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Abstract
Diabetic complications including diabetic nephropathy, 
retinopathy, and neuropathy are as major causes 
of morbidity and mortality in diabetes individuals 
worldwide and current therapies are still unsatisfactory. 
One of the reasons for failure to develop effective 
treatment is the lack of fundamental understanding for 
underlying mechanisms. Genetic studies are powerful 
tools to dissect disease mechanism. The heritability (h 2) 
was estimated to be 0.3-0.44 for diabetic nephropathy 
and 0.25-0.50 for diabetic retinopathy respectively. 
Previous linkage studies for diabetic nephropathy 
have identified overlapped linkage regions in 1q43-44, 
3q21-23, 3q26, 10p12-15, 18q22-23, 19q13, 
22q11-12.3 in multiple ethnic groups. Genome-wide 
association studies (GWAS) of diabetic nephropathy 
have been conducted in several populations. However, 
most of the identified risk loci could not be replicated 
by independent studies with a few exceptions including 
those in ELMO1 , FRMD3 , CARS , MYO16/IRS2 , and 
APOL3-MYH9 genes. Functional studies of these genes 
revealed the involvement of cytoskeleton reorganization 
(especially non-muscle type myosin), phagocytosis of 
apoptotic cells, fibroblast migration, insulin signaling, 
and epithelial clonal expansion in the pathogenesis 
of diabetic nephropathy. Linkage analyses of diabetic 
retinopathy overlapped only in 1q36 region and 
current results from GWAS for diabetic retinopathy are 
inconsistent. Conclusive results from genetic studies for 
diabetic neuropathy are lacking. For now, small sample 
sizes, confounding by population stratification, different 
phenotype definitions between studies, ethnic-specific 
associations, the influence of environmental factors, 
and the possible contribution of rare variants may 
explain the inconsistencies between studies.

Key words: Microvascular complications; Nephropathy; 
Retionopathy; Neuropathy; Diabetes

715 June 10, 2015|Volume 6|Issue 5|WJD|www.wjgnet.com

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.4239/wjd.v6.i5.715

World J Diabetes  2015 June 10; 6(5): 715-725
ISSN 1948-9358 (online) 

© 2015 Baishideng Publishing Group Inc. All rights reserved.



© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Most risk genetic loci identified by genome-wide 
association studies (GWAS) for diabetic nephropathy 
could not be replicated by independent studies with 
a few exceptions including those in ELMO1,  FRMD3, 
CARS, MYO16/IRS2 , and APOL3-MYH9  genes. These 
findings highlighted the importance of cytoskeleton 
reorganization, phagocytosis of apoptotic cells, fibroblast 
migration, insulin signaling, and epithelial clonal 
expansion in the pathogenesis of diabetic nephropathy. 
Conclusive results from GWAS for diabetic retinopathy 
and diabetic neuropathy are currently lacking.
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INTRODUCTION
The prevalence of diabetes mellitus is increasing 
globally, especially in developing countries[1]. This 
surge of diabetes mellitus prevalence poses a serious 
threat to the public and diabetic complications are 
ranked as major causes of morbidity and mortality 
worldwide. Several common mechanisms underly
ing these microvascular complications including the 
polyol pathway, advanced glycation end products 
pathway, protein kinase C pathway, the hexosamine 
pathway, and cytokines such as nuclear factorκB, tumor 
growth factorβ, and vascular endothelial growth 
factor are well described and the unifying mechanism 
of superoxide production have been proposed[2]. 
Nevertheless, therapies targeting these pathways have 
not been very successful[35]. One of the reasons is 
the lack of fundamental understanding for underlying 
mechanisms.

