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Estimating the size of a space and its degree of clutter are effortless
and ubiquitous tasks of moving agents in a natural environment.
Here, we examine how regions along the occipital–temporal lobe
respond to pictures of indoor real-world scenes that parametrically
vary in their physical “size” (the spatial extent of a space bounded by
walls) and functional “clutter” (the organization and quantity of
objects that fill up the space). Using a linear regression model on
multivoxel pattern activity across regions of interest, we find evi-
dence that both properties of size and clutter are represented in the
patterns of parahippocampal cortex, while the retrosplenial cortex
activity patterns are predominantly sensitive to the size of a space,
rather than the degree of clutter. Parametric whole-brain analyses
confirmed these results. Importantly, this size and clutter information
was represented in a way that generalized across different semantic
categories. These data provide support for a property-based rep-
resentation of spaces, distributed across multiple scene-selective
regions of the cerebral cortex.

Keywords: fMRI, multivoxel pattern analysis, scene and space perception,
the parahippocampal place area, the retrosplenial cortex

Introduction

It is well accepted that real-world scenes, akin to objects, have
a rich taxonomy of categorical structure and that each scene ex-
emplar can be labeled with semantic category descriptors, for
example, a pantry or a stadium (Tversky and Hemmenway
1983; Xiao et al. 2010). However, real-world scenes, like
objects (Konkle and Oliva 2012) can also be described in terms
of geometrical properties—e.g., a stadium is a large space
whereas a pantry is a small space (Oliva and Torralba 2001;
Greene and Oliva 2009a, b; Ross and Oliva 2010; Kravitz,
Peng, et al. 2011; Park et al. 2011). What are the meaningful
geometric properties of a scene that are effortless and ubiqui-
tous for the brain to compute?

Psychophysical research has shown that, at the very begin-
ning of a glance, the visual system has information about how
large the space depicted in a 2D image is, whether the space is
indoor or outdoor, enclosed or open, full or empty, navigable
or not, or made up of natural or manufactured objects (e.g.,
Fei-Fei et al. 2007; Joubert et al. 2007; Greene and Oliva 2009a,
b, 2010). In other words, when we step into a new environ-
ment or glance at a novel scene picture, the “size” of the space
(the spatial extent bounded by walls) and its functional
“clutter” (the organization and quantity of objects that fill up
the space) are general properties of all scenes that are immedi-
ately accessible and can constrain our action or navigation in
the environment (e.g., Hermer-Vasquez et al. 2001; Learmonth

et al. 2002). However, while much has been learned about the
scene properties we extract in a glance and how these relate to
navigational capacities, our understanding about how and
where the brain represents properties of real-world scenes
remains sparse.

A well-known network of scene-processing regions, includ-
ing the parahippocampal place area (PPA) and the retrosple-
nial complex (RSC), are characterized by their greater response
to visually presented scenes than that to objects, but their exact
role and interactions during scene processing is still an active
topic (Epstein et al. 2003; Epstein 2008 for review; Park and
Chun 2009). Several neuroimaging studies have shown that the
PPA is sensitive to the semantic category of a scene (Naselaris
et al. 2009; Walther et al. 2009; Morgan et al. 2011). A recent
study provides insight as to what features may underlie this
scene–category information, showing successful scene–cat-
egory prediction based on an encoding model that represents
scenes as mixtures of object probabilities (Stansbury et al.
2013). Interestingly, scene–category information was found
not only in the well-known nodes of the scene network (in-
cluding PPA, RSC), but also across the extended occipitotem-
poral cortex. These results provide support for an object-based
representation of scene–category information, which is sup-
ported by a broad expanse of neural regions extending beyond
the classic scene-processing regions.

However, recent neuroimaging studies have just begun to
examine the hypothesis that scenes might also be represented
based on global properties describing the spatial geometry
and featural content of the scene independent of the objects.
For example, the scene property of “openness” is represented
in the PPA while the scene property of “naturalness” is rep-
resented in the lateral occipital cortex (LOC) (Kravitz, Peng,
et al. 2011; Park et al. 2011). These studies show that for
example a street and a forest have similar patterns of activation
in the PPA as long as they have similar spatial layout, even
though they are from different semantic categories (Kravitz
et al. 2011; Park et al. 2011). Further, both the PPA and RSC
(but not LOC) show sensitivity to the “spatial layout” of a
scene, while the PPA and LOC (but not RSC) show sensitivity
to the presence of an object inside the scene (Harel et al.
2013). Thus, there is also emerging evidence for a property-
based representation of scene information, distributed primar-
ily within the major nodes of the scene network.

In the current work, we examined the neural representation
of 2 unexplored properties of real-world scenes, their “physical
size” and their “functional clutter.” Are scenes that are similar
in their depicted physical size, or their level of clutter, rep-
resented similarity in the brain, even if they are from different
semantic categories? And, if so, in what regions of the brain are
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these representations apparent? Further, these properties of
size and clutter do not exist as discrete distinctions in the real
world (e.g., small space vs. large space; or empty vs. full
scene), but rather lie on a continuous scale. Thus, we also
asked, do neural scene regions represent size and clutter infor-
mation in a way that reflects these properties as continuous di-
mensions? To answer these questions, we used a powerful
method to probe the representational content of a region by
examining whether the neural regions show “parametric vari-
ation” based on these properties, with analysis methods that
require generalization over multiple semantic categories.

We approach these questions in 2 experiments. In Exper-
iment 1, we look for evidence of a neural representation of the
size of a space, testing whether scenes of small sizes (e.g.,
closet, shower, or pantry) are represented differently from
scenes of medium and large sizes (e.g., shopping mall, concert
hall, or sports stadium; illustrated in Fig. 1). In Experiment 2,
we consider the neural representation of size and clutter prop-
erties together, by building a 2D parametric design. Specifi-
cally, 36 categories of real-world scenes were selected to lie in
a 2D space with size and clutter as orthogonal axes (illustrated
in Fig. 2). With this design, scene categories can be grouped
depending on which property the analysis focuses on: for
example “closets” are similar to “showers” but different from
“stadiums” on the size property, whereas closets are similar to
stadiums and different from showers on the clutter property.
This allows us to isolate and compare the variation of size and
clutter, holding the stimulus set constant, in order to explore
how regions across the cerebral cortex are sensitive to these
scene properties.

Materials and Methods

Subjects
Thirteen participants (6 females; ages: 19–35 years) in Experiment 1
and 12 participants (9 females; ages: 20–27 years) in Experiment 2
were recruited from the MIT and Cambridge, MA community. One par-
ticipant of Experiment 1 was excluded from the analyses due to exces-
sive head movement (over 8 mm across runs). All participants had
normal or corrected-to-normal vision. Informed consent was obtained,
and the study protocol was approved by the Institutional Review
Board of the Massachusetts Institute of Technology.

