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Abstract

The catastrophic 2010 earthquake in Port-au-Prince, Haiti, led to the large-scale displacement of 

over 2.3 million people, resulting in rapid and unplanned urbanization in northern Haiti. This 

study evaluated the impact of this unplanned urbanization on mosquito ecology and vector-borne 

diseases by assessing land use and change patterns. Land-use classification and change detection 

were carried out on remotely sensed images of the area for 2010 and 2013. Change detection 

identified areas that went from agricultural, forest, or bare-land pre-earthquake to newly developed 

and urbanized areas post-earthquake. Areas to be sampled for mosquito larvae were subsequently 

identified. Mosquito collections comprised five genera and ten species, with the most abundant 

species being Culex quinquefasciatus 35% (304/876), Aedes albopictus 27% (238/876), and Aedes 

aegypti 20% (174/876). All three species were more prevalent in urbanized and newly urbanized 

areas. Anopheles albimanus, the predominate malaria vector, accounted for less than 1% (8/876) 

of the collection. A set of spectral indices derived from the recently launched Landsat 8 satellite 

was used as covariates in a species distribution model. The indices were used to produce 

probability surfaces maps depicting the likelihood of presence of the three most abundant species 

within 30 m pixels. Our findings suggest that the rapid urbanization following the 2010 earthquake 

has increased the amount of area with suitable habitats for urban mosquitoes, likely influencing 

mosquito ecology and posing a major risk of introducing and establishing emerging vector-borne 

diseases.
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INTRODUCTION

Vector-borne diseases (VBD) constitute a neglected burden in Haiti (Caillouet et al. 2008). 

The country accounts for more than 90% of all lymphatic filariasis cases in the Americas 

(De Rochars et al. 2004, Neuberger et al. 2012) and Plasmodium falciparum malaria is 

endemic (Gharbi et al. 2012). In addition to an unstable infrastructure and continued 

degradation of the natural environment, which causes fragmentation of habitats and 

alteration of existing vector-host-parasite relationships, there is a high-risk of contracting 

VBD, especially those transmitted by mosquitoes. This is because both human-made and 

natural environmental modifications lead to changes which affect mosquito ecology and 

pose a public health concern for the emergence and re-emergence of VBD (Ellis et al. 2009).

On January 12th, 2010 Haiti experienced a 7.0 megawatt catastrophic earthquake (Brown et 

al. 2012) which resulted in massive destruction in Port-au-Prince and large-scale 

displacement of over 2.3 million people (Brown et al. 2012). It is also believed that the 

earthquake may have contributed to an increased number of unplanned and informal 

settlements throughout the country. Human alterations of the environment, regardless of 

intent, and social factors such as poverty, overcrowding, and deteriorating infrastructure, can 

exacerbate the damaging effects of natural events (Norris 2004, Vanwankebe et al. 2007). 

These can alter, and in some cases expand, mosquito-breeding habitats. The impacts of these 

changes on vector ecology and VBD, including effects on vector development sites, 

biodiversity, population density, and minimum infection rates, have not yet been fully 

explored in Haiti. Although there was an increase in malaria and dengue cases reported by 

travelers returning to the United States from Haiti following the 2010 earthquake (Agarwal 

et al. 2012, Sharp et al. 2012), only a few investigations have addressed potential causes. 

One study in particular presented data on post-earthquake malaria vector surveillance in two 

communities in southern Haiti, Leogane and Jacmel, both of which experienced extensive 

destruction during the earthquake (Townes et al. 2012). Out of 1,629 suspected malaria 

cases, about 20% were positive for falciparum malaria. A later study at a health center in 

Leogane also reported a rapid diagnostic test positivity rate of 47% among 130 patients with 

undifferentiated fever (Neuberger et al. 2011).

