efficacy of RAI therapy with minimal RAI-induced toxicity in
non-targeted tissues.

Recently, several excellent reviews were published to
summarize advances made in NIS molecular characteriza-
tion and regulation in detail [4–6]. In addition, Spitzweg
et al. [7] wrote an excellent review focusing on NIS
deregulation in thyroid cancer and therapeutic potential
of NIS restoration in advanced thyroid cancer patients. In
this mini-review, we list clinical issues that remain to be
addressed for current I-131 therapy, in particular, the chal-
lenge of delivering sufficient I-131 dose to targeted meta-
static lesions without increasing the risk of unwanted side
effects. Based on current knowledge of NIS modulation in
normal and cancer thyroid cells, we list several reagents in
clinical trials for other diseases may selectively increase
thyroidal RAI accumulation. We summarize genetically
engineered mouse models that lead to various types of
thyroid cancer. These mice will serve to reveal the mech-
anisms underlying the loss of RAI uptake in thyroid
tumors and will also serve to evaluate the efficacy of
candidate reagents to selectively increase RAI uptake in
thyroid cancers.
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Radioiodine Ablation and Therapy for Differentiated
Thyroid Cancer

For patients with differentiated thyroid cancer, the benefit of
administering I-131 to ablate remnants of normal thyroid
tissue and/or to target residual or metastatic lesions must also
take into consideration the risk of I-131-induced damages in
non-targeted tissues.

RAI Ablation for Thyroid Remnants

For patients who had complete surgical resection without
distant metastatic disease, RAI ablation for thyroid remnants
can ensure accuracy of tumor staging and facilitate follow-up
[8]. Post-ablation whole-body I-131 scintigraphymay identify
undiagnosed lesions resulting in a change in tumor staging
that may have an impact on clinical management of the
disease. The absence of thyroid remnants allows the use of
serum thyroglobulin (Tg) measurement for early detection of
recurrent disease. For patients who are cured by surgery and
are at low risk for recurrence, the clinical benefit of RAI
remnant ablation is limited and is not recommended. For
patients who have gross extra-thyroidal extension, incomplete
tumor resection, or distant metastasis, RAI ablation for a
thyroid remnant is routinely recommended as these patients
are likely to have undiagnosed lesions and are at high risk for
recurrence. However, one cannot always be certain of risk
assessment based on the initial presentation of the disease, and
the prognosis of disease may change over time depending on
their responsiveness to ongoing therapy. Thus, risk reassess-
ment should be conducted periodically for all patients.

RAI Therapy for Suspected or Known Metastatic Thyroid
Cancer Lesions

I-131 has been proven to be effective in decreasing recurrence
rate and in improving overall survival for thyroid cancer
patients who had gross extra-thyroidal extension or distant
metastasis [9, 10]. Patients of young age, who have small
metastatic lesions with significant I-131 uptake, can be cured
with a few doses of I-131 after thyroidectomy. However,
patients of older age who have large metastatic lesions with
absent or insufficient I-131 uptake do not benefit from I-131
therapy. Some of these patients may benefit from I-131 ther-
apy if I-131 uptake can be restored and enhanced in their
metastatic lesions. However, metastatic lesions with evident
I-131 uptake are not always responsive to I-131 therapy. The
efficacy of I-131 therapy is inversely related to the size of
metastatic lesions, and the underlying mechanisms are not
well elucidated except that hypoxia in bulky tumors may
account for RAI resistance. Without conducting lesion dosim-
etry to determine how much radiation each metastatic lesion
will receive (NCT00673010) [11], it is difficult to distinguish

lesions that are not responsive to I-131 from lesions that do not
receive sufficient radioactivity of I-131. For metastatic lesions
not responsive to I-131, co-treatment with radiosensitizers
may be beneficial.

RAI-Induced Damage in Non-thyroidal Tissues

NIS is expressed not only in thyroid follicular cells but also in
salivary striated ducts, lactating breast, gastric mucosa, lacri-
mal ducts, etc. Accordingly, these NIS-expressing tissues as
well as I-131-handling organs are subjected to I-131-induced
damage. The side effects of I-131 therapy include temporary
or permanent salivary gland dysfunction, temporary GI upset,
lacrimal duct obstruction, gonadal dysfunction, and possible
secondary malignancy. Among these side effects, many I-131-
treated thyroid cancer survivors suffer from lifelongmorbidity
of I-131-induced salivary gland dysfunction, including recur-
rent sialadenitis, persistent xerostomia, and progressive sus-
ceptibility to dental caries and periodontal diseases. More than
half-million people are living with thyroid cancer in the USA,
and many of these patients are at risk to suffer from newly
developed or worsening I-131-induced salivary gland dys-
function. Accordingly, prevention strategies for I-131-
induced salivary gland dysfunction are warranted. Finally,
continued I-131 therapy is not recommended for patients
who have received a cumulative dose of I-131 greater than
600 mCi.

