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Abstract

Computational prediction of HLA class II restricted T cell epitopes has great significance in many 

immunological studies including vaccine discovery. In recent years, prediction of HLA class II 

binding has improved significantly but a strategy to globally predict the most dominant epitopes 

has not been rigorously defined. Using human immunogenicity data associated with sets of 15-mer 

peptides overlapping by 10 residues spanning over 30 different allergens and bacterial antigens, 

and HLA class II binding prediction tools from the Immune Epitope Database and Analysis 

Resource (IEDB), we optimized a strategy to predict the top epitopes recognized by human 

populations. The most effective strategy was to select peptides based on predicted median binding 

percentiles for a set of seven DRB1 and DRB3/4/5 alleles. These results were validated with 

predictions on a blind set of 15 new allergens and bacterial antigens. We found that the top 21% 

predicted peptides (based on the predicted binding to seven DRB1 and DRB3/4/5 alleles) were 

required to capture 50% of the immune response. This corresponded to an IEDB consensus 

percentile rank of 20.0, which could be used as a universal prediction threshold. Utilizing actual 

binding data (as opposed to predicted binding data) did not appreciably change the efficacy of 

global predictions, suggesting that the imperfect predictive capacity is not due to poor algorithm 

performance, but intrinsic limitations of HLA class II epitope prediction schema based on HLA 

binding in genetically diverse human populations.
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1. Introduction

The prediction and identification of HLA class II restricted T cell epitopes is a task of 

significance for several different applications. These include, to name a few, efforts to 

elucidate the epitopes responsible for the induction of allergen specific T cells, the study of 

immune response against complex pathogens with large genomes, such as Mycobacterium 

tuberculosis (MTB), or the identification and removal of unwanted epitopes in protein-based 

drugs.

Class II molecules are alpha/beta heterodimers encoded by four different loci in humans, 

DRA/DRB1, DRA/DRB3/4/5, DPA/DPB and DQA/DQB. With the exception of DRA, all 

other chains are highly polymorphic (Robinson et al., 2003). The extensive polymorphism of 

HLA class II molecules in the general population does represent a formidable obstacle to 

epitope identification approaches. However, it has been recognized that the majority of 

molecules expressed in the general population can be reconciled to a manageable number by 

focusing on those most frequently expressed (McKinney et al., 2013). At the same time, 

extensive similarities exist within the peptides bound by different allelic variants, and even 

across different loci (Greenbaum et al., 2011). Finally and perhaps most significantly, it has 

been shown that peptides capable of binding multiple HLA class II molecules (i.e. 

promiscuous peptides) often account for a large fraction, if not the majority, of antigen 

specific T cell responses (Oseroff et al., 2010; Paul et al., 2013a).

Bioinformatic predictions of MHC binding capacity have proven to be a key component of 

various epitope identification approaches. While historically less impressive than the case 

for HLA class I, the performance of various methods for the prediction of HLA class II 

binding peptides has been subject to significant improvement over the last few years as more 

novel and sophisticated computational approaches have been implemented, as reviewed and 

evaluated in several studies (Paul et al., 2013a; Nielsen et al., 2010; Wang et al., 2010). 

However, to date, definition of an optimal strategy to employ these algorithms to allow 

efficient prediction of promiscuous class II restricted T cell epitopes, or dominant epitopes 

frequently recognized in an outbred cohort, has been difficult.

During the last few years we have generated T cell recognition data in humans for several 

panels of overlapping peptides completely spanning entire antigens of immunological 

interest. These antigens included four house dust mite allergens (referred as HDM data set) 

(Hinz, D., in preparation), ten allergens linked to pollen grass allergies (TG) (Oseroff et al., 

2010), four MTB antigens recognized by healthy donors with latent MTB infection (LTBI) 

from the San Diego region (TB-SD) (Arlehamn et al., 2012), and eleven different MTB 

antigens recognized by healthy donors with LTBI from the Cape Town (South Africa) 

region (TB-CT) (Mc Kinney, D., in preparation). Each set of peptides was tested with 

similar methodology, in 20-40 different HLA typed individuals of diverse ethnicity. Overall, 

a total of 1151 peptides were tested, in studies involving more than 95 donors.
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In the present study we have utilized these data sets to perform an evaluation of different 

strategies to implement HLA binding predictions for the purpose of selecting epitopes with 

the capacity to elicit HLA class II restricted T cell immune responses. To validate the 

approach defined herein, independent blind analyses were subsequently performed using 

overlapping peptide sets spanning six different cockroach allergens (Oseroff et al., 2012; 

Dillon, M., in preparation) and the five antigens included in the vaccine against whooping 

cough (Bordetella pertussis) (Dillon, M., in preparation).

