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Abstract

Background—The functional interconnections of the addicted brain may differ from the non-

addicted population in important ways, but prior analytic approaches were usually limited to the 

study of connections between a few number of selected brain regions. Recent approaches enable 

examination of the vast functional interactions within the entire brain, the functional connectome 

(FCM). The purpose of this study was to characterize FCM alterations in addiction using resting 

state functional Magnetic Resonance Imaging (rsfMRI) and to assess their relations to addiction-

related symptoms.

Methods—rsfMRI data were acquired from 20 chronic polydrug users whose primary diagnosis 

was cocaine dependence (DRUG) and 19 age-matched non-drug using healthy controls (CTL). 

FCM was assessed using graph theoretical analysis.

Results—Among the assessed 90 brain subdivisions, DRUG showed stronger functional 

connectivity. After controlling functional connectivity difference and the resultant network 

density, DRUG showed reduced communication efficiency and reduced small-worldness.

Conclusions—The increased connection strength in drug users’ brain suggests an elevated 

dynamic resting state that may enable a rapid, semi-automatic, execution of behaviors directed 

toward drug-related goals. The reduced FCM communication efficiency and reduced small-
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worldness suggest a loss of normal inter-regional communications and topology features that 

makes it difficult to inhibit the drug seeking behavior.
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1. Introduction

Drug addiction is a chronic relapsing disorder that affects the brain structures and functions 

(Koob and Volkow, 2010). While functional neuroimaging investigations have contributed 

significant information about addiction-related brain differences in focal brain regions and 

systems (Hong et al., 2009; Janes et al., 2012; Lindsey et al., 2003; Ma et al., 2010; Volkow 

et al., 2003), less work has been done examining the complex brain network and 

connectivity patterns of multiple brain regions, though those properties may reflect the 

(acute or chronic) impact (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010) of drug 

exposure. Assessing them may provide new insights about the addicted brain state, offering 

an expanded framework for examining the neuronal underpinnings of substance dependence.

Brain networks can be assessed using fMRI (Bullmore and Sporns, 2009; Rubinov and 

Sporns, 2010) and graph theoretical analysis (GTA) (Watts and Strogatz, 1998). Reliable 

functional connectome (FCM) topological properties have been demonstrated in the healthy 

brain(Achard et al., 2006) with high test-retest stability(Braun et al., 2012; Wang et al., 

2011). In drug addiction, FCM analysis has been applied in heroin and methamphetamine 

abusing populations, and these published reports showed inconsistent results with both 

larger or smaller FCM properties in drug addicted brain (Ahmadlou et al., 2013; Jiang et al., 

2013; Liu et al., 2011a). Meanwhile, several seed-based FC studies have shown poor 

connectivity between frontal and limbic areas (Gu et al., 2010; Hong et al., 2009; Kelly et 

al., 2011; Ma et al., 2010). It is then not clear whether FCM analysis will echo with the prior 

seed-based connectivity analysis results, or whether new patterns will be evident when the 

brain’s interconnections are considered as a whole. In the current study, we examined 

addiction-related FCM using resting-state fMRI (rsfMRI) in a drug abusing sample of 

patients with a primary diagnosis of cocaine dependence (DRUG) and compared to FCM in 

a demographically-similar control group (CTL) to identify potential addiction-related 

variations.

2. Materials and methods

2.1. Subjects

Twenty DRUG patients (age 42.15±4.3 (mean ± standard deviation (std)), years of 

education 10.07±1.7 all African-American men) with a DSM-IV diagnosis of cocaine 

dependence and 19 and age/ethnicity/race-matched controls (CTL) were recruited from the 

local community of West Philadelphia (age, 39.9±4.5; education, 14.9±2.9 yrs; all African-

American men). The two groups were matched in age (p=0.13 for the age difference). CTL 

had more years of education than DRUG (p=0.0006). Detailed demographic data were listed 

in Table 1. The patients were treatment-seeking for cocaine-addiction, but defined by the 
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M.I.N.I. (Sheehan et al., 1998), 6 patients had a diagnosis of alcohol dependence; 2 with 

alcohol abuse; 1 had marijuana dependence; and 2 had marijuana abuse. Therefore, for 

inferences in this initial connectome study, they are best-characterized as poly-substance 

abusers.