Genetic studies provide a powerful tool to the 
understanding of disease mechanism. Previous family 
linkage analyses have successfully identified mutations 
responsible for highpenetrating monogenetic disease. 
Some discoveries, for example, the identification of 
PCSK9 mutation through linkage analyses in hyper
cholesterolemic families, have resulted in major 
breakthroughs in therapy[6,7]. However, family linkage 
analysis is generally not adequately powered to 
detect genetic loci of complex disease. Over the last 
few years, the advent of genomewide association 
studies (GWAS) have launched a great leap toward 
the genetic basis of complex diseases such type 2 
diabetes mellitus, cancers, and psychiatric diseases. 
Intriguingly, many of the identified genetic loci were 
not previously considered to be related to these 
diseases and the discoveries indeed illuminated 

important pathophysiological pathways to these 
complex diseases. Diabetic microvascular complications 
are complex traits influenced by both environmental 
and genetic factors, and compelling evidences 
indicate that diabetic microvascular complications are 
heritable[812]. Here in this review, we only summarized 
the progress in the genetics for diabetic microvascular 
complications.

GENETICS STUDIES OF DIABETIC 
NEPHROPATHY
Linkage studies of diabetic nephropathy
The heritability (h2) of diabetic nephropathy (DN) 
defined by reduced glomerular filtration rate (GFR) or 
albuminuria was estimated to be 0.30.44 in multiple 
Caucasian diabetic populations[810]. Previous linkage 
studies have repeatedly identified linkage region 
in 1q4344, 3q2123, 3q26, 10p1215, 18q2223, 
19q13, 22q11-12.3 in multiple ethnic groups (Figure 1, 
Table 1)[1324]. However, these linkage regions usually 
spanned over megabases and therefore exact locus 
or risk gene is unclear. In contrast, the resolution of 
linkage disequilibrium mapping (also called association 
mapping) is much higher than linkage studies. The 
distinction between linkage and association mapping is 
that family linkage mapping use the small amount of 
recombination events that occurs in each generation 
within a pedigree to localize a chromosomal region, 
which usually contains hundreds of genes; while 
populationbased casecontrol association mapping 
uses large amount of recombinations that occurred 
during the evolutional history of a population to locate 
the risk loci, which generally did not extend over a 
few genes. However, populationbased casecontrol 
association studies are susceptible to the population 
stratification and independent replication is essential to 
confirm the result of association studies.

Association studies of DN in type 2 diabetic patients
Several GWAS of DN have been conducted in several 
ethnic populations (Table 1, Figure 1). ELMO1 (the 
engulfment and cell motility 1 gene) was first found 
to be associated with diabetic nephropathy in a GWAS 
in Japanese 2 diabetic patients (546 DN cases and 
334 type 2 diabetic controls)[25]. Replication studies 
in the GoKinD collection (558 DN cases and 820 type 
2 diabetes controls)[26], two African American cohorts 
[1136 end-stage renal diseae (ESRD) diabetes cases 
and type 2 diabetic 1160 controls][27], a Chinese 
population (123 DN cases and 77 type 2 diabetic 
controls)[28], and a Caucasian GWAS (547 ESRD and 
549 type 1 diabetic controls)[29] confirmed this finding 
although the risk SNPs are not exactly the same with 
those reported in the original Japanese population 
(intron 1620 in original Japanese GWAS, intron 1620 
in GoKinD, intron 13 in African Americans, intron 18 
in Chinese). In a large metaanalysis of the GENIE 
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Table 1  Genome-wide linkage studies for diabetic nephropathy and retinopathy

