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Abstract

Background—Nearly half of individuals with substance use disorders relapse in the year after 

treatment. A diagnostic tool to help clinicians make decisions regarding treatment does not exist 

for psychiatric conditions. Identifying individuals with high risk for relapse to substance use 

following abstinence has profound clinical consequences. This study aimed to develop 

neuroimaging as a robust tool to predict relapse.

Methods—68 methamphetamine-dependent adults (15 female) were recruited from 28-day 

inpatient treatment. During treatment, participants completed a functional MRI scan that examined 

brain activation during reward processing. Patients were followed 1 year later to assess abstinence. 

We examined brain activation during reward processing between relapsing and abstaining 

individuals and employed three random forest prediction models (clinical and personality 

measures, neuroimaging measures, a combined model) to generate predictions for each participant 

regarding their relapse likelihood.

Results—18 individuals relapsed. There were significant group by reward-size interactions for 

neural activation in the left insula and right striatum for rewards. Abstaining individuals showed 
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increased activation for large, risky relative to small, safe rewards, whereas relapsing individuals 

failed to show differential activation between reward types. All three random forest models 

yielded good test characteristics such that a positive test for relapse yielded a likelihood ratio 2.63, 

whereas a negative test had a likelihood ratio of 0.48.

Conclusions—These findings suggest that neuroimaging can be developed in combination with 

other measures as an instrument to predict relapse, advancing tools providers can use to make 

decisions about individualized treatment of substance use disorders.

1. Introduction

Relapse is a vexing problem in addictive disorders and, typically, only 40 to 60% of 

individuals with addictive disorders are able to maintain abstinence for more than a year 

after initiating treatment (Hunt et al., 1971; McLellan et al., 2000). Since numerous studies 

have suggested that treatment can lower relapse rates (Baker et al., 2001; Irvin et al., 1999; 

Kosten and O'Connor, 2003; Lancaster et al., 2006; Schmitz et al., 2001), identifying 

treatment-seeking patients at greatest risk of relapse could help clinicians to appropriate 

more resources to those individuals to more effectively reduce relapse rates. Previous studies 

have shown that demographic (e.g., lower socioeconomic status; Mclellan et al., 1994), 

social (e.g., lack of family support; National Institute of Drug Abuse, 1999), and 

neuroimaging measures (Janes et al., 2010; Paulus et al., 2005; e.g., failure to show 

differential activation during risky and safe decisions; Gowin et al., 2014a), can indicate 

relapse likelihood. More recent investigations have used machine learning techniques to 

predict individual outcomes (Connor et al., 2007; Weinstein et al., 2009). To date, few such 

studies have used brain imaging measures and have focused on making individually specific 

predictions. There is some indication that the combination of imaging and sophisticated 

analytic approaches may provide sufficient prediction accuracy that would allow one to 

develop prognostic tests of relapse. Such tests could aid a clinician in providing a patient-

specific risk assessment that could be used to objectively communicate risk to the patient or 

change the course of treatment to reduce risk status.

One proposed marker of substance use disorders (SUDs), including methamphetamine 

dependence (MD; May et al., 2013; Schouw et al., 2013; Stewart et al., 2014), is altered 

neural response of the limbic reward system (Koob, 2013; Volkow and Fowler, 2000). There 

are two prominent hypotheses on how the response changes: individuals with SUDs may 

have hyper- or hypo-activation in response to rewarding stimuli, reflecting either enhanced 

incentive salience or reward deficiency, respectively. The incentive salience hypothesis 

derives from evidence that repeated pairing of a cue with a rewarding substance leads to 

enhanced dopaminergic responding, and drug-craving, when shown the cue (Berridge, 

2012). The reward deficiency hypothesis derives from evidence that individuals with SUDs 

have impaired function of the dopamine reward system, and thus have lower response to 

rewards such as food, and may use substances to enhance dopamine signaling (Blum et al., 

2012). A recent review suggests that the presence of drug cues may modulate reward 

circuitry activation, where drug cues enhance reward circuitry activation relative to controls, 

but natural rewards produce lower levels of activity (Leyton and Vezina, 2013; Limbrick-

Oldfield et al., 2013). Corroborating this, several studies using monetary or food rewards 
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have shown that individuals with SUDs relative to controls show decreased activation in the 

striatum, amygdala and insula when viewing or receiving rewards (Ihssen et al., 2011; Jia et 

al., 2011; Konova et al., 2012; Peters et al., 2011). The ability to stimulate reward circuitry 

through natural rewards may diminish the desire to stimulate it through substance use, 

potentially reducing the risk of relapse. It remains unclear whether processing of non-drug 

rewards during early abstinence can distinguish between individuals who will relapse or 

remain abstinent.