All subjects underwent full physical and psychological examinations. Severity of drug 

dependence was assessed using the Addiction Severity Index (ASI) (McLellan et al., 1980). 

Patients were not using medications that may cause sedation or are known to modify brain 

dopamine systems during the previous 60 days; had no cardiovascular, hematologic, hepatic, 

renal, neurological or endocrinological abnormalities; no history of head trauma or injury; 

no gambling problems; no history of psychosis or organic brain syndrome unrelated to drug 

abuse; and no other severe psychiatric disorders, with the exception of dependence on other 

substance as described above. Patients had 4-8 days of residential stabilization prior to study 

entry, during which they were drug-free, verified by urine drug screens. CTL were not 

dependent on any substances including alcohol and nicotine. Drug craving scores were 

recorded before the MRI scan using the Brief Substance Craving Scale (Somoza et al., 

1995).

2.2. MRI data acquisition

MR imaging was conducted in a 3-T whole-body scanner (Siemens, Erlangen, Germany). 

High-resolution structural images were acquired for spatial brain normalization using a 3D 

MPRAGE sequence (TR/TE/TI = 1620/3/950ms). rsfMRI images were acquired using a 

gradient-echo echo-planar-imaging sequence with parameters of: TR/TE = 2s/30ms, FOV = 

220×220 mm2, matrix = 64×64×32, slice thickness= 4.5 mm. Participants were asked to lie 

still in the scanner at rest and keep their eyes open. 180 images were acquired.

2.3. Image preprocessing

All data preprocessing was performed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm)-based 

batch scripts (Wang et al., 2008) with the following steps: motion correction, coregistration, 

and normalization. Next, rsfMRI images were detrended to remove the linear and quadratic 

signal drift. Head motion time courses, the mean cerebral spinal fluid (CSF) and mean white 

matter signal were regressed out from each voxel’s time series (Fair et al., 2008). The 

volume-to-volume displacement of each rsfMRI acquisition was calculated using the 

method proposed in (Power et al., 2012). The mean displacement of all acquisitions was 

taken as an indicator of the gross motion. A two-sample t-test was performed and showed no 

significant motion difference between patients and controls (p=0.25). To further reduce 

motion effects, acquisitions with a volume-to-volume displacement >0.5 were excluded 

from further FCM analysis (Power et al., 2012). The number of excluded images didn’t 

show significant difference between the two groups (p=0.4). rsfMRI images were also 

filtered using a passband of 0.01Hz-0.08Hz. No spatial smoothing was applied to prevent 

introducing artificial correlations. The rsfMRI images were then registered into the high-

resolution structural images and subsequently into the MNI standard space using SPM8 

(Ashburner, 2007).
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2.4. Anatomical parcellation

rsfMRI time series were extracted from the preprocessed images from 90 regions (45 for 

each hemisphere, see Table 2 for the subdivision labels) as defined by the automated-

anatomically-labeled (AAL) brain template (Tzourio-Mazoyer et al., 2002), which is widely 

used in FCM analysis (Achard et al., 2006). Since some of our resting state fMRI acquisition 

didn’t cover the entire cerebellum, we didn’t consider the cerebellum subdivisions in AAL 

during FCM analysis. The gravity center of each subdivision was used as its surrogate node.

2.5. Network construction

Pearson correlation coefficients (CC) of rsfMRI timecourses were calculated for any pair of 

nodes. CC matrix was converted into a binary one using a threshold from 0.05 to 0.60 with a 

step of 0.01. The resulting binary matrix was used to build an undirected graph model G of 

the brain network (Watts and Strogatz, 1998). To visualize the FCM difference, a p < 0.01 

(corrected for multiple comparisons using the false discovery rate (FDR) theory (Genovese 

et al., 2002)) was used to find the corresponding CC threshold for all subjects and the 

maximum of them (across all subjects) (which was 0.26) was used as the final threshold to 

dichotomize the 90×90 CC matrix and build the FCM.