Rapid land cover change can, via spontaneous urbanization, significantly increase mosquito 

breeding sites through modifications of the local topography that increase ponding, peri-

domestic water storage practices, and proliferation of waste containers that provide suitable 

habitats for vectors such as Cx. quinquefasciatus, Ae. aegypti, and Ae. albopictus. Combined 

with sudden and vast human displacements, the effects on mosquito ecology and VBD 

transmission can be significant (Norris 2004). Several mosquito species have been collected 

in aquatic habitats of the Artibonite Valley, Haiti (Caillouet et al. 2008), but how the 

massive displacement of individuals to northern Haiti and subsequent land use changes may 

have affected mosquito ecology in these newly urbanized areas has yet to be evaluated. To 

understand how changes in mosquito populations may have been influenced by recent 

urbanization, we conducted a field study focused on larval habitat distribution in northern 

Haiti. The aim of this study was to identify specific, recent land use land cover (LULC) 

changes in the urbanizing Cap-Haitian and Caracol corridors of northern Haiti and relate 

these to mosquito species diversity and distribution obtained from our field investigation.
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MATERIALS AND METHODS

Study area

The study was conducted in northern Haiti, in and around the city of Cap-Haitian (19.7500° 

N, 72.2000° W) and the coastal village of Caracol (19.6833° N, 72.0167° W) (Figure 1). 

Cap-Haitian is the second largest city in Haiti and has a characteristic tropical climate. Mean 

temperature ranges from 21.1° C–26.7° C. The wettest months are April and May with about 

5 cm of rain per month during the rainy season (Rebaudet et al. 2013). The city has a 

number of neighborhoods, many which were already densely settled but experienced a large 

influx of people from Port-au-Prince after the 2010 earthquake. Caracol has similar climatic 

conditions. Prior to the earthquake, the town had approximately 6,000 people but in 2012, a 

600-acre industrial park was built which attracted an estimated 300,000 new residents to the 

town.

Land use land cover change analysis

RapidEye Level 1B satellite images, collected on 22–30 January, 2010 and 7 February, 2013 

were used to detect and analyze changes in the study area, post-earthquake. The 5-band 

multispectral images had a spatial resolution of 6.5 m, which enabled detailed information 

extraction and land use classification. Standard pre-processing operations were carried out 

on the images before further analysis was conducted. All processing and analysis was 

carried out using Idrisi Selva v 17.02 and ArcGIS 10.2 software.

Training data containing the spectral signatures of ten predetermined land cover types 

present in the 2010 and 2013 Rapideye images were generated for the analysis (Table 1). A 

maximum likelihood supervised classification (MLC) was performed on each image to 

assign each pixel to a specific land use class. MLC categorizes pixels with the maximum 

likelihood of belonging to a class based on the probability of correctly classifying sample 

pixels in the training data, and then all pixels in the image (Murai 1999). The method was 

chosen for its relatively high accuracy compared to other supervised classification methods. 

In this analysis, the training sites were generated based on homogeneity in areas where land 

use types were known and could be identified. Subsequently, each pixel within a particular 

training site was assigned to one of ten predetermined classes (Jensen 1996). To simplify our 

analysis, we grouped the ten classes from the MLC into four major land use classes of 

interest: urban (built up areas), bare-land, agriculture, and forest. The classification accuracy 

was assessed using the confusion matrix and Kappa statistics. We incorporated ground truth 

data from Google Earth Pro v.7.0 for the accuracy assessment.

The Land Change Modeler within Idrisi Selva was used to detect changes between the 2010 

and 2013 images, concentrating on changes from agriculture, forest, or bare-land to 

urbanized areas. Both images were evaluated for gains and losses (change) as well as 

persistence (no change) in urban areas as these determined the areas where sample sites for 

the entomological survey would be targeted.
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Mosquito sampling

Thirty-five sites were identified and sampled for mosquito larvae in-and-around Cap-Haitian 

and Caracol based on a stratified random sampling method. This method has been found to 

give a good representation of the total study area and to limit bias when selecting sampling 

locations (Troyo et al. 2008). The specific sites, characterized as areas of change (gains) 

from agriculture, forest, or bare-land to urban areas were identified from the change 

detection maps. Control sites were also identified as areas that have not changed from the 

above-mentioned categories. Following Troyo et al. (2008), a sample grid cell size of 100 

×100 m was considered adequate for larval sample collection. Hawth’s Analysis Tools for 

ArcGIS were employed to select grid cells representing 10% of pixels that changed to urban, 

as well as 10% of pixels that remained unchanged in the forest, agriculture, bare-land, and 

urban classes.