Visual Stimuli and Experimental Design
In Experiment 1, scene categories were chosen to cover the full magni-
tude of physical size of indoor environments (Fig. 1). The stimulus set
was organized in 6 size levels, roughly following a logarithmic scale
based on the number of people the space may contain: from a small
space that would contain 1 to 2 people (level 1), to a large space that
could hold a thousand people (level 6). Each level contained images
from 3 different scene categories (for a total of 18 scene categories, see
the list in the caption of Fig. 1). There were 16 image exemplars per
category. In the functional neuroimaging experiment, images were
presented in blocks of 16 s each, which was followed by10-s fixation
periods. Within a block, each image was displayed for 800 ms, fol-
lowed by a 200-ms blank. Across 4 runs, 12 blocks per size level were
presented, with each category block repeating 4 times in the exper-
iment.

In Experiment 2, a stimulus set was constructed to orthogonally
vary the physical size (6 levels) and the functional clutter (6 levels) of
real-world scenes (Fig. 2). Thirty-six different scene categories were
chosen such that each category fit into a cell of this 6 × 6 stimulus grid,
Physical size followed the same scale as in Experiment 1. Functional
clutter was broadly constructed as the layout and quantity of com-
ponents (including objects, walls, people) that fill the scene, in a

natural way. Its levels ran from a completely empty space (level 1) to a
highly cluttered or full space (level 6). Importantly, as shown in
Figure 2, each size or clutter level was represented, respectively, by all
the levels along the other property in a fully crossed design, making
the 2 properties independent and orthogonal of each other for data
analyses. There were 12 different image exemplars for each of the 36
categories, presented in blocks of 16 s per category. Within a block,
each scene was displayed for 1 s, followed by a 330-ms blank. Across 6
runs, there were 24 blocks per level (of either size or clutter), with
each category block repeating 4 times in the experiment. Only 22
images of 432 images (5%) used in Experiment 2 overlapped with
those used in Experiment 1.

To validate the size and clutter levels in this stimulus set, we ob-
tained behavioral ratings of the size and clutter of each image using
Amazon’s Mechanical Turk service (See Supplementary Fig. 4). The
results confirmed that 1) the average category ratings were highly cor-
related with the expected size and clutter levels (r = 0.98, r = 0.97, P’s <
0.01); 2) that, within a category, the items were consistently rated at the
expected level for both size and clutter (average item standard
deviation = 0.30 (size), 0.36 (clutter), which is less than half of a level
on the 6-point scale); and 3) that there was no relationship between the
size levels and clutter ratings or vice versa (r = 0.0, r =−0.3, P’s > 0.2),
confirming the orthogonal nature of the design.

To take into account differences in the low-level image statistics in
the Experiment 2 stimuli set, we also created an “equalized set” that
consists of a subset of the 36 categories with roughly equal spectral
energy in the image categories on average across the levels of scene
size (small to large). To do this, a power spectrum analysis was per-
formed on each image to calculate the quantity of energy across the
range of spatial frequencies. In the original set, the average spectral
energy for each category above 10 cycles/image ranged from 27% to
39% across size levels, and, in the equalized set, this range was
reduced to 29–33%. The equalized set included 24 categories, with 4
categories for each size level. This equalized set was used in the whole-
brain analysis of Experiment 2 to specifically localize regions of the
brain that responded to different levels of size, beyond the spectral
energy differences.

In both experiments, colored photographs were 500-by-500 pixels
resolution (9° × 9° of visual angle) and were normalized to have a
mean pixel value averaging 127 (on a 0–255 scale). Images were pre-
sented in the scanner using a Hitachi (CP-X1200 series) projector
through a rear-projection screen. Participants performed a one-back
repetition detection task to maintain attention.

MRI Acquisition and Preprocessing
Imaging data were acquired with a 3T Siemens fMRI scanner with
32-channel phased-array head coil (Siemens) at the Martinos Center at
the McGovern Institute for Brain Research at MIT. Anatomical images
were acquired using a high-resolution (1 × 1 × 1 mm voxel) MPRAGE
structural scan. Functional images were acquired with a gradient echo-
planar T2* sequence (TR, 2 s; TE 30; 33 axial 3 mm slices with no gap;
acquired parallel to the anterior commissure–posterior commissure
line).

Functional data were preprocessed using Brain Voyager QX soft-
ware (Brain Innovation, Maastricht, Netherlands). Preprocessing in-
cluded slice scan-time correction, linear trend removal, and 3D motion
correction. For multivariate pattern analysis, no additional spatial or
temporal smoothing was performed and data were analyzed in each
individual’s ACPC space. For whole-brain group parametric analysis,
all data were smoothed with Gaussian kernel with 4 mm FWHM and
were transformed to a Talairach brain. For retinotopic analysis, the cor-
tical surface of each subject was reconstructed from the high-resolution
T1-weighted anatomical scan, acquired with a 3D MPRAGE protocol.
These 3D brains were inflated using BV surface module, and the ob-
tained retinotopic functional maps were superimposed on the surface
rendered cortex.

Regions of Interest
Regions of interest (ROIs) were defined for each participant using in-
dependent localizers. A localizer run presented blocks of scenes, faces,
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objects, and scrambled objects to define the PPA and RSC (Scenes–
Objects) and LOC (Objects-Scrambled objects), and FFA (Faces–
Scenes). There were 4 blocks per each stimuli type, with 20 images per
each block. Each block was presented for 16 s with 10-s rest periods in
between. Within each block, each stimulus was displayed for 600 ms,
followed by 200 ms blank. The order of blocks was randomized. Par-
ticipants performed a one-back repetition detection task. A retinotopic
localizer presented vertical and horizontal visual field meridians to

delineate borders of retinotopic areas (Sereno et al. 1995; Spiridon and
Kanwisher 2002). Triangular wedges of black and white checker-
boards were presented either vertically (upper or lower vertical meri-
dians) or horizontally (left or right horizontal meridians) in 12 s
blocks, alternated with 12 s blanks. There were 5 blocks per each con-
dition. Participants were instructed to fixate on a small central fixation
dot. Area V1 was defined based on the contrast between vertical and
horizontal meridian activations.

Figure 1. Examples of scenes used in Experiment 1, varying in the size of the space from small to large, on a 6-point scale (from left to right). Scene categories representing each
size levels are level 1 = closet, shower, pantry; level 2 = bathroom, pilothouse, music studio; level 3 = bedroom, hair salon, classroom; level 4 = gym, lobby, church; level
5 = warehouse, hangar, airport terminal; level 6 = shopping mall, concert hall, sports stadium.