FCM topological properties rely on the network density, which is reliant on the connectivity 

strength. Populational connectivity difference may then affect topological FCM 

comparisons. To control network density difference, the CC matrix was also thresholded to 

have the same network density (sparsity) and was used for the subsequent FCM analysis. 

While sparsity thresholding would affect FCM properties especially when it is high, a 

between-group comparison should still be valid if the same threshold is used for both 

groups.

2.6. FCM measures

The following FCM measures (Rubinov and Sporns, 2010) were calculated using the brain 

connectivity toolbox (www.brain-connectivity-toolbox.net/):

2.6.1. Cost—The number of connections to a node was counted as its degree. The mean 

degree of all nodes reflects the density of a network.

2.6.2. Segregation measures—Segregation refers to splitting the brain into functionally 

specialized but densely interconnected sub-regions (a sub-group of nodes here). Each such 

sub-group is referred to as a clique. The clustering coefficient of a node is the fraction of its 

neighbors that are also neighbors of each other (Watts and Strogatz, 1998); the mean 

clustering coefficient Cp of all nodes reflects the prevalence of local clusters 

(“cliquishness”) of the network: 0≤Cp≤1, with Cp=1 meaning each node is connected to all 

others. Local efficiency of a node is the average inverse shortest-path length (Latora and 

Marchiori, 2001) between the node pairs in the node’s nearest neighborhood. Mean local 

efficiency (mLE) of all nodes is related to Cp.

2.6.3. Measures of network integration—Integration means unifying different sub-

regions (a sub-group of nodes here) into a single functional entity and is usually 
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characterized with paths that connect distinct nodes (Rubinov and Sporns, 2010) with 

shorter path representing stronger integration potential. The characteristic path length Lp is 

defined as the average shortest-path length between all pairs of nodes in the network (Watts 

and Strogatz, 1998). A related integration measures is the global efficiency (GE) Eglobal and 

is defined as the average inverse shortest-path length (Latora and Marchiori, 2001).

2.6.4. Small-worldness is computed by comparing the real network to random networks with 

the same number of nodes and average degree

(Humphries and Gurney, 2008; Watts and Strogatz, 1998). Random networks were 

generated using the random rewiring procedure proposed in (Maslov and Sneppen, 2002). 

Small-worldness measures the segregation and integration balance. A “small-world 

network” has σ > 1, which is more clustered (with higher Cp) than random networks, but has 

approximately the same Lp as that of a random network (Watts and Strogatz, 1998).

2.7. Patient versus (vs) control comparisons

DRUG-CTL FCM difference was examined using two sample-t testing at each threshold. 

Age was included as nuisance covariates.

2.8. FCM vs drug dependence and craving

To explore the potential clinical significance of FCM in the polydrug-dependent brain, 

regression analyses were performed to assess the associations between the mean degree, 

local efficiency, global efficiency, and small-worldness and severity of cocaine dependence, 

alcohol dependence, marijuana dependence (or abuse), and smoking (cigarette per day and 

smoking durations). Cocaine dependence level was from 0 to 9; alcohol/marijuana 

dependence (abuse) were included as binary scores indicating either dependence or non-

dependence.

2.9. Network visualization

A mean CC matrix was calculated for patients and controls separately, and was 

dichotomized using the maximum of all subjects’ FDR 0.05-corrected thresholds of each 

group. The resultant group level FCMs were displayed using BrainNet Viewer (http://

www.nitrc.org/projects/bnv/)(Xia et al., 2013).

3. Results

3.1. Group level FCM appearance and differences

All abbreviations for brain regions are defined in Table 2. Bilaterality was assumed if 

unilaterality was not specified in the following text.