In a previous study, we examined early-abstinent MD during the decision phase of a risk-

taking task and showed that a lack of differentiation between safe and risky options 

distinguished individuals who would relapse (Gowin et al., 2014a). That study attempted to 

identify processing differences between individuals who relapse versus abstain (i.e., 

disrupted risky decision-making). Here, we use data from the same sample to focus on a 

different question: can neuroimaging be developed as a practical prediction tool to identify 

individuals at risk of relapse? Improving diagnosis of SUDs is a critical issue to the field 

(Volkow and Baler, 2013). To address this question, we use a novel statistical model to 

determine how well neuroimaging can be used to predict clinical outcomes in combination 

with clinical, demographic and behavioral measures. We wanted to address a problem in 

neuroimaging prediction models identified by Whelan and Garavan (2013); they showed 

that the failure of neuroimaging studies to use out-of-sample data disposes them to inflate 

prediction estimates. We reduced the risk of inflated estimates by using random forest 

(Breiman, 2001), a robust model that employs a training and testing set. We hypothesized 

that those individuals who have the greatest difficulty in differentially processing levels of 

reward, i.e., the neural activation difference to small versus large rewards, might be at 

greatest risk for relapse. Moreover, we aimed to examine whether a machine learning 

approach, i.e., random forest, using neural activation during reward could be used to develop 

a robust test to assess relapse risk of individual participants. Support for the hypotheses and 

evidence for a robust test would integrate reward-processing dysfunctions with a practically 

useful tool that would make a significant contribution to addiction medicine.

2. Materials and Methods

2.1 Sample

Sixty-eight (fifteen female) MD individuals were recruited through 28-day inpatient drug 

treatment programs at the Veterans Affairs San Diego Healthcare System and Scripps Green 

Hospital (La Jolla, CA). Both treatment programs employ 12-step models, daily education 

and exercise, and require participants to attend Narcotics Anonymous meetings. All 

participants completed the 28-day program and consented to participate in a clinical 

interview, a brain scan, and a follow-up phone interview one year later. Participants had 

ceased using methamphetamine an average of 32.9 ± 2.4 (mean ± SEM) days prior to study 

procedures (range: 15 – 119), which occurred during the third or fourth week of treatment.

2.2 Clinical Assessments

Lifetime DSM-IV Axis I diagnoses, substance use and Axis II antisocial personality disorder 

were assessed during the second week of treatment using the Semi Structured Assessment 
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for the Genetics of Alcoholism (SSAGA; Bucholz et al., 1994; Hesselbrock et al., 1999). All 

participants met criteria for primary dependence on methamphetamine. The following were 

exclusion criteria for all groups: (1) antisocial personality disorder; (2) current (past 6 

months) Axis I panic disorder, social phobia, posttraumatic stress disorder, major depressive 

disorder; (3) lifetime bipolar disorder, schizophrenia, and obsessive compulsive disorder; (4) 

current severe medical disorders requiring inpatient treatment or frequent medical visits; (5) 

use of medications that affect the hemodynamic response within the past 30 days; (6) current 

positive urine toxicology test; and (7) history of head injuries with loss of consciousness for 

longer than 5 minutes. Participants completed the Beck Depression Inventory (BDI; Beck et 

al., 1961).

One-year follow-up consisted of an interview based on the substance use portion of the 

SSAGA, a well-validated measure for the assessment of substance use metrics (Bucholz et 

al., 1994; Hesselbrock et al., 1999). Participants were asked whether, and when, they had 

used any of the following substances in the past year: sedatives, hallucinogens, stimulants, 

marijuana, cocaine or opiates. Since treatment was abstinence-based, relapse was defined as 

any use of these substances. Based on interview responses, forty-five participants (11 

female) reported abstinence from drugs (except nicotine). Eighteen participants (4 female) 

reported at least one substance use during the year (i.e. relapsed). Five participants (7.4%) 

could not be tracked; these participants were similar to the remaining sample in age, 

education and lifetime methamphetamine use. Characteristics are summarized in Table 1.