Clinical Questions Regarding I-131 Therapy

In the 2009 revised American Thyroid Association guidelines
for patients with thyroid nodules and differentiated thyroid
cancer [8], a series of clinically relevant questions regarding
the use of RAI for patients with differentiated thyroid cancer
were identified and evidence-based recommendations were
made. One of these major issues is patient selection, i.e.,
who would benefit from I-131 ablation and therapy. This issue
involves multiple factors that are beyond the scope of this
review. The other major issue is to deliver sufficient doses of I-
131 to eradicate targeted lesions without increasing the risk of
unwanted side effects. This issue can be addressed if selective
enhancement of RAI uptake in targeted lesions can be
achieved.

Modulation of NIS-Mediated Iodide Influx, Iodide Efflux,
and Iodide Organification in Thyroid Cells

The extent of RAI accumulation in thyroid follicular cells is
determined by NIS-mediated iodide influx, iodide efflux, and
iodide organification (reviewed in [12]). NIS expression and
function are mainly modulated at transcriptional and post-
translational levels. Mutations in the NIS gene do not appear
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to be a major cause for reduced NIS expression/function in
thyroid cancers. A mutation in NIS gene (A581G) was found
only in one patient, and a homozygous deletion was found in
another patient from the TCGA database of 399 papillary
thyroid cancer (PTC) samples [13, 14]. Currently, not much
is known whether NIS modulation occurs at messenger RNA
(mRNA) stability or translational level in thyroid cells. Stud-
ies on transcription factors that bind to NIS promoter and/or
enhancer are summarized in Table 1. Various reagents that
selectively increase thyroidal RAI uptake and the underlying
mechanistic actions are summarized in Table 2. Note that NIS
regulation studies were mostly conducted with normal thyroid
cells and sometimes verified by restoration in thyroid cancer
cells.

Transcription Factors That Bind to NIS Promoter
and/or Enhancer

Thyroid-stimulating hormone (TSH), secreted by the pituitary
gland, is the main regulator of NIS transcription in normal
thyroid cells. TSH not only stimulates NIS proximal promoter
(NIS_PP) activity [15] but also stimulates the NIS upstream
enhancer (NUE) activity [16, 17]. Based on consensus motifs
in NIS_PP and/or NUE, along with electrophoretic mobility

shift assays (EMSA) using nuclear extracts of thyroid cells
and chromatin immunoprecipitation (ChIP) assays, several
transcription factors binding to NIS_PP or NUE were identi-
fied. Thyroid transcription factor-1 (TTF-1) was shown [15]
and hairy and enhancer of split-1 (Hes-1) was predicted [18] to
bind to NIS_PP, and both the transcription factors increased
NIS_PP activity by luciferase reporter assay. The paired do-
main transcription factor-8 (Pax-8) [16], cAMP-response ele-
ment binding protein (CREB) [17], β-catenin [19], and
forkhead transcription factor (FoxE1) [20] were shown to bind
to NUE and to enhance NUE activity by luciferase reporter
assay. Sterol regulatory element binding proteins (SREBPs)
[21] were shown to bind to NIS 5′UTR and to enhance NIS
promoter activity by luciferase reporter assay. The pituitary
tumor transforming gene (PTTG) binds to NUE and PTTG
binding factor (PBF) binds to both NUE and NIS_PP, yet both
repress NUE/NIS_PP activity by luciferase reporter assay
[22]. TTF-1, CREB, Pax-8, β-catenin, Hes-1, SREBPs, and
FoxE1 modulate NIS_PP or NUE activity in a TSH-
dependent manner, yet PTTG and PBF modulate NIS_PP or
NUE activity in a TSH-independent manner.

Among these transcription factors, forced expression of
TTF-1 and Pax-8 by adenoviral vector results in an increased
NIS mRNA/protein levels as well as NIS-mediated RAI

Table 1 Transcription factors that bind to NIS promoter and/or enhancer

Transcription factor EMSA or ChIP (cells) Luciferase assay (cells) NIS mRNA/protein (cells) RAI uptake (cells) References

TTF-1 EMSA/NIS_PP
(FRTL-5)

NIS_PP
(FRT)

rAdTTF-1
~13x ↑ mRNA
(F133)

rAdTTF-1
~5x ↑
(K1, F133)

[15, 23]

CREB EMSA/NUE
(FRTL-5)

NUE
(FRTL-5)

ND ND [17]

Pax-8 EMSA/NUE
(FRTL-5)

NUE
(HeLa)

rAdPax-8+rAdTTF-1
~15x ↑ mRNA
(F133)

rAdPax-8+rAdTTF-1
~7x ↑
(K1, F133)

[16, 23]

β-Catenin ChIP/NUE
(PCCl3)

NUE
(HeLa, PCCl3)

ND ND [19]

Hes-1 ND NIS_PP
(FRTL-5, WRO)

Hes-1−/−

69 % ↓ protein
(mouse thyrocytes)

ND [18, 24]

SREBPs EMSA/5′UTR
(recombinant SREBPs)