Figure 2. Examples of 36 scene categories varying in 2 orthogonalized properties used in Experiment 2: The size of the scene varied from small to large size on 6-point scale (size
levels 1–6 from left to right); the amount of clutter varied from low clutter to high clutter on 6-point scale (clutter levels 1–6 from top to bottom). Scene categories representing
each size and clutter level are (organized by size level – clutter level; column–row): 1–1 = closet, 1–2 = shower, 1–3 = fitting room, 1–4 = tent, 1–5 = cockpit, 1–6 = pantry;
2–1 = elevator, 2–2 = sauna, 2–3 = restroom, 2–4 = bathroom, 2–5 = walk-in closet, 2–6 =moving truck; 3–1 = garage, 3–2 = anechoic chamber, 3–3 = Japanese room,
3–4 = hair salon, 3–5 = workshop, 3–6 =messy garage; 4–1 = loft, 4–2 = art gallery, 4–3 = lobby, 4–4 = gym, 4–5 = banquet hall, 4–6 = inside airplane; 5–1 = ball room,
5–2 = palace hall, 5–3 = hangar, 5–4 =movie theater, 5–5 = barrel storage, 5–6 = warehouse; 6–1 = parking garage, 6–2 = industrial warehouse, 6–3 = airport terminal, 6–
4 = concert hall, 6–5 = exhibition hall, 6–6 = arena.
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Univariate Analysis: ROI-Based Correlation Analysis
We tested whether the average activity within ROIs parametrically
varied as the scene size or clutter level changed. A measure of the
overall activity in the ROI for each size (or clutter) level was obtained, by
first estimating the response magnitude for each scene category using a
ROI GLM. Then, we computed the correlation between the true size/
clutter levels and the magnitude of the beta weights for each scene cat-
egory. This correlation was computed for each participant. To test for
significance across participants, the correlation coefficients (r) for each
subject were transformed using Fisher’s z′ transformation to represent
normally distributed variable z′, and then entered into a t-test.

Univariate Analysis: Whole-Brain Analysis with Parametric
Regressors
To find brain regions that are modulated parametrically along a scene
property (e.g., a parametric increase in response with increasing size
levels), we performed an exploratory random-effects group analysis.
Parametric predictors for the time course were modeled as a boxcar
function for each block, with the amplitude equal to the size level (or
clutter level) from 1 to 6, normalized to have a zero-mean, and sub-
sequently convolved with the hemodynamic response function. Main
effect predictors for the time course were modeled with a boxcar func-
tion for each block, convolved with the hemodynamic response. The
response for each voxel was modeled with these regressors using a
GLM. To localize regions with a parametric response, we performed a
random-effects conjunction analysis with the main and parametric pre-
dictors. Without the conjunction analysis, voxels that are simply acti-
vated by some or all of the conditions without any clear parametric
modulation will still have much of their variance accounted for by a
single non-normalized parametric regressor. By using a conjunction
analysis between the main effect and the de-meaned parametric pre-
dictor, we avoid the partial colinearity between the main effect and
parametric predictors and isolate truly modulatory regions.

Multivariate Analysis with ROIs: Data Format
For all multivariate pattern analysis, we obtained patterns of activity
across the voxels of an ROI for each presentation of a scene category
using the following procedure. The MRI signal intensity from each
voxel within a ROI across all time points was transformed into z-scores
by run. This helps mitigate overall differences in fMRI signal across
different ROIs and across runs and sessions (Kamitani and Tong 2005).
The z-scored signal intensity was then extracted for each stimulus
block, spanning 16 s (8 TRs) with a 4 s (2 TR) offset to account for the
hemodynamic delay of the BOLD response. These time points were
averaged to generate a pattern across voxels (within an ROI) for each
stimulus block. Each category was presented 4 times in the exper-
iment, thus this design yielded 144 multivoxel patterns (36 categories
× 4 repetitions) used for the parametric pattern analysis.

Multivariate Analysis: Parametric Pattern Analysis
To examine if the patterns in an ROI contain parametric information
about the size and clutter levels of scenes, we conducted a regression
analysis. This analysis was only performed on Experiment 2, due to
lack of power for multivariate analysis in Experiment 1. We used a
regression analysis rather than discrete classification to take advantage
of the parametric nature of the data: this method solves for a set of
weights on each voxel in a ROI, such that any new scene pattern of
activity, multiplied by the weights, predicts level of that scene’s size on
a continuous scale. In other words, this regression analysis learns a set
of weights from an input feature vector (e.g., the response of a voxel to
each of the stimulus blocks) and an outcome variable (e.g., the size
levels across each of the stimulus blocks). This analysis differs from the
assumptions in classification analyses (e.g., SVM), where each scene
size level would be treated categorically and classification performance
requires setting up multiple pairwise linear classifiers (see Supplemen-
tary Fig. 1 for the standard SVM analysis).

In standard linear regression, weights on each feature vector are ad-
justed to minimize the squared error between the predicted label and
the correct label (the first term in eq. 1). Here, we used ridge

regression, which is the same as standard regression, but also includes
a regularization term that biases it to find a solution that also minimizes
the sum of the squared feature weights (the second term in eq. 1). This
is the simplest regression technique that can cope with underdeter-
mined regression problems for example where the number of voxels
far exceeds the number of training blocks. Ridge regression calculates
the weights in B to minimize the following equation:

jjy � XBjj2 þ ljjBjj2 ð1Þ

Here, the y vector reflects the actual levels of size (or clutter) for each
scene pattern in the training set (120 × 1, where 120 patterns come
from 30 training categories and 4 patterns per category); X is the
matrix with the multivoxel patterns of activity for each scene category
(120 ×N), where N is the number of voxels in the ROI; B is the model,
characterized as a vector of betas, or weights, on each voxel (N × 1);
and λ is the ridge parameter which determines the impact of the regu-
larization term (scalar value 1 × 1). In the current analysis, λ was set at
5% of the number of voxels, which ensures that lambda exerts a similar
force on ROIs of different sizes (Hoerl and Kennard 1970; Hastie et al.
2001; Newman and Norman 2010).

Train–Test Procedure
We used a train–test procedure that requires generalization over scene
category for successful performance. That is, a regression model was
fit using training data that contained data from 5 of 6 scene categories
for each size (or clutter) level (120 training patterns). That model was
then tested with data from the remaining 6 scene categories (24 test
patterns), where the model predicted the level of scene size (or clutter)
of each of the test patterns. We conducted a 6-fold validation pro-
cedure. For each iteration, the 6 categories that were withheld for the
testing phase were always from the same level on the orthogonal prop-
erty. In the first train–test iteration, one scene category was withheld
from each size level (1–6), all with clutter level = 1. On the next train–
test iteration, a different 6 categories were withheld from each size
level (1–6), all with clutter level = 2. Simulations verified that this
orthogonal hold-out method leads to unbiased estimates of the true
size and clutter parameters, whereas other hold-out methods such as a
latin-square leave-out procedure or a random sampling leave-out pro-
cedure do not (see Supplementary Methods).