2.3 Temperament and neurocognitive assessment

During the second week of treatment, participants completed the Barratt Impulsiveness 

Scale (BIS; Patton et al., 1995), NEO Five-Factor Inventory (McCrae and Costa, 2004), 

Temperament and Character Inventory (TCI; Cloninger, 1987), Sensation Seeking Scale 

(SSS-V; Zuckerman, 1996) and North American Adult Reading Test (Uttl, 2002) to measure 

verbal intelligence (VIQ).

2.4 Neuroimaging task

The Risky Gains Task (RGT) has been used in prior studies (Gowin et al., 2014b; Paulus et 

al., 2003) and is briefly described here. The goal of the RGT was to earn as much money as 

possible. Participants selected one of three options—20¢, 40¢ or 80¢—on each trial. The 

options appeared one at a time in ascending order for 1 second each. Participants were told 

20¢ was the safe option (guaranteed gain of 20¢) and 40¢ and 80¢ were risky options 

(choosing 40¢ or 80¢ resulted in a chance of either gaining or losing 40¢or 80¢, 

respectively). The trial ended and feedback was given immediately after the participant won 

or lost, but all trials lasted 3.5 seconds. The task contained 96 trials. Unbeknownst to 

participants, the number of loss trials (-40¢ and -80¢) was set so that choosing the same 

option on each trial would earn the same final payment; choosing risky versus safe provided 

no advantage. Participants were excluded if they chose the same option on every trial 

because neuroimaging regressors could not be computed for the unchosen option (N=2).
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2.5 Functional magnetic resonance imaging

Scans were conducted during the second or third week of treatment. Subjects completed a 

questionnaire based on the Semi-Structured Assessment for Drug Dependence and 

Alcoholism (Pierucci-Lagha et al., 2005) prior to scanning to confirm the absence of 

withdrawal symptoms; no subjects reported withdrawal symptoms. Smokers were allowed to 

smoke, but nicotine levels were not measured. A fMRI run sensitive to blood-oxygenation 

level dependent (BOLD) contrast was collected using a Signa EXCITE 3T scanner (GE 

Healthcare, Milwaukee, Wisconsin, T2*-weighted echo planar imaging; TR=2000ms, 

TE=32ms, FoV=230×230 mm2, 64×64 matrix, 30 2.6-mm axial slices with 1.4mm gap, flip 

angle=90°, total duration: 8min, 32sec, 3.59×3.59×2.6 mm3 voxels). Six resting trials (6-10 

sec) were collected at preset points during the task and used as part of baseline, along with 

inter-trial intervals. A high-resolution, T-1 weighted image was collected during the same 

session for anatomical reference.

Data were preprocessed using Analysis of Functional Neurolmages (AFNI) software (Cox, 

1996). Echo planar images were aligned to anatomical images. Images were spatially 

smoothed using a 4 mm Gaussian filter and normalized to Talairach space. Preprocessed 

data were analyzed with a multiple regression model using AFNI's 3dDeconvolve. 

Regressors for safe (+20) and risky (+40, +80) decisions were defined as starting at trial 

onset and ending when a) the subject made a response or b) a punishment (-40¢, -80¢) was 

delivered (no jitter occurred between phases to keep subjects engaged with the sequence of 

actions). Regressors for wins (+20¢, +40¢, +80¢) and losses (-40¢, -80¢) were defined as 

starting when the outcome appeared and ending at the onset of the next trial. Motion and 

drift across the run were included as regressors of non-interest. Following deconvolution, 

percent signal change (PSC) was calculated by dividing the regressors by baseline 

activation, which was calculated during six null trials interspersed in the task. Group 

analyses focused on reward-processing (the decision phase of this task was analyzed in a 

previous manuscript: Gowin et al., 2014a).

2.6 Linear mixed effects model of reward processing (standard analysis pathway)

To determine if MD who went on to relapse showed different neural activation patterns 

relative to MD with continued abstinence, a linear mixed-effects (LME) analysis was 

conducted with R software (http://www.r-project.org; nlme package). Group (relapse, 

abstinent) and reward type (+20¢, +40¢, and +80¢) were fixed effects in the model and 

individual participants were random effects. LME analysis examined the main effect of 

group and the group by reward interaction. Analyses were performed voxel-wise across the 

entire brain (total voxels = 72,960, final voxel size = 4×4×4mm). A volume threshold 

adjustment was performed based on AFNI's AlphaSim to prevent type-l errors. An a priori 

per-voxel threshold of p=0.05 in a cluster of 768μL (12 contiguous voxels) resulted in an a 

posteriori cluster-wise p=0.05.