NIS_PP+5′UTR
(HepG2)

SREBP siRNA
~31 % ↓ protein
inhibitor 25-HC
~38 % ↓ protein
(FRTL-5)

Inhibitor 25-HC
~20 % ↓
(FRTL-5)

[21]

FoxE1 ChIP/NUE NUE
(HeLa)

FoxE1 siRNA
~30 % ↓ mRNA; ↓ protein
(PCCl3)

ND [20]

PTTG ND NUE
(FRTL-5)

PTTG plasmid
~80 % ↓ mRNA
(human thyrocytes, FRTL-5)

PTTG plasmid
~2x ↓, ~6x ↓
(human thyrocytes, FRTL-5)

[22, 88]

PBF ND NIS_PP+NUE
(FRTL-5)
NUE (human thyrocytes)

PBF plasmid
95 % ↓ mRNA
human thyrocytes

PBF plasmid
(~3x ↓)
human thyrocytes

[22]

NIS_PPNIS proximal promoter,NUENIS upstream enhancer,EMSA electrophoretic mobility shift assay,ChIP chromatin immunoprecipitation,ND not
determined
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uptake in K-1 and F133 thyroid cancer cells [23]. Forced
expression of Hes-1 increased NIS mRNA in FRTL-5 thyroid
cells andWRO thyroid cancer cells [18], and NIS protein level
was found to be decreased in Hes-1−/− mouse thyroid cells
[24]. SREBP small interfering RNA (siRNA) or SREBP
maturation inhibitor, 25-HC, decreased NIS protein levels,
and 25-HC decreased RAI uptake in FRTL-5 thyroid cells
[21]. FoxE1 siRNA decreased NIS mRNA and protein in
PCCl3 thyroid cells [20]. The effects of CREB and β-
catenin on endogenous NIS mRNA/protein levels have not
been evaluated.

Reagents Known to Increase Thyroidal NIS mRNA/Protein
Levels

In addition to recombinant human TSH (rhTSH) [25–28],
several reagents have been shown to increase NIS mRNA/
protein levels. Many of them target signaling nodes known to
participate in the development and progression of thyroid
cancers, most of which have reduced NIS expression. Specif-
ically, inhibitors for MEK [29–31], PI3K [32, 33], BRAF
[31], HDAC [34–38], and TGF-β [39] are shown to increase
thyroid NIS expression, and these reagents are in clinical trials
for various diseases. Accordingly, the use of these reagents to
further enhance TSH-stimulated thyroidal RAI uptake to fa-
cilitate I-131 therapy for thyroid cancer patients could be
imminent, if their effects are validated in preclinical animal
models and clinical trials. Ferretti et al. reported that thyroidal
NIS expression was increased by Notch activation [18]. In-
deed, Notch-1 activators, resveratrol and hesperetin, increased
NIS expression in HTh7 and 8505C thyroid cancer cell lines
[40, 41], and resveratrol increases RAI uptake in FRTL-5
thyroid cells [42].

It is interesting to note that signaling nodes targeted by
these reagents modulate many transcription factors listed in
Table 1. Indeed, Pax-8 is decreased via the TGF-β-SMAD3

pathway in PCCl3 thyroid cells carrying BRAF(V600E) mu-
tation [43, 39] and is also decreased in thyroid cells carrying
RET/PTC rearrangement [44]. NIS expression induced by
Notch-1 activators in anaplastic thyroid cancer cells is likely
in part mediated by increased expression of TTF-1, Pax-8, and
Hes-1 [18, 40, 41]. PI3K inhibitors [32] and BRAF inhibitors
[43] increase NIS expression likely by increasing Pax-8
levels. HDAC inhibitors increase NIS expression likely by
increasing TTF-1 levels [34]. MEK inhibitors increase NIS
expression likely by increasing Pax-8 levels [29, 30] and TTF-
1 levels [30]. Finally, almost all transcription factors that bind
to NIS promoter/enhancer are modulated by rhTSH.

NIS Post-translational Modifications and NIS-Associated
Proteins Known to Modulate NIS Protein Stability, Cell
Surface Trafficking, and Iodide Influx Velocity

NIS expression and function can be modulated by NIS post-
translational modifications and NIS-associated proteins. TSH
increases NIS phosphorylation, protein stability, and cell sur-
face trafficking in FRTL-5 thyroid cells [28]. In addition to
decreasing NIS expression, TGF-βmost likely also decreases
NIS protein stability. NIS protein level was decreased by 43%
upon 12-h treatment of TGF-β in PCCl3 thyroid cells under
chronic TSH stimulation, where the half-life of NIS protein is
5 days in the absence of TGF-β (Lakshmanan and Jhiang,
unpublished data).We reported that Akt inhibitor alone [33] or
in combination with apigenin [45] increased iodide influx rate
without increasing cell surface NIS protein levels.