Figure (Fig.) 1 shows the nonthresholded mean CC matrix of CTL (Fig. 1A) and DRUG 

(Fig. 1B), their histograms (Fig. 1C and 1D, respectively), and their anatomical projection 
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when the connectivity matrix was thresholded using a FDR 0.05 corrected CC threshold. 

Both the CC matrices (Fig. 1A, 1B) and the histograms (Fig. 1C, 1D) demonstrate that 

DRUG had on average stronger inter-regional correlations than CTL. DRUG patients 

showed higher node degrees (bigger node size) and more connections (as reflected by lines) 

than controls (Fig. 1E, 1F). Patients showed fewer node clusters than controls (4 vs 6) as 

indicated by different node colors in Fig. 1E and 1F. Fig. 1G (and Table 2) shows the nodes 

with significant patient-control degree difference (p<0.05 with Bonferroni correction). A 

homogeneous node increase between 18-21 was observed in supplementary motor area 

(SMA), post-central gyrus (PoCG), and in the inferior cortex from insula to Rolandic 

operculum (ROL), temporal cortex, to fusiform, lingual cortex, calcarine cortex (CAL), then 

to cuneus, and to visual cortex.

3.2. FCM differences at different thresholds

Fig. 2 shows FCM measures derived from individual-level FCM built with different 

thresholds. Fig. 2A shows that the mean degree decreased with the CC threshold and 

patients showed significantly (p<0.001) higher degree than controls for all tested thresholds. 

According to (Watts and Strogatz, 1998), there exists an up-limit, Rmax for the threshold 

above which small-worldness is not estimable. The mean network degree decreases to log 

(N) (N=90 in this study) when the threshold reaches Rmax. In this study, when the threshold 

was >0.55, the mean degree of controls was < log (N)=4.50, indicating Rmax≈0.55 for 

controls. Rmax for patients was larger than 0.55 since patients had larger node degrees than 

controls at any CC threshold. So the results were presented using a threshold range of 0.05 

to 0.55. After controlling the functional connectivity strength difference by using the 

sparsity threshold, DRUG showed lower local communication efficiency (Fig. 2B) when 

sparsity was <15%, and lower global communication efficiency (Fig. 2C) when sparsity was 

>31%. For most of assessed sparsity thresholds, DRUG showed reduced small-worldness 

(Fig. 2D).

3.3. Relations of FCM properties to drug use measures

After correcting for multiple comparisons, no significant associations between the FCM 

properties and drug addiction clinical measures were observed.

4. Discussion

Here we report that a cohort of DRUG patients (cocaine-dependence treatment-seekers with 

several comorbid substance use disorders), had a hyperconnected resting brain network with 

higher wiring cost, but lower communication efficiency and reduced small-worldness 

compared to an age and gender matched CTL group. The hyperconnected resting FCM in 

DRUG may suggest an elevated dynamic resting state in the addicted brain. Small-

worldness is related to communication efficiency. The reduced small-worldness and 

communication efficiency suggest a loss of normal inter-regional communications that may 

underlie the loss of cognitive control and inhibition in drug addiction.

Nodes with increased degree located in the visual sensorimotor network, including insula, 

ROL (Rolandic operculum), temporal cortex, fusiform, visual area, and cuneus, as well as 
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SMA (supplementary motor area). Temporal cortex and FFG (fusiform gyrus) lie within the 

memory/learning circuit, and INS(insula) are substrates of motivation and drive, which are 

altered in drug addiction(Koob and Volkow, 2010; Naqvi et al., 2007; Volkow et al., 2003). 

Other nodes including PoCG(postcentral gyrus), SMA, ROL, CAL(calcarine cortex), 

CUN(cuneus), LING(lingual gyrus), MOG(middle occipital gyrus), and SOG(superior 

occipital gyrus) are regions within the motor, visual, and spatial perception/imagination 

areas, and the increased connections therein might reflect a result of the altered memory/

learning function and motivation/drive function, which both involve functions in the three 

areas. Hyperactivity in the reward system is observed in drug addiction (Volkow et al., 

2003), but we did not observe node-degree changes in DRUG patients in basal ganglia, 

thalamus, and amygdala. Future studies using fMRI data acquired during a drug cue 

paradigm might reveal differences in the FC of these regions. Moreover, we did not see 

node-degree increase in ACC, SFC, and MSFC, which are regions within the control circuit. 