To test whether any variables could predict time to relapse, a Cox proportional hazards 

model was used. The dependent variable was the number of days between assessment and 

relapse. The independent variables were the total number of methamphetamine uses (log-

transformed due to positive skew) and the difference in activation between a large, risky 
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(mean of +40¢ and +80¢) and small, safe win (+20¢) in the right putamen and the right 

caudate (chosen based on LME results).

2.7 Random forest prediction model (predictive test analysis pathway)

Random forest is a machine-learning tool that uses predictor variables to classify members 

of a sample into categories (e.g., relapse or abstinent). The forest is constructed from a 

multitude of decision-trees (Breiman, 2001). While a single decision tree is susceptible to 

noise, the average of many trees, obtained by a forest, is not, so long as the trees are 

uncorrelated. Random forest performs as well or better than alternative classification 

techniques in terms of accuracy and robustness (i.e., even in the presence of noise, the model 

does not overfit to a given sample; Breiman, 2001). In the present study, random forest 

models were computed using R (randomForest library) to determine if neuroimaging 

variables, clinical and personality variables, or a combination of the two could predict 

relapse at the individual level.

The random forest method used here involves four steps (Ball et al., 2013; Breiman, 2001; 

Genuer et al., 2010; Strobl et al., 2009). First, 2,000 decision trees were grown, each using a 

different, randomly-selected subsample of participants and independent variables. Each tree 

was grown using a different bootstrap sample of all participants (about two-thirds of the 

total sample), constituting the training set for that particular tree. At each node of a tree, the 

model randomly sampled a small number of the total available variables. Specifically, the 

square root of the total number of available variables was sampled. An optimal split point 

was determined for each node (e.g., a score greater than 5 on the BDI classifies as relapse) at 

each node. The tree was grown, without pruning, to the largest extent possible. The tree ends 

with each participant in the training set classified as relapse or abstinent.

Second, participants in the test set were run through the decision tree to evaluate how well it 

classified new subjects. The accuracy with which the tree classifies the test set provides a 

running estimate of classification error and helps determine the extent that each variable 

contributes to correct classification. Across the 2000 trees in the forest, each participant was 

part of the test set about a third of the time (i.e., ≈666 times). The average number of times 

that each participant was misclassified when they were a part of the test set provides the 

error estimate of the forest. Since the error estimate for random forest models has proven to 

be unbiased in many tests, there is no need for cross-validation on a separate test set 

(Breiman, 2001; Breiman and Cutler, 2001). Each tree casts a vote for the outcome of each 

participant, and the classification of a particular subject was determined by the vote 

endorsed by the majority of the trees. For example, if 51% of trees voted that Subject X 

would relapse, then Subject X was classified as someone who would relapse.

Third, the variables that contributed most to decision-tree accuracy were identified based on 

permutation importance scores (Ball et al., 2013; Genuer et al., 2010). Permutation 

importance is defined by the mean decrease in classification accuracy when values of a 

variable are randomly permuted across all trees (Breiman, 2001). For example, the values 

for variable X for each participant were randomly permuted. If the difference between the 

model's performance with the true values and the model's performance with the permuted 

values of variable X is large, variable X would have a high permutation importance score, 
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signifying that it carried important information that helped accurately classify participants. 

Median permutation scores were based on 500 repetitions of the random forest analysis to 

provide stable estimates.

Fourth, the most important variables were identified and retained for a final, more 

parsimonious model, which is a common step when the number of variables is high 

(Breiman and Cutler, 2001). Since negative scores are due to random variation around zero 

(Strobl et al., 2009), only variables with a permutation score higher than the absolute value 

of the most negative score were included in the final model to guard against including 

variables that predicted no better than chance. Further, the number of variables in the final 

model was restricted to a maximum of 10, following the method of Nicodemus and 

colleagues (2010) and because visual inspection of the Scree plot showed variable 

importance diminished after the tenth variable. The classification of each participant based 

on the final model was used to determine diagnostic test characteristics, such as accuracy, 

sensitivity, specificity and likelihood ratios.