Based on the selected sample sites, a larval survey was conducted in the study areas, over a 

two-week period in July, 2013. Within each of the sample sites, all possible larval habitats 

were assessed for larvae and their locations were recorded with a GPS. At each water body 

within the site, ten dips were carried out with a larval dipper. If the aquatic habitat was too 

shallow, then the water body was sampled using an aquatic pipet. A representative sample of 

ten dips per habitat was used based on feasibility and time management. The dips were done 

around floating debris, aquatic and emergent vegetation, and along the edges of the natural 

aquatic habitats where larvae were expected. All potential larval habitats were examined for 

the presence of water and larvae, including noting all containers found within the sample 

site. Additionally, at each collection site, the environmental characteristics of the habitats 

were recorded. Upon completion of the fieldwork, a container index, the number of water-

holding habitats positive for larvae and or pupae per potential habitat, was calculated (Focks 

2003, Troyo et al. 2008). Containers consisted of bottles, bowls, buckets, tires, and any other 

item left outside capable of holding water. The specimens were preserved in vials with 70% 

ethanol and transported to the University of Miami using a permit from the Center for 

Disease Control and Prevention. The specimens were mounted on slides and identified using 

the keys by the Walter Reed Biosytematics Unit, and by Cutwa-Francis and O’Meara 

(2008).

In addition to species distribution modeling using the MaxEnt software, the entomological 

data were analyzed using a Chi-square test of proportions. Statistical tests resulting in a 

probability value <0.05 were considered statistically significant. All statistical analyses were 

conducted using SAS 9.3 (SAS Institute Inc., Cary, NC).

Species distribution model prediction

Models of species distribution were developed for the three most abundant species collected: 

Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus, in a presence-only distribution 

modeling algorithm, the Maximum Entropy (MaxEnt) v. 3.3.3 model (Phillips et al. 2006). 

MaxEnt finds the largest spread (maximum entropy) in a geographic dataset of species 

presences in relation to a set of ‘background’ environmental variables (Halvorsen 2013). 

Previous studies determined that MaxEnt has often shown accurate predictions and good 

extrapolation across an entire predicted area, even for small sample sizes (Hernandez et al. 
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2006, Li et al. 2009). For this study, sample locations, indicating presence, were 

incorporated with environmental predictor variables derived from 2013 Landsat 8 satellite 

imagery.

While previous studies using MaxEnt have relied primarily on bioclimatic variables and 

topographic data as predictor variables (Elith et al. 2011, Kramer-Schadt et al. 2013, Li et al. 

2009), we derived a set of spectral indices from a recent Landsat 8 image covering the study 

area. Four different indices were derived, including: urban index (UI), for urban or built up 

areas (As-Syakur et al. 2012); soil and vegetation index (SVI), showing the highest values 

for both vegetated and bare soil covered areas (Villa 2012); normalized difference 

impervious surface index (NDISI), to distinguish between impervious materials and other 

land covers (Liu et al. 2013, Xu 2010, Xu et al. 2013); and modified normalized difference 

water index (MNDWI), to highlight water features in builtup land dominated areas (Xu 

2006, Xu 2008, Xu et al. 2013). These indices are based on simple transforms of image 

spectral bands that are calculated as follows:

Where SWIR, NIR, and TIR indicate shortwave infrared, near infrared, and thermal infrared, 

respectively, of the Landsat 8 sensor. SWIR2 refers to the second of two SWIR bands of 

Landsat 8.

A Landsat 8 scene acquired March 25, 2013 was used to calculate the four indices indicated 

above. Landsat 8 is the newest in a continuous series of Landsat satellite missions, and 

although Landsat 8 imagery has been used for water resource management and assessment 

of irrigated agriculture (Cuenca et al. 2013), we are unaware of its use for mosquito species 

distribution modeling. Although the resolution (30 m) of Landsat 8 imagery is coarser than 

the 5 band Rapideye imagery (6.5 m) used for the change detection, Landsat 8 includes two 

short wave infrared and two thermal infrared bands (Irons et al. 2012), which are 

particularly sensitive to water and urban features. Thus, the Rapideye images were less 

suitable for development of continuous environmental variables that are required as inputs to 

species distribution models such as MaxEnt.