2. Materials and methods

2.1 Immunogenicity studies

Sets of overlapping 15 or 16mer peptides spanning various allergen and bacterial antigens 

were screened for immune reactivity as previously described (Oseroff et al., 2010; Arlehamn 

et al., 2012; Oseroff et al., 2012). Antigen specific cytokine production in donor peripheral-

blood mononuclear cells (PBMC) was measured in dual or single ELISPOT assays. 

Responses to timothy grass, cockroach and house dust mite peptides were measured 

following in vitro stimulation with respective allergen extracts, and responses to Bordetella 

pertussis peptides following stimulation with corresponding vaccine antigens. Responses to 

mycobacterial antigens were analyzed ex vivo. Peptide specific responses were expressed as 

spot-forming cells (SFCs)/106 PBMC. Donors were HLA typed at each class II locus to 

four-digit resolution by SSO/SSP HLA typing (One Lambda reagents, Canoga Park, CA, 

USA) or deep sequencing methods (2012McKinney et al., submitted).

2.2 MHC purification and binding Assays

The binding affinity of peptides in TG and TB-SD data sets to the 26 most frequent alleles 

was experimentally determined. Quantitative measurement of peptide binding capacity for 

HLA class II molecules was performed in competition assays based on the inhibition of 

binding of a high affinity radiolabeled peptide to purified MHC molecules. Purification of 

class II MHC molecules by affinity chromatography, and the performance of binding assays 

were done essentially as detailed elsewhere (Sidney et al., 2013). Briefly, EBV transformed 

homozygous cell lines were used as sources of MHC molecules. A high affinity radiolabeled 

peptide (0.1-1 nM) was co-incubated at room temperature or 37°C with purified MHC in the 

presence of a cocktail of protease inhibitors. Following a two-day incubation, MHC bound 

radioactivity was determined by capturing MHC/peptide complexes on Ab coated Lumitrac 

600 plates (Greiner Bio-one, Frickenhausen, Germany), and measuring bound cpm using the 

TopCount (Packard Instrument Co., Meriden, CT) microscintillation counter. The 

concentration of peptide yielding 50% inhibition of the binding of the radiolabeled peptide 

was calculated. Under the conditions utilized, where [label]<[MHC] and IC50 ≥ [MHC], the 

measured IC50 values are reasonable approximations of the true Kd values. Each competitor 

peptide was tested at six different concentrations covering a 100,000-fold range, and in three 

or more independent experiments. As a positive control, the unlabeled version of the 

radiolabeled probe was also tested in each experiment.
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2.3 Prediction of binding affinity

Peptide binding affinity for HLA class II alleles was predicted using the MHC II binding 

prediction tool available at the IEDB (www.iedb.org) (Vita et al., 2014, Zhang et al., 2008, 

Kim et al., 2012). Allele-specific consensus percentile ranks of all algorithms queried by the 

IEDB tool were utilized (Wang et al., 2010). A percentile rank is generated by comparing 

the selected peptide’s predicted binding affinity against that of a large set of similarly sized 

peptides randomly selected from the SWISS-PROT database (Kim et al., 2012). Percentile 

rank provides a uniform scale allowing comparisons across different predictors. A lower 

percentile rank value indicates higher affinity. In the case of consensus method, median of 

the percentile ranks of the three methods involved is considered as the IEDB consensus 

percentile rank.

2.4 Correction for epitope redundancy

Responses against two consecutive peptides are often due to the same minimal epitope. To 

avoid counting the same epitope twice, two consecutive responses with magnitudes within 

2.5-fold of each other were merged into a single antigenic region, and the higher SFC value 

utilized. The region was considered successfully predicted if either of the two peptides was 

predicted, and “credit” for prediction was given only once.

3. Results and discussion

3.1 Evaluation of optimal prediction strategies for HLA class II epitopes

Predicted binding affinity of peptides in the data sets (Table 1) for a previously described set 

of 26 HLA class II alleles that are most frequent in the general worldwide population 

(Greenbaum et al., 2011) (Table 2), was determined as described above. To evaluate the 

efficacy of various approaches to employing these predictions to identify the most dominant 

epitope responses, the percentage (fraction) of peptides in each data set needed to capture 

50% of the total response (50% of the total SFC values in the data set - expressed as 

SFCs/106 PBMCs) was utilized as a performance metric.