The neuroimaging only model examined the difference in percent signal change between 

large, risky (mean of +40¢ and +80¢) and small, safe rewards (+20¢) as well as losses (mean 

of -40¢ and -80¢). The entire brain (excluding cerebellum) was segmented based on 

anatomy into 72 distinct regions, and the average voxel-wise difference in signal change was 

calculated for each region, yielding 144 independent variables. The construction of the mask 

used for segmentation was described in a previous report (Ball et al., 2013; Fonzo et al., 

2013) and is recapitulated here. Grey matter probability maps were generated based on high 

resolution Tl images of 43 healthy adults. Probability maps were transformed to Talairach 

(Talairach and Tournoux, 1988) coordinates and regions were defined using the Talairach 

atlas. The 144 neuroimaging variables then went through the four steps described above.

A second model used only clinical (lifetime methamphetamine use, lifetime cocaine use, 

lifetime cannabis use, time since last drug use before treatment, years of drug use, BDI, 

current number of cigarettes/day), demographic (age, gender, years of education), behavioral 

(total proportion of risky options, proportion of risky options following a previous loss) and 

psychometric measures (BIS, NEO, SSS, TCI, VIQ). Finally, a third, combined model used 

all of the variables from the previous two models.

Classification accuracy, sensitivity, specificity, and positive and negative likelihood ratios 

were determined for the output of all three models. The proportion of trees voting for relapse 

for each participant was used to generate receiver operating characteristic (ROC) curves for 

each model, and the area under the curve (AUC) was calculated. The AUC for an ROC 

curve is one of the best ways to estimate the predictive accuracy of a diagnostic test, where 1 

indicates perfect discriminative ability and 0.5 (i.e., the reference line) indicates no 

discriminative ability. McNemar's test was used to statistically compare the three models to 

each other.
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3. Results

3.1 Group characteristics

There were no significant differences between the group that relapsed and the group that 

remained abstinent in demographics or drug use history (p>.05; Table 1). Mean number of 

days to relapse among MD who relapsed was 175.1 (SEM=29.3). A chi-squared analysis 

showed that the relapse group (21%) had a higher prevalence of current marijuana 

dependence relative to the abstinent group (4%), but the small number of participants 

meeting this criteria (N=6) precludes a subgroup analysis. MD who relapsed chose the risky 

option a similar proportion of times (mean= 0.48, SD=.29) compared to those who remained 

abstinent (mean= 0.49, SD=.20; F1, 61 = .09, p=.76).

3.2 Linear mixed effects model of outcome

LME analysis indicated significant group (abstinent, relapse) by reward magnitude (+20¢, 

+40¢, and +80¢) effects in the right putamen, right caudate, left anterior insula and several 

other regions (Table 2). In the putamen, caudate, and anterior insula, MD who remained 

abstinent showed increasedactivation during 80¢ relative to 20¢ wins, whereas MD who 

relapsed showed reduced activity during 80¢ relative to 20¢ wins (see Figure 1).

3.3 Time to relapse prediction

The Cox proportional hazards model significantly predicted time to relapse (-2 log 

likelihood=129.8, χ2 (3) =13.3, p=0.004). Individuals with less differentiation between large, 

risky and small, safe rewards in the putamen (b=-.66, p=.04), and individuals with higher 

lifetime methamphetamine usage (b=-.60, p=0.03), were likely to relapse sooner.

3.4 Individual outcome prediction models (Random Forest)

3.4.1 Clinical and Personality Variables Only—According to the random forest 

procedure outline above, nine variables met inclusion criteria for the final model: NEO 

Neuroticism, BDI total score, SSS boredom susceptibility, SSS thrill and adventure seeking, 

SSS total, BIS motor impulsivity, BIS perseverance, TCI harm avoidance and log-

transformed lifetime cocaine uses. Student's t-tests showed that the groups did not differ 

significantly on any of these variables (see Figure 2; all p> 0.05), suggesting that the random 

forest model detected relapse likelihood using higher-order interactions between the 

variables. The AUC for the ROC curve was 0.74. A positive test for relapse indicated a 2.87 

increase in risk (+LR= 2.87, 95% confidence interval: 1.52, 5.40), whereas a negative test 

indicated decreased risk by 2.32 (-LR = 0.43, 95% CI: 0.22, 0.85). Since the confidence 

intervals did not overlap with 1 or each other, the model predicts outcomes better than 

chance (p<0.05).