The resulting MaxEnt models were interpreted using the area under the curve (AUC), the 

true skill statistic (TSS), and jackknife measures. The AUC is frequently used as a standard 

method to assess predictive power and qualitative characterization of distribution models 

(Halvorsen 2013) and it estimates how precisely the model differentiates species 

occurrences from a random sample obtained from background pixels. AUC is derived by 

using all possible thresholds to plot the probability that a model correctly classifies a 

presence (sensitivity), vs the probability that a model will correctly classify a random 

background point (specificity) (Khatchikian et al. 2011). AUC ranges from 0 to 1; a value of 

1 indicates perfect model agreement, whereas a value of 0.5 indicates a performance no 
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better than random, and 0 is of complete disagreement (Khatchikian et al. 2011). An AUC 

above 0.75, however, is considered potentially useful to justify analysis and application of 

the model results (Phillips and Dudik 2008).

As presence-only models lack ‘true absence’ data, specificity is modified to rely on 

background values as pseudo-absences (Phillips et al. 2006). While AUC is widely used in 

prediction assessment, it has been criticized for its weakness in assessing the accuracy of 

Species distribution model (SDM) predictions (Allouche et al. 2006, Lobo et al. 2008). Lobo 

et al. 2008 contend that the AUC provides a measure of the degree to which a species is 

restricted along the range of predictor conditions in the study area, but not about reliability 

of the model’s performance. Therefore, the threshold-dependent TSS was also employed to 

further assess the predictive power of the SDMs.

TSS is defined as the average of the net prediction success rate for presence and/or for 

absence (Lobo et al. 2008). TSS reflects the rate of false positive and false negative 

predictions, but it is not sensitive to the frequency of presence points and thus is not affected 

by prevalence or by the size of the validation set (Jones et al. 2010). While some studies 

have jointly used AUC as a threshold independent and Kappa as a threshold dependent 

measure of predictive accuracy, Allouche et al. 2006 recommends the use of TSS over 

Kappa to measure model performance in ecological studies. Similarly to Kappa ranges, TSS 

values > 0.6 are considered good (0.7–0.85 = very good), 0.2–0.6 fair to moderate, and < 0.2 

poor (Jones et al. 2010, Landis 1977). MaxEnt also performs a jackknife analysis, as a built-

in option, to determine which of the environmental variables has a significant influence on 

distribution patterns. The jackknife test measures variable importance and evaluates the 

relative strengths of each predictor variable (Yost et al. 2008). It tests the gain of a model 

based solely on each environmental variable as well as the loss or gain when the same 

variable is excluded from the model. The greater the loss of gain due to a variable being 

excluded from the full model, the more important that variable is in constructing the final 

model surface.

RESULTS

Classification and change detection

The classified LULC maps for northern Haiti for 2010 and 2013 are presented in Figure 2. 

Overall, the areal extent percentage in km2 of agriculture, forest, and urban land use classes 

increased from 2010 to 2013, while bare-lands decreased (Table 2). In total, we detected a 

5.1% increase in areas classified as urban over the period, indicating fairly rapid urban 

expansion. Although the overall Kappa accuracy for the LULC classification was high: 

94.1% for the 2010 map and 90.9% for the 2013 map, dry riverbeds, wetland boundary 

areas, and salt flats may have been indistinguishable from built-up/urban areas contributing 

to classification errors (Figure 2).

Entomological survey results

In the 35 sites sampled for mosquito larvae (Figure 4), five genera and ten species were 

collected. The most abundant species in the collections were: Cx. quinquefasciatus 35% 
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(304/876), Ae. albopictus 27% (238/876), and Ae. aegypti 20% (174/876). The main 

mosquitoes among the species collected included Ae. aegypti, Ae. albopictus, Anopheles 

albimanus, Cx. nigripalpus, and Cx. quinquefasciatus, while non-vector species found less 

often in the sample sites included Ae. triseriatus, Ae. taeniorhynchus, Cx. erraticus, 

Psorophora jamaicensis, and Mansonia spp (only 2nd instar larvae were collected but most 

likely Ma. dyari) (Pena and Chadee 2004).