As a first approach, we considered the “promiscuous binding capacity” of each peptide, 

where promiscuity is defined by the number of alleles bound (i.e., peptides binding more 

alleles being more promiscuous binders). For this purpose, a peptide was considered binder 

for a specific allele if its IEDB predicted consensus percentile rank was ≤ 20. This approach 

was originally devised by us based on a single dataset (TG, Oseroff et al., 2010). Using this 

approach, as shown in Figures 1a and b, an average of 30.91% (range 25.35%-40.08%) 

peptides were needed to capture 50% of the total response in the data set.

As a second approach, we considered the “median consensus percentile rank” of each 

peptide, defined as the median of the IEDB consensus percentile ranks predicted for the set 

of 26 selected alleles. This approach was the most effective, with the top 26.26% (range 

16.90%-38.38%) of the peptides capturing 50% of the total response (Figure 1a, c).
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3.2 Comparison of the median percentile rank approach with best percentile and allele 
specific binding thresholds

In addition to the promiscuous binding capacity (promiscuity) and median consensus 

percentile rank, other strategies were also evaluated. Considering that the dominance of a 

particular peptide might be a reflection of very high binding affinity for a given allele rather 

than promiscuity, one approach we tested was based on “best percentile rank”. In this 

approach, the peptides were sorted based on the best percentile rank (the lowest percentile 

rank value among the 26 most frequent alleles) and the percentage of peptides required to 

capture 50% of total SFC was identified. This method required on average 27.05% of the top 

peptides to capture 50% of the response.

In yet another approach, we followed a strategy based on allele-specific binding affinity 

thresholds that had improved the efficacy of class I predictions (Paul et al., 2013b). For this 

analysis, all previously identified 15-mer epitopes with defined HLA class II restriction were 

retrieved from the IEDB. The allele-specific thresholds were estimated for each of the 26 

alleles in terms of binding affinity predicted by SMM_align method (IC50) (Nielsen et al., 

2007), taking into account the number of predicted binders in the set of epitopes retrieved 

from the IEDB (based on a general threshold of IC50 1000nM) and the SMM_align IC50 

value demarcating the top 75% peptides of the same epitope set. The total promiscuity for 

each peptide was then recalculated based on the allele-specific thresholds and the fraction of 

peptides required to capture 50% response was identified. This approach required 33.58% of 

peptides to capture 50% response.

Both these approaches were found to be less efficient than the median consensus percentile 

rank method, requiring on average 27.05% and 33.58% peptides respectively (vs. 26.26%), 

to capture 50% response based on the 26 most frequent alleles (data not shown).

3.3 Exclusion of DP locus improves predictive efficacy

As different HLA class II loci appear to contribute differentially to human responses 

(Oseroff et al., 2010), we hypothesized that examining the performance as a function of the 

class II locus may improve predictions. The average % of peptides required to capture 50% 

SFC for different combinations of DRB1, DRB3/4/5, DQ, and DP alleles are shown in 

Figure 2. The best results (23.82%) were obtained when DP alleles were left out. The lower 

performance of methods incorporating DP molecules might be due to the fact that less 

binding data is available for these molecules leading to inferior prediction algorithms or it 

could be that DP molecules are less often restricting elements for dominant T cell responses.

3.4 Optimal results obtained with a set of seven DRB1 and DRB3/4/5 alleles

We next examined the effect of varying the specific alleles included in the prediction panel. 

Frequency thresholds for inclusion were varied independently for each locus (i.e., DQ, 

DRB1 and DRB3/4/5). The best results (21.41% of peptides needed to capture 50% SFC) 

were observed when the three DRB1 alleles with frequency ≥ 12% (DRB1*03:01, 

DRB1*07:01, DRB1*15:01) were used along with the four DRB3/4/5 alleles (DRB3*01:01, 

DRB3*02:02, DRB4*01:01, DRB5*01:01) (data not shown). This empirical optimization is 

probably reflective of the fact that DR alleles are the most dominant locus restricting HLA 
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class II responses in humans. It is noteworthy that the seven allelic variants cover the main 

HLA class II supertypes (Greenbaum et al., 2011).

3.5 Predictions based on alleles frequent in specific donor cohorts

HLA frequencies vary in cohorts of individuals with different ethnicity. Accordingly, we 

examined the performance of the “median consensus percentile rank” predictions utilizing 

alleles custom selected for the cohorts in which the peptides were tested. Specifically, we 

included all alleles with frequencies of ≥ 10% in a given donor population. As above, the 

best results (19.69%) were obtained using only DRB1 and DRB3/4/5 alleles (Figure 3). At 

the same time, the improvement seen when using cohort specific allele sets is minor 

suggesting that tailoring the prediction to a specific population has limited value.