NIS phosphorylation sites and NIS-associated proteins
were identified by exogenous NIS expression in non-thyroid
cells. Five in vivo phosphorylation sites have been identified
in exogenously expressed rat NIS in HEK-293 cells [46]. The
phosphorylation status of Ser-227 did not alter NIS expression
or function. Thr-49 appears to be critical for proper NIS
conformation as both phospho-mimic and phospho-defective

Table 2 Mechanistic action of reagents that increase thyroidal RAI uptake

Reagent NIS mRNA NIS protein RAI uptake
(influx+efflux)

Iodide efflux Iodide
organification

Clinical trial
(ClinicalTrials.gov)

References

rhTSH ↑ ↑ ↑ ↑ ↑ Ph IV [25–28, 89]

Akti − − ↑ ↓ ND Ph I, II, III, IV [33]

MEKi ↑ ↑ ↑ − ND Ph I, II, III [29, 31, 86]

PI3Ki ↑ ↑ ↑ − ND Ph I, II, III, IV [32, 33]

HSP90i − − ↑ ↓ ND Ph I, II [55, 83, 90]

BRAFi ↑ ↑ ↑ ND ND Ph I, II, III [31, 91]

TGF-βi ND ↑ ↑ ND ND Ph I, II [39]

HDACi ↑ ↑ ↑ ND ↑ Ph I, II, III, IV [34–38]

Hesperetin (Notch-1 activator) ↑ ND ND ND ND − [40]

Resveratrol (Notch-1 activator) ↑ ↑ ↑ ↓ ND − [41, 42]

Suffix i inhibitor, ↑ increase, ↓ decrease, − no change, ND not determined
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mutants decreased RAI uptake. Phosphorylation of Ser-43 or
Ser-581 is essential for NIS-mediated RAI uptake without
affecting total or cell surface NIS protein levels. Kinetic
studies indicated that Ser-43 and Ser-581 phospho-defective
NIS mutants had decreased iodide influx rate. Ser-43 was
conserved in human NIS, and its phosphorylation is also
critical for hNIS activity. Interestingly, we noted that NIS
mobility was shifted upwards in SDS-denatured polyacryl-
amide gel electrophoresis upon combination treatment of Akt
inhibitor and apigenin in PCCl3 rat thyroid cells [45]. The
nature of this mobility shift in NIS remains unclear and it may
be due to a post-translational modification. Thr-577 site has
been implicated in NIS protein stability, as phospho-defective
NIS mutant protein was completely degraded, yet phospho-
mimic NIS mutant protein level was comparable to wild-type
NIS protein. Indeed, we found that exogenously expressed
NIS is associated with ubiquitin in HEK-293 cells [47]. In
addition, MEK inhibitors lead to lysosome-mediated NIS
protein degradation in trans-retinoic acid/hydrocortisone-
treated MCF-7 breast cancer cells [48].

In addition to acting as a repressor for NIS transcription
[22], PBF may also play a role in NIS cell surface trafficking
[49]. NIS and PBF complex formation was demonstrated by a
pull-down assay as well as co-immunoprecipitation of NIS
and PBF exogenously expressed in COS-7 cells. Cell surface
localization of exogenously expressed NIS in COS-7 cells was
decreased by co-expression of exogenous PBF. However, the
role of PBF on NIS cell surface trafficking in physiological or
pathological conditions is yet to be demonstrated in thyroid
cells expressing endogenous NIS and PBF. Strong intracellu-
lar staining with anti-NIS antibodies has been reported in
thyroid cancers [50–52]. It was first proposed that this staining
reveals intracellular NIS, but later, it has been demonstrated
that the intracellular staining was probably due to non-specific
binding of the anti-NIS antibody [53, 54]. Thus, the contribu-
tion of impairment in NIS cell surface trafficking in both
thyroid cancer and breast cancer remains circumstantial.

Reagents Known to Modulate Iodide Efflux and Iodine
Organification

In normal thyroid follicular cells, NIS-mediated iodide influx
occurs at the basolateral membrane and iodide efflux occurs at
the apical membrane where iodide oxidation and
organification occur. These processes are stimulated by TSH
and together contribute to prolonged iodine accumulation in
the thyroid gland. However, the follicle structure is not main-
tained in most thyroid cancers; thus, an increase in iodide
efflux may not result in an increase but rather a decrease in
iodine accumulation in thyroid cancer cells. Indeed, iodide
efflux decreased in the presence of an HSP90 inhibitor, 17-
AAG, which resulted in an increased RAI accumulation in
monolayer-cultured PCCl3 rat thyroid cells as well as PCCl3

cells expressing RET/PTC1 oncoprotein [55]. The possible
molecules that mediate iodide efflux in thyroid cells are
pendrin, apical iodide transporter, CFTR (reviewed in [56]),
and ClC-5 [57], yet the mechanisms underlying the actions of
HSP90 inhibitor in decreasing iodide efflux in thyroid cells
are yet to be elucidated.