3.4.2 Neuroimaging Variables Only—Eight regions met criteria for inclusion in the 

final model, and all of them were related to brain processing differences between small, safe 

and large, risky rewards. These regions included left and right transverse temporal gyrus, 

right inferior temporal gyrus, right posterior insula, right postcentral gyrus, right medial 

globus pallidus, right putamen, and left nucleus accumbens. Specifically, in all eight regions 

MD who relapsed had lower differential activation between large, risky and small, safe 
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rewards relative to MD who remained abstinent (Figure 2). The AUC for the ROC plot was 

0.73. A positive test for relapse indicated a 2.63 increase in risk (+LR=2.63, 95% CI: 1.36, 

5.07), whereas a negative test indicated decreased risk by 1.98 (-LR= 0.51, 95% CI: 0.28, 

0.93). Since the confidence intervals did not overlap with 1 or each other, the model predicts 

outcomes better than chance (p<0.05).

3.4.3 Combined Model—Ten variables met criteria for inclusion in the final combined 

model: SSS thrill and adventure seeking, the eight brain regions listed in the brain-only 

model, and the cingulate gyrus. The AUC for the ROC plot was 0.71. A positive test for 

relapse indicated a 3.28 increase in risk (+LR=3.28, 95% CI: 1.59, 6.79), whereas a negative 

test indicated decreased risk by 2.08 (-LR=0.48, 95% CI: 0.26, 0.87). Since the confidence 

intervals did not overlap with 1 or each other, the model predicts outcomes better than 

chance (p<0.05).

3.4.4 Model comparisons—Figure 3 and Table 3 show model performance and test 

characteristics. Each model produced sensitivity greater than 0.6 and specificity approaching 

0.8, such that nearly four of five individuals with a negative test remained abstinent, while 

three of five individuals with a positive test relapsed. McNemar's test showed that none of 

the three models differed significantly from each other (p>.22). Please see Supplementary 

Material for more information1.

4. Discussion

We examined whether brain activation during reward-processing can accurately predict 

which methamphetamine-dependent individuals will relapse in the year following treatment. 

Our results suggest that the degree to which the striatum differentially processes large, risky 

versus small, safe rewards is a robust predictor of relapse. In particular, those individuals 

who show brain activation that fails to differentiate reward magnitudes relapsed sooner. The 

present results complement our previous study, which showed that altered risk-processing 

may be a mechanism driving relapse (Gowin et al., 2014a), by demonstrating that in addition 

to elucidating processing differences, neuroimaging may also be developed as a practical 

test to distinguish individuals at risk of relapse from those likely to remain abstinent. 

Therefore, the current results may have more clinical utility in evaluating treatment-seeking 

MD. The random forest models had AUCs over 0.7, which is good for discriminating 

between individuals who will relapse or remain abstinent, considering they did not differ on 

any demographic or personality measures. This specificity and sensitivity improves greatly 

over chance. The high AUCs, robustness of the model, and use of separate training and test 

sets (to reduce over-fitting; Breiman, 2001) provide evidence that this could be developed as 

a test to predict relapse status.

Both the linear-mixed effects and random forest models identified the striatum and insula as 

regions which differentiated individuals who relapsed from those who remained abstinent, 

supporting the hypothesis that reward processing may indicate substance dependence status 

(Gowin et al., 2013; Volkow and Fowler, 2000). Indeed, three of the eight brain regions 

1Supplementary material can be found by accessing the online version of this paper at http://dx.doi.org and by entering doi:…
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identified by the random forest model are part of the striatum, indicating that the function of 

this region plays an important role in sustained abstinence. In the putamen clusters identified 

by both models, individuals who showed an increase in activation during large, risky relative 

to small, safe wins were more likely to maintain abstinence, and maintain it longer. This is 

consistent with our previous study, which showed that greater differentiation between safe 

and risky options in the insula was associated with greater likelihood to maintain abstinence; 

individuals who relapse may generally fail to appreciate differences in value and probability 

(Gowin et al., 2014a). The identification by our study that appropriate reward-processing in 

the striatum as a function that contributes to recovery from substance use disorders 

corroborates previous work that reward processing plays a role in mental health and addition 

(Balodis and Potenza, 2015; Knutson and Heinz, 2015). Another study suggests that 

posterior insula, putamen and caudate may jointly contribute to decisions to wait for larger 

rewards rather than take smaller gains sooner (Wittmann et al., 2007). Given the insula's role 

in decision-making (Bechara, 2004; Craig, 2009; Ernst et al., 2002; Wittmann et al., 2007), 

it would be plausible that the striatum assesses value and interacts with the insula to 

contribute to decisions about reward, including the immediate pleasure of substance use 

versus the gradual enjoyment of sustained abstinence.