An analysis of the species composition for the main disease vectors indicated a statistically 

significant difference in mosquito composition (x2=28.4, df= 12, P = 0.005) when 

comparing between the four land use types independently of the other. As shown in Figure 

5, there was a higher mosquito species diversity and prevalence in the areas characterized as 

changed from agriculture, forest, or bare-land to urban. Statistical significance in mosquito 

species diversity was observed when comparing specifically agriculture sites that changed to 

newly urbanized (x2=18.2, df= 4, P = 0.001).

Furthermore, a greater number of Ae. albopictus and Ae. aegypti were collected in urban 

areas compared to the other three classes and An. albimanus were collected in persistent 

agriculture sites. Culex nigripalpus was the only species collected in areas classified as bare-

land, while all the other mosquito species were collected in sites where bare-land had 

changed to urban.

Nearly 77% (132/173) of the containers documented were wet and 876 larvae were collected 

in over 132 containers or water bodies (Table 3). When comparing the areas that did not 

change to the ones changed to urban, there was an increase in the number of containers and 

an increase in the number of containers positive for vector mosquitoes. Of the containers 

that were identified and found to be positive with larvae, tires comprised 23% (39/173) of 

the collection. Moreover, the most prevalent species in artificial containers in areas that were 

not changed was Ae. aegypti. In areas newly urbanized post-earthquake, the most prevalent 

species was Ae. albopictus.

Analysis of species composition between human-made and natural habitats was also carried 

out. Huan-made habitats consisted mainly of bottles, ditches, and temporary pools of water 

along unpaved roads and paths within and around the various land use types. Natural 

habitats are soil-based water bodies, which include permanent, semi-permanent, and 

temporary flood or brackish water pools. There was a significant difference in species 

composition between the two habitat types (χ2=48.6, df= 5, P = 0.0001); man-made habitats 

had a greater percentage of mosquitoes such as Ae. aegypti 96% (24/25), Ae. albopictus 89% 

(24/27), and Cx. quinquefasciatus 61% (22/36). Anopheles albimanus 100% (8/8) on the 

other hand was only collected in a highly brackish riverbed found in an agricultural grid that 

housed banana plants (Figure 5).

Species distribution models

Predictive surfaces maps indicating probability of presence were developed for the three 

most common container-breeders, Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus, by 

using MaxEnt. The number of occurrence points for the other mosquito species in our field 
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study were insufficient to produce reliable model outputs. Figure 6 illustrates the resulting 

maps for the three species.

There was a high relative probability of Ae. aegypti (0.91) present in-and-around urbanized 

areas and along the dry riverbeds and shorelines. The relative probability for Cx. 

quinquefasciaus (0.99) was high around built-up/urban areas. The probabilities of presence 

were lower in vegetated areas and almost zero in the bare-land for both species. However, 

the model revealed that Ae. albopictus had a high probability (0.84) of presence in built-up 

areas, along roads as well as in agricultural and vegetated areas (Figure 6), which is 

consistent with the bionomics of this particular vector.

The predicted SDMs for each species were found to be significantly higher than a random 

prediction. The associated response curves and the calculated AUC of the test data 

confirmed the overall predictive performance of the models and indicated strong agreement 

with AUC values of 0.96, 0.87, and 0.95 (with corresponding standard deviations of 0.02, 

0.04, and 0.02) for Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus, respectively (Table 

4). The TSS value for Ae. aegypti was 0.66, indicating a good prediction, 0.54 (moderate) 

for Ae. albopictus, and 0.73 (very good) for Cx. quinquefasciatus (Table 4).

The resulting distributions in Figure 6 also agreed with the ecological understanding of 

particular mosquito species. Because we used presence-only data, constraints were imposed 

so that the model solution reflected information from the presence-only records (Elith et al. 