3.6 Defining a universal prediction threshold

The percent of total peptides required to capture 50% of the response, as calculated here on a 

protein-by-protein basis, is not available when considering individual peptides. To derive a 

standard prediction threshold, we calculated the median IEDB consensus percentile rank, 

using predictions for the seven DRB1 and DRB3/4/5 alleles highlighted above, associated 

with the selected set of peptides yielding 50% of the response. This value was found to be 

20.0 (median consensus percentile rank from the seven selected alleles).

3.7 Validation of the results with blind prediction using new data sets

The analyses above suggested that the optimal approach for efficient selection of epitope 

candidates would be based on determining the median consensus percentile rank across a 

selected panel of seven DR alleles (3 DRB1 alleles with frequency ≥12% in conjunction 

with 4 DRB3/4/5 alleles). To validate these results we examined overlapping peptides for 

two additional sets of proteins of immunological interest: 1) cockroach allergens and 2) 

acellular pertussis vaccine antigens.

When the range of approaches tried above was implemented against the two blind sets, the 

best performance was again achieved with the “median consensus percentile rank” 

approach. When the universal median IEDB consensus percentile threshold defined above 

(20.0) with the panel of seven DR alleles was utilized, the average % of SFC captured using 

peptides with median IEDB consensus percentile rank ≤ 20.0 was found to be 48.55%, 

confirming the validity of this prediction threshold.

3.8 Comparison with experimentally measured binding data

The analysis showed that on average, that approximately to top ~20% scoring peptides are 

needed to capture 50% of the immune response. In order to examine whether this rather high 

number of peptides is due to lower efficacy of HLA class II binding prediction algorithms, 

we compared the performance based on predicted binding affinity with that of 

experimentally measured binding affinity. For this analysis predicted and measured binding 

affinity for the seven selected DR alleles was assessed in the context of two cohorts (TG and 

TB-SD).
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It was found that the peptide selection strategy based on the predicted binding affinity 

required actually fewer peptides to capture 50% of the immune response, compared to the 

measured binding affinity (15.63% vs. 32.86% peptides) (Figure 4). No significant 

difference was observed when binding data from two other allele categories were used (the 

most frequent panel alleles and the panel alleles excluding DP locus). This shows that the 

overall lower efficacy in prediction of HLA class II immunogenicity is an inherent issue of 

class II alleles rather than underperformance of HLA class II binding prediction algorithms.

4. Conclusions

We scrutinized the use of HLA class II binding predictions to identify sets of epitopes with 

high immunological activity. The results validate previous observations that promiscuous 

binders account for a large fraction of the total response. However, in comparison to HLA 

class I predictions, the results are sobering, as the overall performance is remarkably less 

effective. This is in line with other recent studies (Chaves et al., 2012). We considered the 

possibility that these results may be due to a generally lower performance of class II binding 

prediction algorithms. However when actual binding data, as opposed to predicted binding 

data, was used, no significant improvement was noted. These results suggest that the 

imperfect predictive capacity is due to intrinsic limitations of HLA class II epitope 

prediction schema based on HLA binding in genetically diverse human populations.

At the same time, our results provide guidance for practical implementation of predictions, 

and identify specific subsets of HLA molecules that are most effectively considered by 

prediction schemes. The synthesis of approximately 20% of the peptides in a set of 15-mer 

peptides overlapping by 10 residues allows covering a 200-residue protein (otherwise 

covered by 38 overlapping peptides) with 8 peptides, which still affords significant cost 

savings, and enables the screening of large genomes with experimental designs based on 

predicted epitope peptide pools.
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LTBI Latent Tuberculosis Infection
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Highlights

• A new scheme for prediction of HLA class II restricted T cell epitopes.

• 21% of top peptides capture 50% of immune response.

• Definition of a universal threshold (Median IEDB consensus percentile rank = 

20.0).

• The scheme is validated using 2 blind data sets.
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Figure 1. 
a: Performance of two approaches for implementing HLA class II binding predictions to 

identify T cell epitopes. The % of peptides needed for each method to identify a panel of 

epitopes accounting for 50% of the total antigen specific response (SFC) is shown for 4 

different systems, as described in the text: HDM (House dust mite), TG (Timothy grass), 

TB-SD (MTB), and TB-CT (MTB). Blue bars show performance based on ranking peptides 

according to the median consensus percentile rank against a panel of the 26 most common 

HLA class II alleles. Red bars show performance based on ranking peptides according to the 

number of alleles predicted to bind (promiscuity). A lower % of peptides indicates better 

performance.

b: The % of response predicted as a function of the % of the total peptides predicted for the 

four data sets with the “promiscuous binding capacity” approach using the 26 most frequent 

class II alleles.