Iodide organification is a unique property of the thyroid
gland. Iodine effluxed into the follicular lumen at the apical
membrane is oxidized by thyroperoxidase (TPO) using H2O2

produced by the dual oxidase-2 (DUOX-2) and its essential
partner dual oxidase-2A (DUOX-2A). Oxidized iodine is then
incorporated into tyrosyl residues of Tg, and the iodinated Tg
are stored in the follicular lumen as colloid (reviewed in [12]).
For monolayer-cultured thyroid cells, and likely most thyroid
cancer cells in patients, iodide organification may occur ran-
domly at intracellular locations as the polarity of iodide influx
and iodide efflux/organification may no longer exist. Pax-8 is
the main transcription factor for Tg and TPO genes, and
forced expression of Pax-8 by adenoviral vector in human
anaplastic thyroid cancer cell lines, K-1 and F133, resulted in
an increase in mRNA and protein levels of Tg and TPO,
thereby resulting in an increase in iodide organification and
retention [58]. Forced expression of both TTF-1 and Pax-8
further increased RAI uptake in K-1 and F133 cells by in-
creasing NIS, Tg, and TPO expression levels [23].
Depsipeptide, an HDAC inhibitor, also induced iodide
organification by increasing NIS, Tg, and TPO expression
levels in BHP-7 cells that express high levels of endogenous
Pax-8 [34].

NIS Expression and Modulation in Salivary Glands

In human salivary glands, NIS protein was abundantly
expressed in striated ducts, expressed at lower levels in excre-
tory ducts, but not in acinar cells [59, 60]. No immortalized
salivary ductal cells maintain endogenous NIS expression;
thus, NIS modulation in salivary ductal cells is not well
studied. Based on NIS immunohistochemical staining, NIS
protein levels are decreased in inflamed or malignant salivary
glands. The mechanisms underlying the transition of NIS
expression from intercalated ducts (no NIS expression) to
striated ducts (high NIS expression) and to excretory ducts
(low NIS expression) remain to be elucidated. While the
parotid gland is the largest salivary gland in humans, the
submandibular gland is the largest in mice. In addition, the
submandibular gland in mouse contains granular convoluted
ducts that do not exist in the human salivary duct system. The
convoluted ducts are located between intercalated ducts and
striated ducts. NIS expression level in convoluted ducts is
lower than that in striated ducts but is higher than excretory
ducts (La Perle and Jhiang, unpublished observation). Male
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mouse salivary glands have significantly higher NIS-mediated
radioisotope accumulation than females [61], as NIS-
expressing convoluted duct is larger and more prominent in
male mice. Finally, TSH does not modulate NIS expression
and iodide is not organified in the salivary gland.

Genetically Engineered Mouse Models of Thyroid Cancer

Several lines of genetically modified mice have been created
that resemble human papillary, follicular, and anaplastic thy-
roid cancers. The development of these in vivo models has
provided valuable insights into the effects of different muta-
tions that lead to various types of thyroid cancer and has
allowed us to examine radioiodine uptake and retention in
various tumor stages. Available genetically engineered mouse
models of thyroid cancer and their thyroid function status are
summarized in Table 3.

Genetically Engineered Mouse Models of Papillary Thyroid
Cancer

RTK rearrangements, such as RET or TRK, and the
BRAF(V600E) mutation account for the driver mutations for
most PTCs in humans. Mice with thyroid-targeted expression
of RET/PTC1 [62, 63], RET/PTC3 [64], TRK-T1 [65], or
BRAF(V600E) [31, 66, 67] developed PTCs, yet lymph node
metastasis was rare and distant metastasis was not found. Since
BRAF(V600E) mutation was detected in 40–50 % of human
PTCs and was associated with progressive disease [68], three
different BRAF(V600E) mouse models were established. In
bTg-BRAF(V600E) mice, BRAF(V600E) was overexpressed
in the thyroid gland at embryonic stages when the bTg promot-
er becomes active [67]. In bTgCreER:BRAF(V600E) mice,
BRAF(V600E) knock-in allele was induced by tamoxifen in
thyroid glands when mice were at 1 month of age [66]. In bTg-
rtTA:tetO-BRAF(V600E) mice, BRAF(V600E) overexpres-
sion in thyroid gland is induced by doxycycline [31]. PTCs
were progressed to anaplastic thyroid cancer (ATC) when the
bTgCreER:BRAF(V600E) mouse model was crossed with
thyroid-targeted PTEN−/− or PI3KCAH1047R mouse models
[69], in which both Raf/MEK and PI3K signaling are
overactivated in their thyroid gland. PTCs were progressed to
ATC with distant metastasis when bTg-RET/PTC1 [70] or
hTPOCreER:BRAF(V600E) [71] mouse models were crossed
with a p53−/− mouse model, indicating that p53 loss is needed
for metastatic spread of PTC. Finally, the latency of PTC
development in the bTg-TRK-T1 mouse model was shortened
by crossing it with a p27−/− mouse model [72].