2011). Results from prediction models for each species as well as the associated AUC and 

TSS values are presented in Table 4. Overall, the model for Cx. quinquefasciatus performed 

better than those for Ae. aegypti and Ae. albopictus.

Jackknife measures were also used to determine the importance of each of the environmental 

variables for explaining the predicted species distribution (Figure 7). In addition, the percent 

contribution of each variable is summarized in Table 5. The percent predictive contribution 

of each variable measures the impact that particular variable has on predicting the 

occurrence of that species.

For Ae. aegypti, the jackknife test of variable importance indicated that the SVI was the 

most important predictor variable when used in isolation, while the UI demonstrated the 

highest decrease when it was omitted from the model. UI also provided the highest percent 

contribution, 49.4%, to the overall model. Similarly, jackknife results for Ae. albopictus 

indicated that SVI had the highest gain when used in isolation, while UI demonstrated the 

highest loss of gain when excluded from the full model. UI had a percent contribution of 

21.3%. For Cx. quinquefasciatus, UI contributed the most when used in isolation but also 

had the highest decrease when omitted from the model. Additionally, UI contributed over 

51.6% to predicting the occurrence of Cx. quinquefasciatus.

DISCUSSION

This is the first published report of mosquito ecology in the Cap-Haitian and Caracol 

corridor of northern Haiti. During the field collection, the predominant species collected 

were Cx. quinquefasciatus, Ae. aegypti, and Ae. albopictus, regardless of the land use 
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category sampled. Aedes albopictus and Ae. aegypti were collected more frequently from 

land use types categorized as urban and newly urbanized. However, Ae. aegypti was 

primarily in artificial containers found in areas that were urban prior to the 2010 earthquake. 

Aedes albopictus was more prevalent in artificial containers. Although it has been reported 

in central and southern Haiti (Fernandez et al. 2012), our study is the first confirmed report 

of Ae. albopictus in northern Haiti. Climatic factors, rapid migration following the 

earthquake, deterioration of water services, and sanitation issues have contributed to the 

colonization in Haiti (Gratz 2004, Paupy et al. 2009)

In addition to the large influx of people to northern Haiti following the earthquake, the 

development of the industrial park in Caracol is also expected to increase urbanization, as 

housing communities are being built for the industrial park workers. One of our sample sites 

was located within one of these newly developed housing communities, and though people 

were yet to move into the community, Ae. albopictus larvae were collected in 75% (3/4) of 

the water bodies sampled at this site. With the large-scale urbanization of Caracol in its 

infancy, there is major untapped potential to improve public health by limiting the 

proliferation of artificial containers that enhance risk associated with the development of 

formal and informal housing.

If source-reduction measures are not taken, larval habitats may increase rapidly within urban 

areas. Aedes aegypti and Ae. albopictus populations are influenced by human water storage 

practices, most notably the collection of rain water in large containers when piped water is 

not available or is rationed which, in turn, may increase the abundance of these vectors of 

dengue and chikungunya viruses (Barrera et al. 2006, Hammond et al. 2007, Padmanabha et 

al. 2010). Moreover, inadequate infrastructure, sub-standard housing, water storage 

practices, and poor sanitation proximate to newly built-up sites may change mosquito 

ecology increasing VBD risk in low-income communities (Haines et al. 2013).

Though dengue is not reported to be a major public health problem in Haiti, it is most likely 

because it is under-reported and under-diagnosed. Dengue was first reported in 1964 

(Gentilini 1964, Lenhart et al. 2008). Dengue studies conducted in La Boule, Port-au-Prince, 

and various coastal towns in 1969 and 1971 confirmed transmission of DEN-2 and DEN-3 

(Lenhart et al. 2008, Ventura and Ehrenkranz 1976). Very little is currently known of the 

transmission rates within the Haitian population. In neighboring Dominican Republic, at 

least seven provinces have dengue incidence of 32 cases/100,000 habitants (Cabrera-Batista 

et al. 2005). It is important to target environmental and ecosystem management to reduce 

dengue vector breeding habitats to reduce the potential burden of the disease, globally the 

fastest growing VBD (WHO 2014). Further, a recent outbreak of chikungunya fever in the 

Caribbean Basin drew attention to this prospect of this VBD emerging within Haiti (CDC 

2014).