mapping in 1007 general Mongolian also identified 
SNPs in the FRMD3, glycine amidinotransferase, and 
spermatogenesis associated 5like 1 genes associated 
with estimated glomerular filtration rate[40]. A family
based candidategene association study involving 
798 type 2 diabetic members in the Joslin Study of 
Genetics of Nephropathy replicated the association 
of SNPs in the FRMD3, CARS, and 13q33.3 between 
MYO16 and IRS2 genes[41]. Another GWAS in 547 
Caucasian ESRD cases and 549 type 1 diabetic controls 
identified ZMIZ1 (zinc finger, MIZtype containing 1) 
gene is associated with DN[29]. This study also observed 
significant association of 13q33 variant near the 
MYO16/IRS2 genes[29]. However, in a large replication 
study of 1535 Japanese type 1 and 2 diabetic patients, 
only variants in 13q33.3 between MYO16/IRS2 gene 
but not those in FRMD3, CPVL/CHN2, or CARS are 
significantly associated with DN[42]. Furthermore, a 
large metaanalysis of the GENIE consortium (UK
ROI, FinnDiane, and GoKinD US) involving 2966 type 
1 diabetic cases with DN and 3399 type 1 diabetes 
controls failed to replicate the association between 
SNPs in the FRMD3, CARS, and 13q33 loci near MYO16 

APOL3 (apolipoprotein L, 3), and MYH9 (myosin, heavy 
chain 9, nonmuscle) genes as risk loci[34]. Among 
them, the association of MYH9 risk variants has been 
replicated in another study involving 1963 European 
Americans diabetic patients[35]. Compelling evidence 
demonstrated that APOL3-MYH9 gene clusters are also 
associated with nondiabetic nephropathy including 
focal segmental glomerulosclerosis and hypertensive 
nephropathy in African American as well as other ethnic 
populations[3638]. 

Association studies of DN in type 1 diabetic patients
A large GWAS in a initial set of 820 DN cases and 
885 type 1 diabetic controls in the GoKinD study and 
a replication set of 1304 participants in the Diabetes 
Control and Complication Trial/Epidemiology of 
Diabetes Control and Complication (EDIC) identified 
FRMD3 (FERM domain containing 3), cysteinyl-tRNA 
synthase (CARS), carboxypeptidase, vitellogeniclike 
(CPVL)/chimerin 2, and intergenic region at 13q33.3 
between MYO16 and insulin receptor substrate 2 (IRS2) 
associated with DN[39]. Interestingly, another genome
wide linkage analysis and regional association fine 

718 June 10, 2015|Volume 6|Issue 5|WJD|www.wjgnet.com

Ethnicity and sample size Type of diabetes Phenotype definition Linkage region (LOD score or P -value or MLS) Ref.

Diabetic nephropathy
954 African American, 781 American Indians, 614 
European American, 1611 Mexican Americans 
(FIND)

1 + 2 Estimated GFR 10p12.311 (LOD: 2.16), 1q431 (2.26), 2q31.3 (1.91), 
3p12.1 (2.19), 7q11.22 (2.19), 10p141 (2.16), 15q12 

(2.84), 20q11.111 (3.34)

[13]

218 African American, 335 American Indians, 
119 European American, 469 Mexican Americans 
(FIND)

1 + 2 Urine ACR 7q21.3 (P = 8.6 x 10-5), 10p15.31 (1.29 x 10-5), 
14q23.1 (7.8 x 10-4), 18q22.31 (2.17 x 10-3)

[14]

3972 Americans (African American, American 
Indians, European American, Mexican Americans) 
(FIND)

1 + 2 DN defined by 
macroalbuminuria or ESRD, 

ACR

DN: 1q431 (LOD: 2.00), 6p24.3 (2.84), 7p21.3 (2.81), 
10p15.11 (2.10), 11p15.3 (2.28), 15q21.1 (2.04)
ACR: 2q22.3 (2.04), 3p13 (2.76), 7q21.2 (2.96), 

16q13 (2.31), 22q12.31 (2.29)

[23]

882 American (African American, American 
Indians, European American, Mexican Americans) 
(FIND)

1 + 2 eGFR 1q431 (LOD: 1.87), 7q36.1 (4.23), 8q13.3 (2.75), 
15q22.3 (2.08), 18q23.3 (1.40)

[24]

100 United States sibling pairs (Joslin Study on 
Genetics of Diabetic Nephropathy)

1 Proteinuria or ESRD 1q441 (MLS: 1.6), 2q14.1 (2.1), 3p13 (0.6), 5q14.2 
(2.7), 10q26.1 (2.4), 17p13.1 (1.9), 19q13.431 (3.1), 