The random forest neuroimaging model and linear mixed-effects analysis of brain activation 

revealed some similar and some discrepant findings. The similar findings were discussed in 

the previous paragraph. Discrepantly, the random forest model identified a few different 

brain regions (e.g., globus pallidus) and was able to construct a predictive model using 

clinical and personality variables, whereas linear tests did not find any significant 

differences between the two groups on the same measures. This is likely due to the random 

forest models ability to detect higher-order interactions among variables. For example, even 

though standard linear t-tests failed to identify any differences on clinical and personality 

variables between the group that relapsed the one that remained abstinent, the random forest 

model used a combination of the same variables to predict relapse significantly better than 

chance. Further, since most analyses in neuroimaging use a variant of a linear model, it is 

worth noting linear models of brain activation make many comparisons and report all areas 

that survive a threshold. Analyses by Whelan and Garavan (2013) have shown that this 

approach leads to a high likelihood of overfitting. Random forest reduces the risk of 

overfitting by using a training and test set. Thus, regions which by chance have high 

significance in the training set will fail to replicate in the test set, giving a more accurate 

estimate of their importance. The robustness of the random forest model suggests that these 

findings are more likely to replicate in new samples.

The clinical and personality model performed similarly to the neuroimaging model. The 

combined model used mostly neuroimaging variables and showed improved specificity and 

accuracy relative to both models, possibly supporting our hypothesis that neuroimaging 

variables explain additional variance relative to clinical and personality variables. Despite 

the similar performance of the models, there may be advantages for developing diagnostic 

tests that include neuroimaging. First, neuroimaging does not rely on self-report, which can 

be unreliable among individuals with substance use disorders (Brown et al., 1992). Second, 

fMRI measures may be orthogonal to behavioral and clinical data, possibly reducing 

collinearity and creating stronger models (Breiman, 2001). Whatever advantages 
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neuroimaging may provide should be weighed against the additional costs and workload it 

requires. One way to improve neuroimaging models would be to include additional tasks 

that assess other cognitive systems (e.g., stress) aside from reward processing to get a more 

comprehensive view of brain function. Lastly, neuroimaging may better indicate the 

neurobiological status (e.g., reduced striatal D2 receptors; Volkow et al., 2002) of the 

underlying disease. As more refined models are developed, future studies should perform a 

cost-benefit analysis for neuroimaging as a predictive tool.

There are several limitations to the present study. A 29% relapse rate is lower than the 

normal range of 40-60% (McLellan et al., 2000), and drug use and relapse were assessed via 

self-report and not verified by urine toxicology. Nonetheless, since individuals with 

antisocial personality disorder were excluded and participants stood to gain nothing by 

lying, we believe the likelihood of intentional deception to be low. Further, since relapse 

was assessed using the same method (i.e., SSAGA) as the initial diagnosis of MD, we 

believe the diagnosis of relapse is roughly as reliable as the initial diagnosis. We also 

excluded individuals with co-morbid psychiatric conditions, which have been shown to 

contribute to relapse (McLellan et al., 2000; National Institute of Drug Abuse, 1999). There 

may also have been a selection bias since we only studied individuals who were willing to 

undergo an MRI scan and study procedures. Excluding co-morbid diagnoses and including 

individuals able to complete an MRI scan may have lowered relapse rates and reduced 

generalizability, a possibility that should be clarified in future studies. Future studies may 

improve upon these methods by validating relapse through urine-toxicology or, if using self-

report, performing a calendar-supported timeline-follow back assessment of substance use. 

Although participants in this sample had a primary diagnosis of methamphetamine 

dependence, many met criteria for dependence on other substances as well, so our results 

may not be methamphetamine specific but reflect polysubstance use. Also, the majority of 

the participants were recruited through a Veterans Affairs hospital, so the findings may not 

generalize to other populations of methamphetamine-dependent individuals. Finally, 

although we used a robust technique that employed out-of-sample data, these findings need 

to be replicated to confirm their validity.