In this leave-out procedure, at each iteration, the test categories
always spanned the full range of size (or clutter) levels from 1 to 6. Ac-
cordingly, performance was assessed by calculating the correlation
between the actual size (or clutter) level and the predicted level (which
could be any real-valued number) of the 24 test patterns. Additionally,
we calculated percent accuracy by rounding the predicted level to the
nearest integer between 1 and 6, and computed the proportion of cor-
rectly predicted labels. Chance performance in this analysis for
random guessing is 1/6, and is reported in the supplementary
methods. These measures were calculated for each iteration. The
overall performance was computed as the average correlation and
percent correct across the 6 iterations for each subject and each ROI.
The correlation measure takes advantage of the continuous nature of
the predicted levels, and will show a higher correlation if the predicted
level is closer in magnitude even if the rounded predicted level is incor-
rect (e.g., predicting level 4 size rather than level 5 size). The accuracy
measure only captures whether the predicted level was the same as the
actual level and does not take into account near misses. Additional ana-
lyses verified that several alternate model validation schemes (e.g., as-
sessing the goodness-of-fit between the predicted and actual values
using only 6 points averaged across repetitions of category, or asses-
sing the slope of the fit between predicted and actual levels using
either averaging scheme) yielded the same overall pattern of results.

To show that these effects were not biased by the size of the ROI,
we conducted the ridge regression analysis using an equal number of
voxels across ROIs, by randomly selecting 200 voxels for each ROI 50
times and averaging. The results remained the same whether we se-
lected 200 voxels or used all the voxels in the ROI, so we report the
results using the entire ROI (Cox and Savoy 2003; Pereira et al. 2009;
Park et al. 2011).
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Results

Experiment 1: Parametric Variation to Scene Size
In Experiment 1, we first searched for neural regions that show
sensitivity to the size of the space depicted in the scene in a
way that does not rely on any category-specific features. Obser-
vers performed a one-back task while viewing images of
scenes, presented in blocks by semantic category (e.g., kitch-
ens, dining rooms, pantries). Each observer saw 18 scene cat-
egories spanning 6 levels of scene size. We first approach the
data with a targeted ROI-based analysis to ask whether our

ROIs show any increase or decrease with changes in the scene
size. Then, we analyze the whole brain to see if any regions
outside our ROIs show a parametric change with scene size.

ROI Analysis: Average Activity Modulation by Size
We first examined how the average BOLD activity in our ROIs
changed as a function of the size of the space. In each indepen-
dently localized ROI, we extracted an average BOLD activity
for each scene category, and tested a linear relationship
between size levels and the magnitude of the response
(Fig. 3B). The activity within both the PPA and RSC showed a

Figure 3. (A) Regions of interest shown on a representative participant’s brain. (B) Experiment 1: Average beta weights are shown for the size of the space (1–6) in the PPA, RSC,
LOC, FFA, and V1. The PPA and RSC showed a significant increase of activity as the size of scenes increased; LOC and FFA showed a significant decrease of activity as scene size
increased. (C) Experiment 2: Average beta weights are shown for the size of the space (1–6) and for the levels of clutter (1–6) in the PPA, RSC, LOC, FFA, and V1. The PPA, RSC,
and V1 showed a significant increase of activity as the size of scenes increased; LOC and FFA showed a significant decrease of activity as scene size increased. For clutter, there
was no significant difference in the PPA and RSC activity as the amount of clutter increased or decreased. The LOC, FFA, and V1 showed a significant increase of activity as the
amount clutter in a scene increased. Error bars reflect ±1 standard error of the mean.
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significant increase in activity as the size of scenes increased
(PPA: r = 0.3, z′ = 0.32, t(11) = 5.7, P < 0.01; RSC: r = 0.3,
z′ = 0.32, t(10) = 4.15, P < 0.01). In other words, these regions
showed a preference for large spaces such as shopping malls,
concert halls, and sports stadiums, relative to smaller spaces
such as closets, showers, and pantries. It is interesting to note
that, while the PPA showed a significant increase of activity as
scene size increased, the amount of increase was relatively
small (12.6% increase from size levels 1–6; average beta for
size level 1 = 1.81; size level 6 = 2.0) compared with RSC,
which showed much bigger modulation (44% increase from
size level 1–6; average beta for size level 1 = 0.83; size level
6 = 1.2).

In contrast, activity in LOC decreased as a function of scene
size, showing a preference for small spaces over large spaces
(r =−0.33, z′ =−0.39, t(10) =−3.8, P < 0.01). This region is well
established to process object and shape information (Malach
et al. 1995; Grill-Spector et al. 1998; Kourtzi and Kanwisher
2000; Eger et al. 2008; Vinberg and Grill-Spector 2008), which
may become more apparent and defined as the scenes become
smaller. FFA had low overall responses to these scene cat-
egories, but nonetheless showed modulations that patterned
with LOC (r =−0.24, z′ =−0.26, t(11) =−3.1, P < 0.01). Finally,
V1 showed no modulation of activity by the size of space (r =
0.09, z′ = 0.10, t(10) = 1.19, P = 0.26), suggesting that stimuli
were relatively similar in their average spectral energy across
the size levels.

This parametric design allows us to more directly assess
the relevance of the size dimension than had we used only
the 2 poles (e.g., small vs. big). For example, suppose that
we only knew the PPA and RSC showed a higher response to
large scenes than small scenes. This would present initial evi-
dence that these regions are sensitive to the size of the space.
However, if these regions had an even lower response to
medium spaces than to small spaces, it suggests these
regions may actually be responding to a property of all large
scenes that is not related to size per se. Put another way,
predicting a parametric response is a stronger test of what is
explicitly coded in the magnitude of a region’s response. In
this case, the higher response to large scenes that we observe
in the PPA and RSC is not likely to be driven by an unrelated
property, and more likely to reflect scene size, when put
in the context of a parametric modulation over levels of
scene size.

Whole-Brain Analysis: Parametric Main Effects
To locate any regions beyond our targeted ROIs that show a
parametric response to scene size, we next performed a whole-
brain random-effects group analysis with parametric regres-
sors (see Materials and Methods). Two different parametric
models were fit: one predicting an increase of BOLD activity as
the levels of scene size increased (Fig. 4A), and the other pre-
dicting a decrease of BOLD activity as the levels of scene size
decreased (Fig. 4B).

Regions with a parametric increase in activity as scene size
increased were right retrosplenial cortex (Tal coordinates: 13
−45 11) and left and right parahippocampal gyri (−14 −33 −4;
14 −33 −4), consistent with the location of the functionally lo-
calized ROIs. Additionally, the parahippocampal region ex-
tended more anteriorly in the right hemisphere (17 −27 −13).
This result hints at an anterior specificity in the parahippo-
campal cortex—in most participants, the anterior part of the

parahippocampal cortex showed a stronger response with in-
creasing scene size, with a locus sometimes outside of the
functionally localized PPA. Regions that showed parametrically
decreasing activity as the scene size increased were the left and
right LOC (−37 −75 14; 49 −72 6), left posterior fusiform gyrus
(−32 −42 −13), and left superior occipital cortex which corre-
sponds to V3/V3A regions (−13 −96 20). Taken together, the
results of this whole-brain analysis confirm that the well-
known components of the scene network area are also the
primary locations that show strong parametric sensitivity to
scene size.