20p12.1 (1.8) 

[15]

63 extended United States families (Joslin Study 
on Genetics of Diabetic Nephropathy)

2 GFR 2q33.3 (LOD: 4.1), 10q23.31 (3.1), 18p11.22 (2.2) [19]

556 Finnish, Danish, and French (FinnDiane) 1 Macroalbuminuria or ESRD 3q21-251 (LOD: 0.76), 6p21 (2.31), 9p21.2, 16p12, 
19q131 (1.61), 22q11 (2.78)

[16]

83 Finnish sibling pairs 1 Macroalbuminuria or ESRD 3q21.3-231 (MLS: 2.67) [21]
18 Turkish family + 101 sibling pairs of Pima 
India

2 Macroalbuminuria 18q22.3-231 (max LOD:6.14) [17]

201 Pima India sibling pairs 2 Macroalbuminuria or ESRD 3q26.11 (LOD: 1.48), 7q32.3 (2.04), 20p12.3 (1.83) [18]
206 African American sibling pairs 2 ESRD 3q13.31 (LOD: 4.55), 7p21.1 (3.59), 18q22.11 (3.72) [22]
691 West African 2 GFR 7p12.2 (LOD: 1.84), 16q24.1 (3.56), 17p13.2 (2.08) [20]
Diabetic retinopathy
282 Mexican American sibling pairs 2 Non-proliferative DR and 

proliferative DR 
3q12.3 (LOD: 2.41), 12p13.31 (2.47), 20q13.12 

(4.47), 6p24.1 (2.28), 15q26.3 (2.53), 19q13.42 (2.21)
[45]

725 Pima Indian sibling pairs 2 Worse eye score 1p36.13 (LOD: 3.1) [46]
210 Pima Indian sibling pairs 2 Hemorrhage, 

microaneurysm, and 
proliferative DR

3q26.31 (LOD: 1.36), 9q22.33 (1.46) [18]

1Overlapped region. MLS: Maximum LOD score; DN: Diabetic nephropathy; ESRD: End-stage renal disease; GFR: Glomerular filtration rate; ACR: 
Albumin-to-creatinine ratio; DR: Diabetic retinopathy.
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and IRS2 genes[30]. 
A recent huge metaanalysis involving 4315 type 

1 diabetic nephropathy and ESRD cases and 8568 
type 1 diabetic controls of the GENIE consortium and 
subsequent replication analyses in 9 independent 
cohorts (1880 cases and 6656 controls) revealed 
risk SNPs in the AFF3 (AF4/FMR2 family, member 3) 
and ERBB4 (verbb2 avian erythroblastic leukemia 
viral oncogene homolog 4) genes and an intergenic 
SNP between RGMA (repulsive guidance molecule 
family member a)/MCTP2 (multiple C2 domains, 
transmembrane 2) genes[43]. Another large GWAS for 
24h urine albumin excretion rare in type 1 diabetic 
patients including an initial set of 1925 patients 
(FinnDiane) and 3750 additional patients from 7 follow-
up studies (Steno Diabetes Center, Italian individuals 
from the Milano region, Umea Diabetes Study from 
Sweden, Scania Diabetes Registry, NFS-ORPQ, UK-
ROI) identified the strongest signal from the PSD3 
(pleckstrin and Sec7 domain containing 3)/SH2D4A 
(SH2 domain containing 4A) genes[44].

Collectively, current data from GWAS are not very 
consistent and only genetic loci in the ELMO1, FRMD3, 
APOL3-MYH9, CARS, and 13q33 between MYO16 
and IRS2 genes have been successfully replicated in 
independent studies.