Similar to human PTCs, thyroid tumors that developed in
mouse models of PTC had decreased expression of thyroid
differentiation genes. It is of interest to note that all PTC
mouse models that were examined for serum TSH levels had

increased serum TSH levels [31, 63, 66, 67, 71]. This is in
contrast to PTC patients, who are euthyroid. The difference
can be attributed to the fact that almost all thyroid follicular
cells are expressing the oncogene, leading to a tissue-wide de-
differentiation effect in the thyroids of these mouse models. In
patients with PTC, oncogenes are expressed only in tumor
foci, but not in the surrounding normal thyroid follicular cells.
Furthermore, oncogene expression in thyroid follicular cells
of mouse models can be dynamic in nature. For example, in
bTg-BRAF(V600E) mice, BRAF(V600E) de-differentiation
effects can diminish the activity of the bTg promoter such that
BRAF(V600E) expression itself is reduced [67]. Concomi-
tantly, increased serum TSH levels, due to thyroid de-differ-
entiation, can further enhance the bTg promoter if the thyroid
follicular cells have intact TSHR-mediated signaling path-
ways. Taken together, the level of BRAF(V600E) driven by
the bTg promoter in a given thyroid follicular cell is deter-
mined by the equilibrium between the effects of
BRAF(V600E)-driven de-differentiation and the cell’s re-
sponsiveness to increased serum TSH levels. However, in
bTgCre:BRAF(V600E) mice, once BRAF(V600E) knock-in
allele was established in thyroid follicular cells by bTg-driven
Cre expression; bTg promoter activity became irrelevant [66].
Regardless of the various BRAF(V600E) mouse models, the
differentiation status in any given thyroid follicular cell is
dictated by the equilibrium between BRAF(V600E) de-
differentiation effects and TSH differentiation effects. The fact
that all BRAF(V600E) mouse models have elevated TSH
level indicates that BRAF(V600E) de-differentiation effects
are dominant over TSH differentiation effects.

Genetically Engineered Mouse Models of Follicular Thyroid
Cancer

TRβPV/PV mice [73], as well as thyroid-targeted PRKAR1A−/

− [74], PTEN−/− [75], or NRAS(Q61K) [76] mice, developed
follicular thyroid cancer (FTC) with varying penetrance. Ex-
cept PRKAR1A−/− mice, all other mouse models had several
mice develop lung metastasis. TRβPV/PV mice had elevated
T4 and TSH levels due to thyroid hormone resistance. In
contrast to mouse models of PTC characterized with increased
serum TSH levels, all FTC mouse models except bTg-
NRAS(Q61K) mouse model had decreased serum TSH levels
due to an increase of T4 levels. Accordingly, signaling dereg-
ulation (mainly cAMP and PI3K) that leads to FTC develop-
ment does not seem to greatly interfere with thyroid differen-
tiation such that increased proliferation of thyroid follicular
cells can still lead to sufficient or increased T4 production.
Furthermore, signaling deregulation leading to FTC develop-
ment seems to be permissive for distant metastasis to occur.
The latency of FTC development in TRβPV/PV mice was
shortened by crossing to PPARγ+/− mice [77] or PTEN+/−

mice [78]. The thyroid-targeted PRKAR1A−/−:PTEN−/−
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mouse model had a shorter latency for FTC development with
100 % penetrance of FTC, and 27 % of the mice developed
lung metastasis [79]. Remarkably, 100 % of the thyroid-
targeted PTEN−/−:KRASG12D mice developed FTC and lung
metastasis by 3 months of age [80]. FTCs were progressed to
ATC with lung or liver metastasis when the thyroid-targeted
PTEN−/− mouse model was crossed with the thyroid-targeted
p53−/− mouse model [81].

In Vivo Imaging of Thyroidal RAI Uptake and Retention
in Mice

Thyroidal RAI accumulation is contributed by RAI uptake
and RAI retention. Micro-SPECT [61, 82, 83] or micro-PET

imaging allows non-invasive quantification of thyroidal RAI
uptake as well as RAI retention. Ultrasound imaging allows
non-invasive measurement of thyroid volume such that thy-
roidal RAI uptake can be normalized by anatomic volume. At
1 h post-RAI injection (t1), when blood circulating level of
RAI remains high, thyroidal RAI uptake is mostly contributed
by the equilibrium between NIS-mediated RAI influx and
RAI efflux. At 24 h post-RAI injection (t24), whenmost blood
circulating level of RAI is eliminated by urinary excretion,
thyroidal RAI accumulation is contributed by both RAI up-
take and subsequent retention by RAI organification. Accord-
ingly, RAI retention rate can be defined as % injected dose
(ID) at t24 divided by %ID at t1 [83]. With ultrasound and
SPECT or PET imaging, thyroid tumor progression can be
monitored non-invasively and can be defined by sudden in-
crease in tumor size and/or abrupt decrease in RAI uptake and

Table 3 Genetically engineered mouse models of thyroid cancer

Genetic disposition Promoter Mouse strain Primary tumor Metastasis Thyroid function