In regards to malaria vectors, only one species of anopheline was collected in our field 

investigation and was only found in eight of 180 samples. Several Anopheles spp. known to 

transmit malaria have been identified in Haiti, including An. albimanus, An. crucians, An. 

pseudopunctipennis, An. grabhamii, and An. vestitipennis (Raccurt 2004). However, An. 

albimanus is responsible for almost all of the transmission of P. falciparum in Haiti (Hobbs 
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et al. 1986). Urbanization has been shown to significantly reduce malaria transmission by 

shifting entomological, parasitological, and behavioral dynamics (Qi et al. 2012, Tatem et al. 

2013). In particular, Anopheles mosquitoes are negatively affected by water pollution as 

well as the reduction of vector habitats resulting from rapid urbanization, especially in 

developing countries such as Haiti (Keating et al. 2003).

During the field collection, An. albimanus was collected only in water bodies found in 

agriculture sites. Though we only sampled in the dry season, in Africa, anopheline 

abundance has been reported to be much higher in rural undeveloped areas when compared 

to urbanized areas (Jensen 1996, Murai 1999), which is consistent with our results. The 

increase in urban areas from 2010 to 2013 may therefore explain the few collections of 

anophelines in our area. Several studies have shown that an increase in urbanized areas 

contributes to a reduction in the number of places that could potentially serve as Anopheles 

breeding sites (Hay et al. 2005, Keating et al. 2003, Qui et al. 2012, Tatem et al. 2013, 

Tatem et al. 2008).

The important filariasis vector, Cx. quinquefasciatus, was collected in urbanized areas in 

both man-made habitats, such as ditches and latrines, and containers such as tires and 

buckets. Culex quinquefasciatus has been shown to be most abundant in urban habitats both 

indoors and outdoors and uses dirty and polluted aquatic sources as larval habitat (Chaves et 

al. 2009, Pires and Gleiser 2010, Thongsripong et al. 2013), sources usually associated with 

human dwellings (Burke et al. 2010). Northern Haiti already experiences the highest burden 

of filariasis in the Americas, but rapid urbanization has increased the risk of filariasis 

transmission as predicted by the species distribution model (Figure 6). Urban lymphatic 

filariasis is one of the key challenges in the ongoing global efforts to eliminate this disease 

as a public health problem (Addiss 2010, Mwakitalu et al. 2013). Parts of Haiti experience 

flooding during the rainy season and trash accumulates, clogging drains and ditches that 

results in stagnant water. These factors contribute to the prolific breeding of Cx. 

quinquefasciatus.

In conjunction with our field samples, we generated predictive surfaces that depict probable 

presence of our three most abundant mosquitoes, Ae. aegypti, Ae. albopictus, and Cx. 

quinquefasciatus, highly common container breeders (Figure 6), using novel environmental 

data from Landsat 8 satellite imagery. Urban areas identified by UI were found to be 

important in predicting distribution of both Ae. aegypti and Cx. quinquefasciatus, and 

consistently demonstrated the most decrease model in gain when omitted from all three 

models. Surface wetness (MNDWI) and vegetative coverage (SVI) were important 

contributors in the A. albopictus model. Evidently, the MaxEnt model results show a high 

probability for Ae. aegypti and Cx. quinquefasciatus in and around urban areas, while Ae. 

albopictus has a high probability of presence in all land use types, consistent with its broader 

niche relative to its congener Ae. aegypti. Thus, the results obtained from our novel 

application of MaxEnt are consistent with ecological understanding of Ae. aegypti, Ae. 

albopictus, and Cx. quinquefasciatus.