c: The % of response predicted as a function of the % of the total peptides predicted for the 

four data sets with the “Median percentile” approach using the 26 most frequent class II 

alleles.
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Figure 2. Performance of the “median consensus percentile rank” approach as a function of 
variable inclusion of the DP, DQ, DRB1 and DRB3/4/5 loci
The performance was best when DP locus was excluded (red bar).
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Figure 3. Average % of peptides required to capture 50% SFC for different allele combinations 
using the alleles with frequency >10% in each specific corresponding donor cohort
The prediction was best when alleles from DRB1 and DRB3/4/5 alleles were used (red bar)
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Figure 4. Comparison of the prediction performance based on experimentally measured binding 
data with that of predicted binding data for TG and TB-SD data sets
Blue bars show the % of peptides needed to capture 50% SFC using experimentally 

measured HLA class II binding data while red bars show the same using predicted binding 

data. The prediction strategy using 7 selected alleles performed better with predicted binding 

compared to measured binding.
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Table 1

Data sets used in the analyses

Data set No.
of
antig
ens

Antigens No. of
peptide
s per
antigen

No. of
peptid
es per
data
set

No. of
donors

Ethni
city

Reference

HDM 4 proDer p
1.0105

59 156* 20 White Hinz, D., in
preparation

proDer f
1.0101 59

Der p
2.0101 24

Der f
2.0103 24

TG 10 Phl p 1 51 425 25 Mixed
(pred
omina
ntly
white)

Oseroff et al., 2010

Phl p 2 23

Phl p 3 18

Phl p 4 103

Phl p
5.0103 61

Phl p 6 26

Phl p 7 14

Phl p 11 27

Phl p 12 25

Phl p 13 77

TB-SD 4 Rv1038c 9 71 18 Mixed Arlehamn et al., 2012

Rv2031c 27

Rv3874 18

Rv3875 17

TB-CT 11 Rv0125 69 499 32 McKinney,
D. M., in
preparationRv0288 18

Rv1196 77

Rv1813c 27

Rv1886c 63

Rv2608 114

Rv2660c 13

Rv3619 17

Rv3620c 18

Rv3804c 66

Rv3875 17

Cockroach 6 Bla g 1 189 463 19 Oseroff et al., 2012

Bla g 2 69

Bla g 4 35
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Data set No.
of
antig
ens

Antigens No. of
peptide
s per
antigen

No. of
peptid
es per
data
set

No. of
donors

Ethni
city

Reference

Bla g 5 39

Bla g 6 76

Bla g 7 55

Pertussis 9 fhaB 468 785 23 Dillon, M.B.C., in preparation

fim2 26

fim3 25

prn 131

ptxA 40

ptxB 30

ptxC 28

ptxD 21

ptxE 16

*
10 peptides are shared by different antigens in the Der p/f data set. Thus, the total no. of unique peptides is 10 less than the sum of peptides in 

individual antigens.
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Table 2

26 HLA class II alleles that are most frequent in the general worldwide population, and thus were included in 

the analyses

Locus Allele Phenotype
frequency

Gene
frequency

DRB1 DRB1*0101 5.44 2.76

DRB1*0301 13.72 7.11

DRB1*0401 4.58 2.32

DRB1*0405 6.15 3.13

DRB1*0701 13.52 7.01

DRB1*0802 4.87 2.46

DRB1*0901 6.17 3.13

DRB1*1101 11.84 6.11

DRB1*1201 3.94 1.99

DRB1*1302 7.71 3.93

DRB1*1501 12.18 6.29

Total 71.09 46.23

DRB3/4/5 DRB3*0101 26.12 14.04

DRB3*0202 34.25 18.92

DRB4*0101 41.75 23.68

DRB5*0101 15.98 8.34

Total 87.73 77.30

DQA1/DQB1 DQA1*0501/DQB1*0201 11.29 5.81

DQA1*0501/DQB1*0301 35.14 19.47

DQA1*0301/DQB1*0302 19.05 10.03

DQA1*0401/DQB1*0402 12.78 6.61

DQA1*0101/DQB1*0501 14.65 7.61

DQA1*0102/DQB1*0602 14.59 7.58

Total 81.61 57.11

DPB1 DPA1*02:01/DPB1*01:01 16.01 8.35

DPA1*01:03/DPB1*02:01 17.47 9.15

DPA1*01/DPB1*04:01 36.20 20.13

DPA1*03:01/DPB1*04:02 41.63 23.60

DPA1*02:01/DPB1*05:01 21.68 11.50

Total 94.49 76.53
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