RET/PTC1 [62, 63] bTg FVB/N PTC, 100 % by 1 month Not reported ↓ T4 ↑ TSH

RET/PTC3 [64] bTg C57BL/6 PTC, 6/11 by 3 months Axillary lymph node, 2/6
by 10 months

Not reported

RET/PTC1:p53−/− [70] bTg:mp53 FVB/N:129/SV PTC, 100 % by 7 months;
ATC, 60 % by 4 months

Liver, 1/2 by 7 months Not reported

TRK-T1 [65] bTg B6C3F1 PTC, 7/9 by 7 months Not reported Not reported

TRK-T1:p27−/− [72] bTg:mp27 B6C3F1:129/Sv and
C57BL/6J

PTC, 14/18 by 14 months Not reported Not reported

BRAF(V600E) [67] bTg FVB/N PTC, 14/15 by 3 months Not reported ↑ TSH

BRAF(V600E) [66] bTgCreER FVB/N PTC, by 6 months after
TAM induction

Not reported ↓ T4 ↑ TSH

BRAF(V600E) [31] bTg-rtTA FVB/N PTC, 100 % by 1 month
after Dox induction

Not reported ↓ T4 ↑ TSH

BRAF(V600E):
PIK3CAH1047R [69]

bTgCreER FVB/N PTC, by 3 months, ATC,
11/14 by 13 months after
TAM induction

Not reported Not reported

BRAF(V600E):
PTEN−/− [69]

bTgCreER FVB/N PTC, ATC, by 4 months
after TAM induction

Not reported Not reported

BRAF(V600E):
p53−/− [71]

hTPOCreER C57BL/6 and
129SvJae

PTC, in 100 %; PDTC, ATC,
in 50 % TAM induced

Lung, 5/26 ↑ TSH

N-RAS(Q61K) [76] bTg C57BL/6J FTC, 26/88, PDTC, 9/88 by
18 months

Liver, 2/9; lung, 3/9; bone,
1/9 by 18 months

↑ TSH

TRβ1PV/PV [73] mTRβ C57BL/6J and NIH
Black Swiss

FTC, 21/23 by 14 months Lung, 7/23; heart, 2/23
by 14 months

↑ T4 ↑ TSH

TRβPV/PV:PPARγ+/−

[77]
mTRβ:mPPARγ C57BL/6 and NIH

Black Swiss
FTC, 55 % by 3 months Lung, 70 % by 12 months ↑ T4 ↑ TSH

TRβ1PV/PV:PTEN+/−

[78]
mTRβ:mPTEN C57BL/6J and NIH

Black Swiss:
C57BL6/J

FTC, 70 % by 7 months Lung, 80 % by 7 months ↑ T4 ↑ TSH

PRKAR1A−/− [74] hTPOCre FVB/N and 129Sv:
FVB/N

FTC, 10/23 by 12 months Not reported ↑ T4 ↓ TSH

PTEN−/− [75] hTPOCre 129Sv FTC, 50 % female, 35 %
male, by 12 months

Lung ↑ T4 ↓ TSH

PTEN−/−:PRKAR1A−/−

[79]
hTPOCre 129/Sv126 and

FVB/N
FTC, 56/56 by 6 months Lung, 15/56 ↑ T4 ↓ TSH

PTEN−/−:KRASG12D [80] hTPOCre 129Sv FTC, 100 % by 3 months,
50 % died by 2 months

Lung, 100 % by 3 months ↑ T4 ↓ TSH

PTEN−/−:p53−/− [81] hTPOCre 129Sv FTC, ATC by 10 months Lung, 28 %, liver ↓ TSH

Prefixes—b, bovine; h, human; m, mouse
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retention. Different from isolated thyroid cultured cells, RAI
uptake and retention in thyroid tumor of live animals are most
likely also influenced by local factors in surrounding micro-
environments as well as by dynamic interactions with system-
ic cytokines, hormones, etc. Thus, the extent of increase in
thyroidal RAI uptake per anatomic volume and RAI retention
rate upon treatment of selected reagents could be investigated
and compared at distinct tumor stages.