A cardinal feature of addiction is the inability to inhibit behavior (Jovanovski et al., 2005). 

Although our findings using rsfMRI differ from the confirmed addiction-related activations 

using task fMRI in those regions (Childress et al., 2008; Childress et al., 1999; Volkow et 

al., 2006), they may simply indicate an equally-communicated inhibition circuit in the 

patients’ and controls’ brain during rest. Nevertheless, higher degrees were found in patients 

at nodes distributed in all other places. These findings suggest that a loss of inhibition in the 

addicted brain might be a result of the grossly increased FC outside the medial prefrontal 

area. Increased FC within the medial prefrontal regions might restore balance and enhance 

the inhibition control in drug addicted brain.

Our FCM topology findings are partly consistent with previous FCM studies. Higher FCM 

node degrees in abstinent heroin-dependent patients was reported by Yuan et al in a small 

study with 11 patients and 11 controls (Yuan et al., 2010). The reduced small-worldness was 

consistent with the findings in heroin-dependent individuals in (Jiang et al., 2013). While Gu 

et al. showed reduced inter-regional FC in cocaine users using the seed-based FC analysis 

(Gu et al., 2010), the seed-based FC cannot characterize the FCM topology. Our FCM 

analysis results suggest that the loss of inhibition or cognitive control in cocaine patients 

may be related to a loss of FCM topology properties rather than an alteration of the 

connection strength. Another explanation for the paradox of having both increased 

connection strength but reduced network metrics could be that the connection strength is 

elevated to compensate the loss of FCM communication efficiency.

We didn’t find significant relations between FCM measures and clinical measures for 

addiction, which is probably due to the small sample size included in the current study. A 

future study would be assessing the clinical meanings of FCM using larger sample sizes. 

The intensely inter-connected brain of addicted individuals might help to explain the clinical 

phenomenology of the disorder (ritualized, efficient pursuit of drug). One interesting future 

study would be to assess whether effective medications like methylphenidate, which has 

been shown to alter resting FC in cocaine addiction(Konova et al., 2013), could impact the 

hyperconnections in drug users. Moreover, as resting activity has been shown to be 

predictive of task activations (Liu et al., 2011b; Zou et al., 2013), another future 

investigation would be using resting FC or FCM properties to predict task or drug-cue 
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induced brain activations or alternatively using it to reduce inter-subject variations in 

functional neuroimaging addiction studies.

One limitation of current study is that there was a significant difference of education years 

between the two groups, which should be considered in future assessment. Nevertheless, we 

showed similar findings in a preliminary version of this study presented in a conference 

when more subjects were included to match the education level though age was not matched 

therein (Wang, 2014). Another limitation is that as with any cross-sectional imaging study 

addicted adults, it is not possible to know whether the observed brain patterns are a result of 

drug exposure, or whether they preceded or even pre-disposed the addiction -- or whether 

they represent some interaction of these factors. In the future, longitudinal studies (repeated 

scans) of FCM in addicted individuals would also be helpful in determining whether the 

observed patterns of connectivity are a stable feature in addiction, or whether they show 

change with time since last drug-use, or with extended periods of recovery. Much larger 

studies, well beyond the scope of this initial observation, would enable statistical 

comparisons of the various subgroups (e.g., cocaine, alcohol, marijuana, and nicotine) 

represented within the current DRUG cohort, vs. CTL. The current study thus does not allow 

attributions of the findings to one particular drug class, though our between-group effects 

remained when covarying out some drug use factor such as smoking measures (data not 

shown).