GENETIC STUDIES OF DIABETIC 

RETINOPATHY
Linkage studies of diabetic retinopathy
The heritability of diabetic proliferative retinopathy is 
estimated to be 0.250.50 in Caucasian populations[11,12]. 
Previous results of three family linkage analyses for 
diabetic retinopathy (DR) are summarized in Table 
1 and Figure 1[18,45,46]. However, the only overlapped 
region is 1q36 between Pima Indians (LOD: 3.1) and 
Mexican Americans (LOD: 1.24) studies[45,46].

Association studies of DR
Four GWAS of DR have been published till now (Table 
2, Figure 1). A large meta-analysis of GWAS in the 
GoKinD and EDIC cohorts involving 2829 cases of 
severe diabetic retinopathy defined by proliferative 
retinopathy and macular edema and 1856 type 
1 diabetic controls identified several possible loci 
including intergenic SNPs between AKT3/ZNF238, 
LEKR1/CCNL1, KRT18P34/VEPH1 and SNP in the A2BP1 
genes with Pvalue less than 106[47]. After excluding 
cases with concomitant nephropathy to identify DR-
specific genes, SNPs in the intergenic region between 
LOC728275/LOC728316, the CCDC101/NUPR1/
SULT1A2/SULT1A1 gene clusters, the FAM18B, 
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Table 2  Genome-wide association studies for diabetic nephropathy, retinopathy, and neuropathy

Patients Ethnic Case Control Gene Ref. Replication studies Non-replication studies

Diabetic nephropathy
   T2DM Japanese 459 DN   242 ELMO11 [25] 26, 27, 28, 29, 30 31, 32
   T2DM European 105 ESRD   102 PVT1 [33]
   T2DM African American 965 ESRD 1029 SASH1, RPS12,AUH, MSRB3, LIMK2-

SKI1, APOL3-MYH91
[34] 35

   T1DM Caucasian (GoKinD, 
DCCT/EDIC)

820 ESRD   885 FRMD31, CARS, CPVL/CHN2, 13q3 
between MYO16/IRS21

[39] 40, 41, 42 42, 30

   T1DM Caucasian 547 ESRD   549 ZMIZ1 [29]
   T1DM GENIE (UK-

ROI, FinnDiane, 
GoKinUS) + 9 

follow-up studies

Stage 1: 
4315 ESRD

Stage 2: 
1880 ESRD

Stage 1: 8568
Stage 2: 6656

AFF3, RGMA/MCTP2, ERBB4 [43]

   T1DM Caucasian
(FinnDiane + 7 

follow-up studies)

5675 T1DM
Urine albumin 
excretion rate

PSD3, SH2D4A [44]

Diabetic retinopathy
   T1DM Caucasian (GoKinD 

and EDIC)
2829 PDR and 

macular edema
1856 AKT3/ZNF238, LEKR1/CCNL1, 

KRT18P34/VEPH1, A2BP1
[47]

   T2DM Taiwanese 174 NPDR and 
PDR

  575 MYSM1, FSTL5, C5orfF21, PLXD2, 
ARHGAP22, HS6ST3

[48]

   T2DM Taiwanese 437 PDR   570 TBC1D4-COMMD6-UCHL3, LRP2-
BBS5, and ARL4C-SH3BP4

[49]

   T2DM Mexican-American 103 severe DR   183 CAMK4, FMN1 genes [50]
Diabetic neuropathy
   United 
   Kingdom

United Kingdom 
(GoDART)