Reduced Thyroidal RAI Accumulation in Thyroid Cancer
Mouse Models

In a doxycycline-induced BRAF(V600E) mouse model, the
mice became hypothyroid within 2 days of doxycycline ad-
ministration. NIS, Tg, and TPO expression levels were almost
completely abolished upon a 1-week induction of
BRAF(V600E). The expression levels of TSHR, TTF-2, and
Pax-8 were also greatly reduced. I-124 accumulation in the
thyroid was minimal in these mice, despite several hundred-
fold increases in serum TSH levels. This finding indicates that
BRAF(V600E)-expressing thyroid tumors were not respon-
sive to elevated TSH levels. However, I-124 accumulation in
the thyroid, as well as expression of thyroid-differentiated
genes, was extensively recovered after doxycycline withdraw-
al for 1 week, suggesting that BRAF or MEK inhibitors may
restore thyroidal iodine accumulation in BRAF(V600E)-ex-
pressing tumors. Indeed, thyroidal I-124 accumulation was
considerably enhanced after 1 week of administration of
BRAF or MEK inhibitors in the continued presence of doxy-
cycline. The dosing schedule of the MEK inhibitor was crit-
ical as 2 weeks treatment with 25 mg/kg once a day did not
restore thyroid function, yet 6 days treatment with 12.5 mg/kg
twice a day did. This suggests that a sustained pERK inhibi-
tion is more important than the extent of pERK inhibition [31].
All PTC mouse models had elevated TSH levels, indicating
that differentiation status of the thyroid, and thus thyroidal
RAI accumulation, is extremely sensitive to RTK/BRAF/
MEK-activated pathway. Consequently, MEK inhibitors
could be applied to further enhance TSH-stimulated RAI
accumulation in PTC mouse models.

All FTC mouse models had normal or elevated T4 levels,
indicating that thyroidal RAI accumulation was much less
compromised by the signaling that leads to FTC development.
For hTPOCre:PTEN−/− mice [75], expression levels of NIS,
TPO, and Tg were only decreased by about 50 % in the
thyroids of young mice compared to those of wild-type mice.
NIS and Tg levels were slightly changed or decreased to
varying degrees among FTCs examined. In comparison,
TPO expression in FTCs was comparable to the thyroids of
wild-type mice. For mice with FTCs that had decreased thy-
roidal RAI accumulation, PI3K inhibitors may be effective in
restoring or further enhancing TSH-stimulated thyroidal RAI
accumulation.

Mouse models of ATC that progress from PTC or FTC are
available [69–71, 81]. It would be of great interest to investi-
gate whether or not selected reagents could restore the loss of
thyroidal RAI accumulation. With state-of-the-art mouse im-
aging modalities, the extent of increase in thyroidal RAI
uptake per anatomic volume and RAI retention rate upon
treatment of selected reagents could be investigated and com-
pared at distinct tumor stages.

Conclusion Remarks and Future Research Direction

RAI is a key therapeutic modality in thyroid cancer. Loss of
RAI uptake inversely correlates with survival. For patients
with RAI refractory disease, there are few treatment options,
as these tumors are generally resistant to external radiation and
conventional chemotherapy [84]. To this date, no novel treat-
ment has been shown to improve overall survival despite
improved progression-free survival in some patients with
RAI refractory disease [85]. The side effects of I-131 therapy
are much more tolerable than external radiation, conventional
chemotherapy, or small-molecule inhibitors. Accordingly,
strategies to restore and enhance thyroidal RAI accumulation
for patients with RAI refractory disease are of great clinical
importance. Indeed, a recent success of using MEK inhibitors
to enhance RAI uptake in advanced thyroid cancer is most
encouraging [86].

We have summarized transcription factors reported to mod-
ulate NIS expression as co-activators or co-repressors. In
addition, we have listed several reagents evaluated in clinical
trials for other diseases as possible candidates to enhance
thyroidal RAI accumulation by increasing NIS expression/
function, decreasing iodide efflux rate, or increasing iodine
organification. For transcription factors acting as co-activators
for NIS expression, thyroid-targeted forced expression by
viral or non-viral vectors remains challenging. For transcrip-
tion factors acting as co-repressors, it is considered
undruggable by conventional drug discovery methods. How-
ever, Liu and Altman recently describe a novel computational
algorithm, DrugFEATURE, to precisely calculate target
druggability and predict candidate drug or fragment leads
[87]. Small interfering RNAs (siRNAs) could be used to
knockdown molecular targets repressing NIS expression or
function. Furthermore, microRNAs (miRs) or anti-miRs may
also serve as possible candidates to further enhance TSH-
stimulated RAI accumulation in thyroid cancer cells if critical
miRs that modulate NIS expression or function are identified.
However, thyroid-targeted delivery of siRNAs or miRs con-
tinues to be a major obstacle.

The fact that several reagents that are being evaluated in
clinical trials for other types of cancer may restore or further
enhance TSH-stimulated RAI accumulation in thyroid cancer
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is most exciting. If validated, these reagents could be readily
translated to clinical practice, as their pharmacokinetics and
toxicity profiles are favorable in humans. Various genetically
engineered mouse models of thyroid cancer predisposed by
mutations found in patients with PTC or FTC may provide
insights into the selection of appropriate reagents based on
their driver mutations. Since signaling context in normal
thyroid tissues is quite different from that in malignant thyroid
tumors, strategies to increase efficacy of RAI ablation for
thyroid remnants may be different from those of RAI therapy
for metastatic lesions. Finally, I-131-induced salivary gland
dysfunction could be prevented if salivary NIS expression
could be temporarily shut down during 24–48 h post-I-131
administration when blood-circulating I-131 is high. Taken
together, we anticipate that the optimal use of RAI in the
clinical management of thyroid cancer is yet to come in the
near future.
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