The random forest model built with neuroimaging data generated accurate predictions of 

which individuals would relapse. Since anatomical regions were used, it would be easy to 

collect the same variables in new samples to test the replicability of these findings. Further 

studies may validate that neuroimaging can be used as a tool to predict relapse, providing an 

essential advance in the way treatment providers make decisions about individualized 

treatment of substance use disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

We did fMRI on abstinent methamphetamine-dependent individuals and determined who 

relapsed.

We used a robust classification technique called random forest to generate individual-

level predictions.

The random forest model was consistent with a standard linear model.

Our models performed well, with specificity, sensitivity and ROC AUC around 0.7.

Our results suggest that neuroimaging can be developed to predict individual clinical 

outcomes.
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Figure 1. 
Group by reward interaction in the striatum and insula. The linear mixed effects model 

revealed a significant group by reward size effect in the right striatum and left anterior 

insula. The group that remained abstinent showed greater activation for a large, risky 

relative to a small, safe rewards, while the group that relapsed showed decreased activation 

during large, risky relative to small, safe rewards. The right putamen cluster overlaps 

substantially with the brain region identified in the random forest model as predicting 

relapse status. Bars represent mean and error bars represent SEM.
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Figure 2. 
Random Forest measures. These graphs show the central tendency and variance of the 

variables in the random forest models. Panel A shows that MD who remained abstinent 

showed greater activation during large, risky versus small, safe wins. MD who relapsed, in 

contrast, showed less differential activation when receiving large, risky versus small, safe 

wins. Panel B shows the values for the personality measures. Relapse and abstinent MD 

showed similar levels on these variables, but in combination the variables were useful in 

random forest modeling of relapse. This suggests that the random forest model may be able 

to detect higher order interactions not evident from the individual variables. Bars represent 

mean and error bars represent SEM.
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Figure 3. 
Predictive value of models. In panel A, a Bayes nomogram is depicted for each random 

forest model. The left side of the nomogram shows the prior probability of relapse, or the 

proportion of the total sample that relapsed. The right side shows the posterior probability of 

relapse given a positive or a negative test result in the random forest model. The brackets 

around the central estimate represent the 95% confidence interval of the probability. When 

the 95% confidence intervals do not intersect, positive and negative tests are statistically 

significantly different. The middle line represents the likelihood ratio of a positive or 
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negative test. All three models produced similar nomograms. In panel B, the receiver 

operating characteristic curves are depicted for each random forest model. All three models 

show significant improvement relative to the no-discrimination line.
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Table 1
Subject characteristics by group

Characteristic Abstinent (n=43) Relapsed (n=18)

Female (%) 10 (23) 4 (21)

Treated at VA (%) a 28 (65) 14 (78)

Lifetime alcohol dependence (%) 18 (37) 10 (53)

Lifetime marijuana dependence (%) 8 (17) 5 (26)

Lifetime cocaine dependence (%) 13 (27) 7 (37)

Current alcohol dependence (%) 8 (17) 6 (32)

Current marijuana dependence (%) b 2 (4) 4 (21)

Current cocaine dependence (%) 5 (10) 4 (21)

Age, years (mean, SD) 38.8 (11.1) 37.4 (9.2)

Education, years (mean, SD) 12.8 (1.7) 13.3 (1.5)

Verbal IQ (mean, SD) c 108.0 (10.2) 109.7 (7.3)

Alcohol, drinks/week (mean, SD) d 11.0 (17.6) 14.4 (33.0)

Nicotine, cigarettes/day (mean, SD) d 11.8 (9.3) 8.7 (9.2)

Methamphetamine age onset, (mean, SD) e 24.1 (9.4) 24.9 (9.1)

Time since last methamphetamine use before treatment, days (mean, SD) e 32.4 (18.8) 34.0 (19.7)

Methamphetamine estimated lifetime uses, (mean, SD)e 14624.5 (32414.1) 8841.6 (12353.1)

Cocaine estimated lifetime uses, (mean, SD)e 2551.4 (6116.9) 3942.9 (7250.8)

Marijuana estimated lifetime uses, (mean, SD)e 10882.5 (30375.4) 4743.5 (8851.2)

a
The participants not recruited from the Veterans Affairs (VA) hospital were recruited from Scripps Green

b
p<.05 for group difference, based on chi-squared analysis

c
Assessed by the North American Adult Reading Test (Uttl, 2002)

d
Recent patterns of use.

e
Determined using the Semi Structured Assessment for the Genetics of Alcoholism (Hesselbrock, 1999)
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