In summary, DRUG patients showed a hyperconnected and less efficient FCM. The study 

offers a foundation for explicit attempts to link other addiction features (e.g., reward 

sensitivity, difficulty with inhibiting) to FCM. FCM studies may be a useful tool for 

characterizing the addicted state, and a screen for potential anti-addiction therapeutics.
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Fig 1. 
Resting FCM of DRUG patients and the age-matched controls (CTL). A) and B) The 

average inter-regional correlation coefficient (CC) matrix of CTL, and DRUG, respectively; 

C) and D) The histogram of the CC matrices shown in A and B, respectively; E) and F) The 

average FCM of CTL and DRUG, respectively; G) Network nodes with significantly higher 

degree in DRUG patients than in CTL (defined by p<0.05, bonferroni corrected for 90 

comparisons). Network nodes are projected into the brain surface based on their spatial 

locations. As indicated by the inset in the middle of E and F, the top two sagittal slices of E 

and F are the pictures projected to the left (L) and right (R) brain hemisphere, respectively; 

the left and right sagittal slices on the bottom row are the projections of the left and right 

hemisphere to the middle sagittal plane, respectively. Node color in E and F indicates 

different modules (cliques). Red lines and dark green lines represent long (>=75 mm) and 

short (<75 mm) distance connections, respectively. Node size was in proportional to the 

node degree or node degree difference (in G).
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Fig 2. 
FCM measures calculated at different correlation coefficient thresholds for DRUG patients 

(the black line) and controls (the red line) and their statistical comparison results (two 

sample t-testing). A) Mean network degree, B) local efficiency, C) global efficiency, D) 

small-worldness. Error bars indicate standard error within each group at each threshold 

value. The blue triangles display the two-sample t-testing p values.
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Table 1

Demographic data for participants.

Patients ( n=20) Controls (n=19)

Age (yrs) 42.15±4.3 39.9±4.5

Education (yrs) 12.07±1.7 14.9±2.9

Gender 20 males 19 males

Cocaine dependence severity 7.26±1.76 0

Alcohol dependence severity 2.68±2.54 0

Marijuana dependence or abuse 2 0

Drug craving score 0~3, 0.28±0.83 0

Cigarette per day 7.67±6.0 0

Smoking duration (yrs) 15.61±12.1 0
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Table 2

AAL brain subdivision names, abbreviations and the node degree difference between cocaine patients and 

controls (patient-control).

Abbr Full name Δdeg Abbr Full name Δdeg

PreCG Precentral gyrus LING Lingual gyrus 21.8(L),19.8(R)

SFC Superior frontal cortex SOG Superior occipital gyrus 20.1(L)

SOFC Superior orbito-frontal cortex MOG Middle occipital gyrus 20.3(L)

MFC Middle frontal cortex IOG Inferior occipital gyrus

MiOFC Middle orbito-frontal cortex FFG Fusiform gyrus 21.4(L)

IFCoper Inferior frontal cortex (opercular) PoCG Postcentral gyrus 20.4(L),20.6(R)

IFCtria Inferior frontal cortex (triangular) SPC Superior parietal cortex

LOFC Lateral orbito-frontal cortex IPC Inferior parietal cortex

ROL Rolandic operculum 21.0(R) SMG SupraMarginal gyrus

SMA Supplementary motor area 20.1(R) ANG Angular gyrus

OLF Olfactory PCUN Precuneus

MSFC Medial superior frontal cortex PCL Paracentral Lobule

MOFC Medial orbito-frontal cortex CAU Caudate

REC Rectus PUTA Putamen

INS Insula 18.4(R) PALL Pallidum

ACC Anterior cingulate cortex THA Thalamus

MCC Middle cingulate cortex HES Heschl's gyrus

PCC Posterior cingulate cortex STC Superior temporal cortex 20.4(L)

HIPP Hippocampus STOP Superior temporal pole

PHIPP ParaHippocampus 20.0(L) MTC Middle temporal cortex 21.5(L)

AMY Amygdala MTPO Middle temporal pole 20.5(R)

CAL Calcarine cortex 18.9(L),19.2(R) ITC Inferior temporal cortex

CUN Cuneus 18.6(L),20.8(R)

Δdeg mean the patient minus control degree difference.
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