Split-ROI Analysis for the Anterior and Posterior PPA
Based on the anterior parahippocampal cortex activity found
in the whole-brain analysis, we conducted an additional analy-
sis in which we divided the PPA region in each participant into
anterior and posterior halves (Fig. 5A). Note that the function-
ally defined PPA is localized to the posterior aspect of the para-
hippocampal gyrus, and thus the “anterior PPA” ROI does not
exactly correspond to the “anterior parahippocampal” region
that we observed in the whole-brain analysis. However, a
number of studies have now indicated that the PPA may not be
homogeneous, but may have functionally distinct subregions
along the anterior and posterior axis (e.g., Bar and Aminoff
2003; Epstein 2008; Baldassano et al. 2013; Fairhall et al.
2013). Thus, any reliable differences between anterior versus
posterior PPA provide further evidence that there are
as-yet-uncharacterized subdivisions that exist within the PPA,
or more generally, along the extent of the parahippocampal
gyrus (e.g., Cant and Xu 2012).

While both the posterior and the anterior subdivision of the
PPA show a significant increase in activity with scene size
(Fig. 5B), the modulation in the anterior PPA was significantly
stronger (left hemisphere: anterior vs. posterior PPA: t(10) = 2.6,
P < 0.03; right hemisphere: anterior vs. posterior PPA: t(11) = 2.9,
P < 0.02; Fig. 5B; left/right anterior/posterior subdivisions in-
crease with size: all t’s > 3.7, all P’s < 0.01). On average, the
anterior parts of the PPA had a 19.5% increase from size levels
1–6, while the posterior parts of the PPA only showed a 9.3%
increase from size levels 1–6. As a control, and to test for the
generality of this anterior locus, we also examined the anterior
versus posterior difference within RSC, but did not find any
difference across the anterior and posterior parts (left hemi-
sphere: anterior vs. posterior RSC: t(9) =−0.95, P = 0.37; right
hemisphere: anterior vs. posterior RSC: t(11) = 1.6, P = 0.14).
These split-PPA analyses converge well with our whole-brain
analysis results, demonstrating that the more anterior aspects
of the parahippocampal cortex have a stronger parametric
response to increasing scene size.

Experiment 2: Parametric Variation to Size and Clutter
In Experiment 2, we further examined how the physical size of
a scene was represented across the brain, while independently
manipulating another scene property–“functional clutter.”
Different sized spaces can be more or less filled, raising poten-
tial covariance between the size of the scene and the degree
of clutter. By manipulating both the size and clutter proper-
ties, this experiment allows us to examine multiple scene prop-
erties simultaneously, and also provides the opportunity to
replicate Experiment 1, using different stimuli sets and differ-
ent participants.
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Observers performed a one-back task while viewing images
of scenes presented in blocks by semantic category (e.g., kitch-
ens, dining rooms, pantries). Each observer saw 36 scene cat-
egories that spanned 6 size levels and 6 clutter levels. Only 5%
of the images in Experiment 1 overlapped with the images in
Experiment 2; thus, any convergence between the 2 exper-
iments suggests that the results are unlikely to be driven by any
peculiarities of the stimulus sets. Further, with this expanded
and more powerful design, we also introduce a new parametric
multivoxel pattern analysis, to go beyond the main effects and
examine whether the finer scale patterns within a region can
predict the size of the space or the level of clutter.

ROI Analysis: Average Activity Modulation by Size and Clutter
In each independently localized ROI, we extracted the average
BOLD activity for each scene category. First, we tested a linear
relationship between the size levels and the magnitude of the
response (Fig. 4C). The PPA and RSC were increasingly more
active for scenes with larger sizes (PPA: r = 0.19, z′ = 0.20,
t(11) = 3.9, P < 0.01, 8.5% increase from size level 1 to level 6;
RSC: r = 0.25, z′ = 0.27, t(10) = 4.97, P < 0.01, 38.8% increase
from size level 1 to level 6). In contrast, LOC and FFA showed
the opposite pattern, and were more active for scenes with
smaller sizes (LOC: 33.4% decrease from size level 1 to size
level 6, r =−0.26, z′ =−0.28, t(9) =−3.99, P < 0.01; FFA: 22.7%

Figure 4. The figure shows regions from parametric whole-brain analysis (random-effects analysis, P< 0.005, cluster threshold >54 mm3) in Experiment 1. Names of regions are
marked with arrows below each figure. (A) Regions showing parametrically higher activity as the size of scenes increase; (B) Regions showing parametrically higher activity as the
size of scenes decrease; In the table, names of regions showing parametric modulation of activity with Talairach coordinates for peak voxels within each regions, peak and average
T values, number of voxels, and the count of subjects who showed the same regions in individual whole-brain analyses.
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decrease from size level 1 to size level 6, r =−0.14, z′ =−0.14,
t(11) =−2.94, P < 0.05). We also observed that V1 showed an in-
crease in activity as the scene size increased (r = 0.19, z′ = 0.20,
t(11) = 3.26, P < 0.01). With the exception of V1, these data
nicely replicate the results obtained in Experiment 1.

Examining the relationship between the degree of clutter and
the overall BOLD response yielded a different pattern of results.
Neither the PPA nor RSC showed a significant modulation to
clutter (all t’s <−0.37, P > 0.5; Fig. 3C). In contrast, LOC showed
an increase of activity as the amount of clutter increased, indi-
cating that LOC activity is greater as more objects fill the space
(r = 0.13, z′ = 0.13, t(9) = 3.25, P < 0.01). As might be expected,
V1 also showed an increase of activity as the amount of clutter
increased (r = 0.43, z′ = 0.47, t(11) = 9.62, P < 0.001). Comparing
size and clutter across the PPA and RSC directly, the RSC
showed a marginally stronger parametric variation to size versus
clutter, compared with PPA (F1,10 = 3.3, P = .09).

Note that size and clutter effects are calculated with the
same set of brain data, only grouped differently by size or
clutter properties. Thus, these data demonstrate that there are
systematic physical properties that are shared across scene cat-
egories—here size and clutter, which drive the overall respon-
siveness of these scene-processing regions. Further, each of
the regions has a different pattern of sensitivity to these prop-
erties, suggesting that size and clutter information is not iso-
lated to single nodes in the scene network but instead is
heterogeneously distributed across these regions.