The findings suggest that the rapid urbanization in northern Haiti impacts mosquito ecology 

and the risk of VBD. Increased urbanization will likely increase suitable breeding habitats 
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for Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus. Moreover, the results of 

investigation can assist in the development of improved public health guidelines for 

mosquito control by indicating the likely locations of these important vectors. Currently, 

there is limited vector control in this area of Haiti due to inadequate funding to allocate 

proper resources to control vector populations. The predictive maps we generated may be 

employed to minimize public health risk by guiding development of integrated vector 

management programs that prioritize control efforts (Beier et al. 2008) in specific high-risk 

areas of northern Haiti. Specific, additional intervention recommendations will likely 

include urban-environmental improvements to sanitation and sewerage, and source 

reduction, as well as community-based outreach to increase local knowledge and encourage 

behavioral changes that can lead to reduced VBD risk and burden. Lastly, a follow-up in 

five years is recommended to observe how the container-breeder mosquitoes have changed 

along with urban development.
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Figure 1. 
The study area is constrained to five communes (third-level administrative divisions of 

Haiti): Cap-Haitien, Milot, Quartier Morin, Limonade, and Caracol, within the Nord & 

Nord-Est departments.
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Figure 2. 
Land-use land cover classification of northern Haiti in A) 2010 and B) 2013. Maximum 

likelihood classification of surface features identifying land cover classes for each time 

period.
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Figure 3. 
Land change modeler. The 2010 and 2013 classified images were compared and evaluated 

for gains and losses in land cover identified as urban. Gains represent land cover that has 

become urban between 2010 and 2013, and persistence includes urban areas that have not 

changed.
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Figure 4. 
Sample locations of mosquito larvae occurrence in-and-around Cap Haitian and Caracol. 

Sampling sites were selected based on a stratified random sampling method generated from 

the LULC images.
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Figure 5. 
Disease vectors collected by A) land cover type B) habitat. Occurrence of the main disease 

vectors within particular land cover categories as well collections within human-made or 

natural habitats.
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Figure 6. 
Predictive maps of species occurrence: A) Ae. aegypti, B) Ae. albopictus, and C) Cx. 

quinquefasciatus. Each map shows the predicted suitability of geographic areas for species 

occurrence, where green is low probability of occurrence, and purple is high probability.
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Figure 7. 
Jackknife analysis to determine the importance of each of the environmental variables in 

relation to the regularized training gain for: A) Ae. aegypti, B) Ae. albopictus, and C) Cx. 

quinquefasciatus. The plots show where environmental variables either increase or reduce 

the gain when used in isolation or when omitted from the model.
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Table 1

Defining the spectral signatures of ten predetermined land cover types present in the images.

Land Type Definition

Water Colorless, transparent, odorless, tasteless liquid that forms the seas,

River Large natural stream of water flowing in a channel to the sea, a lake, or another stream

Urban All built-in areas including residential, commercial, and industrial

Agriculture Cropland and pastures

Wetland Land consisting of marshes or swamps; saturated land

Forest A large tract of land covered with trees and underbrush; woodland

Salt flats An extensive level tract coated with salt deposits left by evaporation of rising ground water or a temporary body of surface water

Bare land Land in its unused natural state

Cloud The projection of a cloud structure with respect to the direction of incoming solar radiation from the satellite

Shadow Shadows cast by clouds and other features
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Table 2

Percentage of losses and gains in land use type from 2010 to 2013 in northern Haiti

Square km % Loss % Gain Overall change

Agriculture 544.9 73.2% 106.4% 33.3%

Bare-land 675.3 311.2% 65.2% −246%

Forest 732.2 85.5% 143.2% 57.7%

Urban 850.8 94.8% 516% 421.2%
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Table 3

The container index, number of water-holding habitats positive for larvae per land use type.

No change in land use Land use changed to urban

Agriculture 91% (10/11) 73% (30/41)

Bare-land 100% (2/2) 79% (38/48)

Forest 100% (3/3) 83% (15/18)

Urban 68% (34/50) N/A
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Table 5

Percent contribution of each of the environmental variables.

UI contribution NDISI contribution SVI contribution MNDWI contribution

Ae. aegypti 49.4 11.3 14.7 24.6

Ae. albopictus 21.3 15.6 29.2 34

Cx. quinquefasciatus 51.6 9.8 36.2 2.4
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