572 diabetic 
neuropathic 

pain

2491 GFRA2 [51]

1Loci that could be replicated in independent studies. T1DM: Type 1 diabetes mellitus; T2DM: Type 2 diabetes mellitus; DN: Diabetic nephropathy; ESRD: 
End-stage renal disease; GFR: Glomerular filtration rate; DR: Diabetic retinopathy; NPDR: Non-proliferative diabetic retinopathy; PDR: Proliferative 
diabetic retinopathy.
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AKAP11/FABP3P2/TNFSF11 gene cluster, and intergenic 
region between COX5BL1/LOC441026, ZNRF1, PCSK2, 
C10orf112 genes were found to be associated with 
DR[47]. A GWAS for DR involving 174 Taiwanese 
type 2 diabetic nonproliferative and proliferative 
retinopathy cases and 575 controls identified several 
genetic loci with Pvalue less than 106, including 
MYSM1, FSTL5, C5orfF21, PLXD2, ARHGAP22, and 
HS6ST3[48]. Another GWAS in Taiwanese identified 
three risk loci in TBC1D4-COMMD6-UCHL3, LRP2-
BBS5, and ARL4C-SH3BP4 genes in the initial set of 
437 cases of proliferative retinopathy and 570 type 
2 diabetic controls. However, none of them were 
replicated in another 585 Hispanic diabetics[49]. A 
smaller GWAS comparing 103 MexicanAmerican 
type 2 diabetics with severe retinopathy and 183 
type 2 diabetics identified suggestive signals in the 
CAMK4 and FMN1 genes[50]. However, the results 
from these 4 GWAS did not overlap with each other.

GENETIC STUDY OF DIABETIC 
NEUROPATHY
There was no heritability estimation for diabetic 
neuropathy in human and no family linkage study for 

diabetic neuropathy. Only GWAS comparing 572 diabetic 
neuropathic pain cases defined by treatment for 
diabetic neuropathic pain and positive monofilament 
test and 2491 diabetic controls in the Genetics of 
Diabetes Audit and Research Tayside (GoDARTS) 
identified potential signals from GFRA2 gene[51] (Table 2, 
Figure 1).

PHYSIOLOGICAL INSIGHT FROM 
GENETIC STUDIES
The ELMO1 gene encode for a signaling molecule 
involved in phagocytosis of apoptotic cells[52,53], fibroblast 
migration[52,54,55], cytoskeleton reorganization[56], and 
lymphocyte infiltration[57] through interaction with 
DOCK2 and DOCK180 (Figure 2A). ELMO1 expression 
was found to be elevated in cells cultured under high 
glucose conditions and in the kidney of diabetic mice, 
but was weakly detectable in tubular and glomerular 
epithelial cells in normal kidney[25].

The FRMD3 gene encodes for a member of the 
protein 4.1 superfamily. FRMD3 has been demons
trated to be silenced in lung cancer tissue in genomic 
screening. FRMD3 overexpression in different epithelial 
cell lines decreased clonal expansion, indicating FRMD3 
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Figure 2  Possible molecular mechanisms. Possible molecular mechanisms by which ELMO1 (A), IRS2 (B), and MYH9 (C) regulate diabetic nephropathy. TRIO: 
Triple functional domain (PTPRF interacting); RhoG: Ras homolog family member G; GDP: Guanosine diphosphate; GTP: Guanosine triphosphate; MMP: Matrix 
metalloproteinases; Crk Ⅱ: V-Crk Avian Sarcoma Virus CT10 Oncogene Homolog Ⅱ; TGF-β: Transforming growth factor beta; AKT: Protein kinase B; mLSTS: 
Mammalian lethal with SEC13 protein 8; mTOR: Mammalian target of rapamycin; mTORC2: Mammalian target of rapamycin complex 2; mSin1: Mammalian SAPK 
interacting protein; PKC: Protein kinase C; SGK1: Serum- and glucocorticoid-induced kinase 1. 
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as a potential tumor suppressor gene[58]. The CARS 
encodes for a cysteinyl-tRNA synthetase, which is a 
frequent gene fusion partner of anaplastic lymphoma 
kinase found in anaplastic largecell lymphoma and 
inflammatory myofibroblastic tumor[59,60]. However, 
the link between FRMD3 or CARS and diabetic 
nephropathy is currently poorly understood. 