ROI Analysis: Parametric Multivoxel Pattern Analysis
While any change in the overall responsiveness of an ROI
shows a broad-scale sensitivity to that scene property, there
may also be more fine-grained information about the size of
the space or the degree of clutter contained in the patterns of
the ROI. To examine this possibility, we developed a novel
multivoxel pattern analysis that tests for a parametric response
in the patterns of an ROI. This method can take advantage of a
heterogeneous population in which for example some voxels
have decreasing activity with scene size, while others have in-
creasing activity with scene size, and where some voxels may

be more strongly modulated than others. All of these voxels
are informative for predicting the size level of a scene, and this
can be capitalized on in a parametric pattern analysis.

Patterns of activity were extracted for each presented block
of each scene category, for each participant, and for each ROI.
Using a subset of the patterns as training data (Fig. 6A), we
used linear regression to fit a model (which is a set of weights
on each voxel) that best maps the multivoxel scene patterns to
their corresponding size or clutter levels (Fig. 6B). Given that,
for any regression, the number of voxels in a given ROI is
much more than the number of scene patterns, we included a
regularization term in the regression (ridge regression, see
Materials and Methods). Next, we tested the model by trying to
predict the level of size or clutter, on a real-valued scale, for an
independent set of scenes (Fig. 6C). These test scenes were
always from different semantic categories than were used to
train the model. Performance was assessed as the correlation
between the actual size of the scene categories and the pre-
dicted size from the model. This correlation measure takes
advantage of the continuous nature of the predicted levels, and
will show a higher correlation if the predicted level is closer in
magnitude even if the rounded predicted level is incorrect
(e.g., predicting level 4 size rather than level 5 size).

The results of the ridge regression are shown in Figure 7
(see also Supplementary Table 1). We observed that the pat-
terns in the PPA were able to predict both the size and clutter
properties of the scene categories, but were significantly better
at predicting the size of the scene (t(11) = 2.34, P < 0.05). This
effect was even more pronounced in the RSC: the patterns of
the RSC were much more sensitive to the size of the space than
the degree of clutter (t(10) = 8.27, P < 0.001). Comparing our
scene-selective ROIs directly confirmed that these 2 regions
had significantly different sensitivity to the 2 properties, where
RSC showed a significantly larger size versus clutter difference
than the PPA (F1,43 = 15.1, P = 0.003). Patterns in the lateral oc-
cipital complex were able to predict both size and clutter
levels, with a trend toward better performance on the clutter
property though this did not reach significance (t(9) = 1.26,
P > 0.2).

Figure 5. (A) An example of the anterior and posterior PPA of one representative subject is shown. The anterior and posterior PPA were defined by a split-half analysis within each
individual’s functionally localized PPA. (B) The average beta weights for the size of space in the anterior and posterior halves of the PPA in Experiment 1. The anterior and posterior
halves are indicated by red (anterior) or blue (posterior) lines. The PPA shows greater increase of activity for anterior subdivisions compared with posterior subdivision. (C) The
anterior–posterior PPA analysis in Experiment 2 showed the same result. Error bars reflect ±1 standard error of the mean.
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Interestingly, we also observed very high performance in early
visual areas, with V1 performance as high as the PPA (F(1,43) =
0.6, P = 0.447) and better than LOC (F(1,39) = 22.2, P = 0.001).
Computational modeling approaches have shown that the size of
a scene and its clutter level can be estimated from a set of orien-
tation and spatial frequency measurements across the image
(Oliva and Torralba 2001; Rosenholtz et al. 2007), and area V1 is
known to have a high resolution of representation of orientation
and spatial frequency across the visual field (DeYoe and Van
Essen 1988; Tootell et al. 1998; Boynton and Finney 2003; Van
Essen 2003; Murray et al. 2006). Thus, this result suggests that V1
patterns as measured by the BOLD signal are of a sufficient resol-
ution and reliability to allow for successful multivoxel predictions
of size and clutter levels (see also Naselaris et al. 2009).

The FFA showed very low overall performance on both size
and clutter properties, with no difference between size and
clutter (t(11) = 0.3, P = 0.8), but surprisingly, the overall per-
formance was slightly above chance in both properties (t’s >
3.75; P’s < 0.01). Thus, as a control, we examined a noncortex
region in the skull, to verify that the regression procedure is
unbiased. Indeed, in the skull ROI, there was no significant
correlation between predicted and actual size or clutter levels
(size: mean r = 0.05, t(11) = 1.14, P = 0.277 (n.s.), clutter: mean
r = 0.07, t(11) = 1.76, P = 0.107 (n.s.), nor was percent correct
significantly different from chance (16.67%) for either of these
properties (size: mean pc = 16.4%, t(11) =−0.22, P = 0.831,
clutter: mean pc = 17.8%, t(11) = 0.95, P = 0.364). This suggests
that FFA, which does contain reliable responses to nonface

Figure 6. ROI regression procedure. (A) To test for a parametric pattern representation of a size (and clutter), we first divided the data into a training set with 5 of 6 categories per
size level (30 categories total), and a test set with the remaining 6 categories, which all shared the same clutter level. This method of dividing data into train and test sets is
necessary to have an unbiased estimate of size prediction independent of clutter (and vice versa). A 6-fold validation procedure was conducted which iteratively left out 6 scene
categories that spanned the range of sizes and shared a clutter level. Analogous procedures were used for clutter-regression models. (B) In the training phase, the patterns from 30
training categories and their actual size levels were used to fit a model (set of weights on each voxel). (C) During the testing phase, the test patterns were multiplied by the weight
vector to generate predicted size levels (which could take on any real value). Performance was assessed by computing the correlation between the actual and predicted size levels,
averaged over all iterations, and was aggregated across subjects for each ROI.
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objects, also has some sensitivity to low-level features of
scenes that vary across size and clutter (see also Stansbury
et al. 2013).

To what extent are these parametric pattern analyses relying
on the overall magnitude modulations of the ROI? To address
this, we re-analyzed our data after mean-centering each
pattern, thereby eliminating any overall main effects, and the
same results were obtained (see Supplementary Analysis and
Supplementary Fig. 2). Thus, the multivoxel pattern results are
not simply reducible to the modulations in the overall
response.

Finally, we also performed a classification analysis using a
support-vector machine classifier. This analysis does not take
into account the parametric relationship among the levels
during training. Nonetheless, the errors the classifier makes
tend to be similar to the true size level. This analysis is reported
in the Supplementary Analysis and Supplementary Figure 1.

Whole-Brain Parametric Analysis
As in Experiment 1, we conducted a whole-brain analysis to
locate any regions beyond our targeted ROIs that showed a
parametric response to scene size or clutter. The results are
shown in Figure 8. Areas that showed increased BOLD activity
with increasing scene size again included the right retrosple-
nial cortex (Talairach coordinates: 19 −54 12), left and right
parahippocampal gyri (−19 −32 −7; 14 −30 −7). Areas with
the opposite trend, showing higher overall BOLD activity as
scene size decreased, included the right LOC (38 −78 8) and
right posterior fusiform gyrus (25 −42 −10). These results are
consistent with main effects observed in the overall modu-
lation of the targeted ROIs, and also nicely replicate the results
of Experiment 1.