The 13q33 risk loci lie between the MYO16 and 
IRS2 genes. The MYO16 gene encodes a novel 
unconventional myosin with divergent tails that is 
presumed to bind to membranous compartments and 
interact with actin filaments. MYO16 has also been 
shown to be expressed during brain development 
and regulate neuronal morphogenesis through inter
action with protein phosphatase and modulation of 
phosphoinositide 3kinase signaling[61]. A GWAS for 
autism has identified risk loci within an intergenic region 
between the MYO16 and IRS2 genes[62]. A genome
wide linkage study and regional fine mapping for 
schizophrenia[63] and another GWAS of the Framingham 
Heart Study for pulse pressure[64] have identified MYO16 
as risk loci, indicating MYO16 may play pleiotropic 
functions.

The IRS2 gene encodes for an adaptor protein 
that interacts directly with the insulin receptors and 
the insulinlike growth factor Ⅰ receptor and is a key 
mediator of insulin signaling. IRS2 was expressed 
in renal epithelial and tubular cells. Deletion of Irs2 
causes reduced kidney size and reduced glomerular 
number in mice[65]. A study of transcriptome and 
metabolome profiles of the primary cultured inner 
medullary collecting duct cells grown in hyperosmolar 
culture medium identified IRS2 levels to be significantly 
altered[66]. IRS2 expression in kidney tubules has also 
been shown to be elevated nine fold in human diabetic 
nephropathy patients[67]. Transforming growth factor 
(TGF)-β1 is the primary cytokine shown to induce 
fibrosis. IRS2 has been shown to mediate TGF-β1 
signals in kidney epithelial cells[68]. IRS2 has also been 
shown to interact with nuclear complex of rictor to 
regulate albuminuria in diabetic mice[69] (Figure 2B).

Mutations in MYH9 results in a familial autosomal 
dominant syndrome characterized by a variety of 
clinical features, including macrothrombocytopenia, 
deafness, nephritis, and cataract[70]. GWAS also 
identified common MYH9 polymorphism as risk loci for 
nondiabetic nephropathy including focal segmental 
glomerulosclerosis and hypertensive nephropathy[36,27]. 
MYH9 encodes the nonmuscle myosin heavy chain 9, 
which, with other subunits, forms myosin Ⅱ. Myosin Ⅱ 
is a motor protein that binds actin to regulate cellular 
motility. MYH9 is expressed in the podocytes, as well 
as in mesangial cells and arteriolar and peritubular 
capillaries in kidneys[71]. Classical deletion of Myh9 
in mice results in embryonic lethality due to loss of 
cellcell adhesion and loss of cell movement during 
gastrulation. Podocytespecfic deletion of Myh9 in 
C57BL/6 mice results in susceptibility to experimental 
doxorubicin hydrochloride glomerulopathy[71]. Several 

strains of Myh9 knockin mice showed macrothrom
bocytopenia, premature cataract formation, kidney 
abnormalities, including albuminuria, focal segmental 
glomerulosclerosis and progressive kidney disease, 
and mild hearing loss[72,73] (Figure 2C).

LIMITATIONS AND PROSPECTIVE
The major limitation of family linkage studies is 
their low resolution and power to detect variants 
with small effects, especially for complex genetic 
diseases. GWAS is a hypothesisfree and unbiased 
tool with finer resolution and greater power to detect 
risk loci. However, false positivity often results from 
population admixture or stratification in GWAS. 
Therefore, independent replications are essential for 
genetic association studies. However, current results 
from GWAS are not consistent since most identified 
loci are not reproducible except for a few genes 
such as ELMO1, CARS, FRMD3, MYO16/IRS2, and 
APOL3/MYH9. Small sample sizes, different phenotype 
definitions between studies, populationspecific 
associations, and strong influence of environmental 
factors (medications, comorbidities) may explain 
the failure of GWAS for diabetic complications. While 
GWAS are usually designed for common variants, rare 
variants with intermediate effects within should also 
be pursued with nextgeneration sequencing. The 
interaction with environmental factors should also be 
taken into account.
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