We also found a left and right medial occipital cortex corre-
sponding to V1 (−11 −92 0; 28 −93 5), which showed a sys-
tematic increase with scene size. This is inconsistent with the
results of Experiment 1, for which V1 activity was equal across
the scene levels. To test whether this finding of V1 was due to
spectral energy differences across size levels, we created an
equalized image set based on a subset of the scene categories
and re-analyzed the data (See Materials and Methods). With the
equalized stimulus set, the effect in V1 was no longer present,
and only the right retrosplenial cortex (19 −54 17) and bilateral
anterior parahippocampal gyrus (−19 −39 −6; 14 −33 −7)

showed a parametric increase with scene size. This analysis
provides an explanation for why the increase in area V1 was
found in Experiment 2 but not in Experiment 1, and also gen-
erally supports the intuitive relationship between overall spec-
tral energy in an image and the overall responsiveness of V1.

Turning to the clutter property, areas which increased with
clutter included the left and right posterior fusiform gyri (−40
−66 −13; 37 −53 −14), as well as several more low-level visual
areas around V1, V2 (−17 −95 −1; 14 −87 3) and even the
lateral geniculate nucleus of the thalamus (LGN; −23 −27 5; 20
−27 3). No areas were found to increase in activity as clutter
levels decreased. While the posterior fusiform gyri are likely
related to object processing as this is the ventral surface analog
to area LOC (e.g., Schwarzlose et al. 2008), the increase of
activity in the early visual areas likely reflects the general in-
crease in spectral energy at high spatial frequencies. Indeed,
while for the scene size property we could create a equalized
image set by simply removing a few of the object categories
per size level, there was no similar way to equalize spectral
energy in across clutter levels: High clutter is strongly corre-
lated with power at high spatial frequencies.

Split-ROI Analysis for the Anterior and Posterior PPA
Finally, we examined whether the anterior PPA had a stronger
modulation to size than the posterior PPA, as was found in
Experiment 1. Consistent with our previous results, in both left
and right PPA, the modulation by scene size was significantly
greater in the anterior subdivision than posterior subdivision
(left anterior vs. posterior PPA: t(11) = 2.5, P < 0.03; right
anterior vs. posterior PPA: t(11) = 3.1, P < 0.02) (Fig. 5C, Exper-
iment 2). On average, the anterior parts of the PPA had 14.6%
increase from size levels 1 to 6, while the posterior parts of the
PPA only showed a 5.7% increase from size levels 1 to
6. Further, in Experiment 1, all 4 subdivisions (left/right
anterior/posterior PPA) maintained an overall modulation to
scene size. In Experiment 2, however, after splitting the left
PPA, the posterior aspect no longer showed a modulation by
scene size (r = 0.07, z′ = 0.07, t(11) = 1.1, P = 0.31). Thus, in a
new set of participants and with new stimuli, we replicated the
result that the anterior PPA has an increased overall sensitivity
to the size of a scene relative to the posterior PPA.

Because the anterior PPA showed a stronger modulation to
scene size in its overall response, we also examined whether
the anterior PPA had a loss of sensitivity to clutter across its
multivoxel patterns, analogous to RSC. The results showed this
was not the case: anterior PPA and posterior PPA showed
similar predictive correlations for size and clutter levels as the
full PPA (see Supplementary Fig. 3). Given that pattern ana-
lyses are more sensitive to fine-grained information, these
results indicate that while anterior PPA is more strongly
modulated by scene size than posterior PPA at a large scale, its
fine-grained patterns maintain their sensitivity to clutter as
well as size.

Discussion

Here, we examined whether there is evidence for neural
coding of 2 basic scene properties: physical size (how large an
enclosed space is) and functional clutter (the organization and
quantity of objects that fill up the space). To approach this, we
measured responses to different scene categories that parame-
trically varied along these particular scene properties, and we

Figure 7. Correlation between multivoxel model predictions and actual size or clutter
levels, averaged over train–test iterations for each subject and each region of interest.
Error bars reflect ±1 within-subject standard error of the mean (*P<0.05,
***P< 0.001).
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examined whether grouping them by these properties led to
systematic variation in the overall responsiveness of a region.
We found that the PPA and RSC, both major components of the
visual scene-processing network, showed a modulation in
their overall response to scene size, but differed in the infor-
mation present in their fine-grained patterns. PPA showed
strong pattern sensitivity to both size and clutter, while RSC
showed much stronger pattern sensitivity to size. LOC showed
a complementary pattern of results, with a larger overall
response for smaller and more cluttered scenes, but also with
fine-grained patterns that could predict both clutter and size
information. Importantly, by the logic of the design and ana-
lyses, these findings cannot be attributed to category-specific
features in any of these regions. Broadly, these results expand
our understanding of the distinctive roles of the regions in this
network during natural scene analysis, and provide support
for a property-based representation of scene information.

Parahippocampal Sensitivity to Both Spatial Boundaries
and Content Properties
Here, we found that the PPA has a high response to all scene
categories, but there was a reliable modulation by size (and not
clutter), with larger scene categories (e.g., stadiums, arenas)

also eliciting a larger response. Interestingly, the patterns of
the PPA were informative not only for the size of the space, a
property describing the spatial boundary of a scene (see also
Kravitz et al. 2011; Park et al. 2011), but also for the degree of
clutter, a property describing the contents of the space (Oliva
and Torralba 2001; Park et al. 2011). Traditionally, the PPA has
been labeled as a “spatial layout analyzer,” showing little
modulation to object properties (Epstein and Kanwisher 1998;
Epstein et al. 1999; Kravitz et al. 2011; Park et al. 2011).
However, our understanding of the response properties of
PPA have been updated by a number of recent studies that indi-
cate sensitivity to objects (Mullally and Maguire 2011; Auger
et al. 2012; Konkle and Oliva 2012; Troiani et al. 2014; Harel
et al. 2013).

For example, in a related study to the present one, using a
limited but controlled set of artificially generated simple
scenes and single objects, Harel et al. (2013) also found that
the PPA response is modulated not only by the layout of the
scene, but also by the presence or absence of an object, and
even by the specific identity of the object. Further, PPA has
also been shown to respond parametrically to the real-world
size of the object (Mullally and Maguire 2011; Troiani et al.
2014; Konkle and Oliva 2012). For example, Konkle and Oliva

Figure 8. The figure shows regions from parametric whole-brain analysis (random-effects analysis, P< 0.001, cluster threshold >54 mm3) for Experiment 2. Names of regions are
marked with arrows below each figure. (A) Regions showing parametrically increasing activity as the size of scenes increase; (B) Regions showing parametrically increasing activity
as the size of scenes decrease; (C) Regions showing parametrically increasing activity as the amount of clutter in scenes increases. (D) The table indicates the names of regions
showing parametric modulation of activity with the Talairach coordinates for the peak voxel within each region, the magnitude of the peak T value and average the T values, the
number of voxels, and the count of subjects who showed the same regions in individual whole-brain analyses.
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(2012) found that large real-world objects such as cars activate
the PPA, while small real-world objects such as keys activate
lateral–occipital and inferior-temporal regions. These findings
suggest that the size of both objects and scene enclosures in
the world is a fundamental property of visually evoked neural
responses, with a large-scale organization for small and large
objects across the cortex, and with parametric sensitivity to
different sizes of scenes. It will be important in future work to
identify and explore the distinct and common properties of
large objects, landmarks, and scenes to fully characterize the
PPA response.

To add more complexity and richness to the PPA represen-
tation, a number of studies have shown that this region is
also responsive to statistical summaries of multiple objects
(Cant and Xu 2012) and even has preferences for particular
low-level visual image features such as high spatial frequency
and vertical/horizontal contours (Nasr et al. 2011; Rajimehr
et al. 2011). Thus, a current challenge to our understanding of
this scene-preferring region is whether the information in the
PPA pertaining to objects and clutter in the space is better
characterized as a more low-level statistical summary of featur-
al content (e.g., Oliva and Torralba 2001; Alvarez and Oliva
2008; Cant and Xu 2012) or as a high-level object-based rep-
resentation that explicitly represents object identity (e.g.,
Stansbury et al. 2013), or as some combination of both. Impor-
tantly, considering our findings with previous work on the re-
sponsiveness of the PPA, there is a strong convergence with
the emerging view that PPA is not just a spatial layout analyzer,
but is jointly sensitive to both the spatial boundaries properties
and the content/textural properties of a scene view.

Anterior-to-Posterior Organization
of the Parahippocampal Cortex
We also observed, in 2 independent experiments, that the
more anterior aspect of the parahippocampal cortex showed a
stronger overall response modulation to scene size than the
posterior aspect. While this posterior/anterior difference was
subtle, it hints at a functional division along the parahippocam-
pal gyrus that echoes other recent findings (Bar and Aminoff
2003; Arcaro et al. 2009; Baldassano et al. 2013). For example,
using a functional connectivity analysis, Baldassano et al. re-
cently argued for such a division: The more anterior aspect of
the PPA correlated more strongly at rest with the RSC, and the
most posterior aspect of the PPA correlated more strongly at
rest with LOC (Kravitz, Saleem, et al. 2011; Baldassano et al.
2013). This fits nicely with our findings, in which anterior PPA
and the RSC showed more similar response patterns in their
overall sensitivity to size. However, we might also have ex-
pected to find that posterior PPA would show a greater sensi-
tivity to clutter than anterior PPA, and this was not observed.
Thus, while there is not yet a simple method for functionally
dissociating a posterior and anterior aspect of the PPA, the
present results add to the mounting evidence for the existence
of a functional subdivision within the PPA.

Retrosplenial Complex as a Geometric Analyzer
The present results here showed a very clear dissociation
between the response properties of the PPA and those of RSC.
Specifically, RSC showed, both in the overall response and in
the patterns, a clear sensitivity to scene size with a markedly
low sensitivity to functional clutter. The RSC is known to have

sensitivity to scene layout and perspective (Kravitz, Peng, et al.
2011; Harel et al. 2013), with slight modulation to object prop-
erties strongly related to landmark or navigation (Auger et al.
2012; Harel et al. 2013; Troiani et al. 2013). Relatedly, RSC has
also been linked to the behavioral phenomenon of boundary
extension, in which the mental representation of a scene is
larger than its physical percept—an illusion about the per-
ceived size of a space (Park et al. 2007). Finally, the RSC is also
situated on the medial surface, which places it far from the
well-known object responsive regions on the lateral surface,
and near to the transition zone between the PPA along the
ventral stream, the far periphery of early visual areas, and
medial dorsal stream regions (Kobayashi and Amaral 2003;
Kravitz, Saleem, et al. 2011). This positioning with respect to
other regions, along with its observed response properties,
broadly supports the currently accepted view that RSC is in-
volved in linking environmental spaces (Epstein 2008). Intui-
tively, knowing the size of a space is likely to be an important
component for integrating a view into the larger environment,
while the degree of clutter is not; thus, the current results
showing RSC’s strong sensitivity to size align with this interpret-
ation. As such, our results echo and extend our understanding
of RSC as a region that reflects the geometric properties of a
space rather than the contents inside it.

A Property-Based Framework for Scene Processing
We know scene-processing regions have some information
about categories (Walther et al. 2009), but what are the critical
features that humans use to make such categorizations?
Objects, or the co-occurrence of objects, are one proposed rep-
resentational framework (where scenes have some probability
of containing a fridge, a table, a tree, etc.; for a review, Oliva
and Torralba 2007; Bar et al. 2008; MacEvoy and Epstein 2011;
Greene 2013). A complementary representational approach is
to consider a scene according to its global properties (where
each scene has some degree of openness, clutter, size, perspec-
tive). Several proposals have been developed using both be-
havioral and computational modeling approaches to
understand what these global properties are, how they might
be extracted from natural scene statistics, and how they can
support semantic categorization of scenes (Oliva and Torralba
2001, 2006; Greene and Oliva 2009a, 2010; Xiao et al. 2010;
Kadar and Ben-Shahar 2012). Here, we show that size and
clutter are 2 such global properties that may have an explicit
neural coding, adding to a list that includes spatial boundaries
(open/closed), and content-based properties (urban/natural)
(Baker et al. 2011; Park et al. 2011). Importantly, both object-
based and property-based representations are extracted at the
early stage of scene processing to facilitate everyday tasks like
scene recognition and way-finding. In future work, it will be
informative to explore how the different tasks of scene categor-
ization and way-finding (navigation) operate over represen-
tations that are more object-based or global property-based,
and how these are accomplished by the scene-processing
network of the brain.

Conclusion

In summary, the current study shows that information about
two meaningful geometric properties of scenes—size and
clutter—are explicitly coded in scene-selective cortical regions.
By using different analytical approaches including regression
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on multivoxel patterns, whole-brain random-effects analyses,
and split-ROI analyses, we conclude that dimensions of
size and clutter properties are parametrically coded in the
brain, and these representations are “property-based” and flex-
ible enough to generalize to different semantic categories. In
particular, we propose a specialized role of RSC in represent-
ing physical size of space, independent of the amount of
clutter in a scene. We suggest different sensitivity of anterior
and posterior subdivisions of the PPA, adding a further support
to recent studies that propose the PPA as a nonuniform region
with anterior–posterior subfunctions. Broadly, we suggest that
a property-based representation of size and clutter may support
our rapid scene recognition and navigation in real-world
environment.

Supplementary Material
Supplementary material can be found at: http://www.cercor.oxford
journals.org/
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