Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 7;71(Pt 6):o436–o437. doi: 10.1107/S2056989015008324

Crystal structure of 5-(4-methyl­phen­yl)-3-[(E)-2-(4-methyl­phen­yl)ethen­yl]cyclo­hex-2-en-1-one

Joel T Mague a, Shaaban K Mohamed b,c, Mehmet Akkurt d, Antar A Abdelhamid e, Mustafa R Albayati f,*
PMCID: PMC4459340  PMID: 26090214

Abstract

In the title compound, C22H22O, the dihedral angle between the planes of the benzene rings is 53.55 (7)°. Weak C—H⋯O inter­actions help to direct the packing, forming sheets lying parallel to (020).

Keywords: crystal structure; cyclo­hexenenones; α,β-unsaturated ketones; C—H⋯O inter­actions

Related literature  

For the synthesis of cyclo­hexenones and their use as synthons, see: Mayekar et al. (2010); Suwito et al. (2014); Tabba et al. (1995); Bella et al. (2012); Xing et al. (2010); Martin & Prasad (2006). For various biological activities of cyclo­hexenone derivatives, see: Prasad et al. (2006); Kumar et al. (2003); Tatsuzaki et al. (2006); Yun et al. (2006); Kim et al. (2008); Yoon et al. (2007); Tanaka et al. (1997); Vyas et al. (2009). For the use of cyclo­hexenones as inter­mediates in synthesis, see: Mayekar et al. (2010); Bella et al. (2012); Xing et al. (2010); Martin & Prasad (2006). For the bioactivity of dehydro­zingerone, chalcone and isoeugenol derivatives, see: Tatsuzaki et al. (2006).graphic file with name e-71-0o436-scheme1.jpg

Experimental  

Crystal data  

  • C22H22O

  • M r = 302.39

  • Monoclinic, Inline graphic

  • a = 4.9614 (1) Å

  • b = 30.7302 (6) Å

  • c = 11.0726 (2) Å

  • β = 93.268 (1)°

  • V = 1685.44 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.55 mm−1

  • T = 150 K

  • 0.31 × 0.11 × 0.08 mm

Data collection  

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014) T min = 0.84, T max = 0.96

  • 12558 measured reflections

  • 3247 independent reflections

  • 2529 reflections with I > 2σ(I)

  • R int = 0.042

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.131

  • S = 1.05

  • 3247 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a ); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b ); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015008324/lr2135sup1.cif

e-71-0o436-sup1.cif (386KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008324/lr2135Isup2.hkl

e-71-0o436-Isup2.hkl (178.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008324/lr2135Isup3.cml

. DOI: 10.1107/S2056989015008324/lr2135fig1.tif

The title mol­ecule with labeling scheme and 50% probability ellipsoids.

. DOI: 10.1107/S2056989015008324/lr2135fig2.tif

Packing viewed towards the (10Inline graphic)plane. Weak C—H⋯O inter­actions are shown as dotted lines.

CCDC reference: 1062089

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C6H6AO1i 0.99 2.60 3.515(2) 154
C8H8O1ii 0.95 2.47 3.353(2) 155
C14H14O1ii 0.95 2.55 3.410(2) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

supplementary crystallographic information

S1. Structural commentary

From a chemical point of view, the most commonly used method for preparation of polyfunctionalized cyclo­hexenones is the Michael addition of carbanions to α,β-unsaturated ketones in presence of basic catalysts (Mayekar et al., 2010; Suwito et al., 2014; Tabba et al., 1995). Cyclo­hexenones have been considered as efficient synthons in building spiranic compounds (Mayekar et al., 2010) or inter­mediates in the synthesis of fused heterocycles such as benzoselena­diazo­les and benzo­thia­zoles (Bella et al., 2012), benzo­pyrazoles (Xing et al., 2010) or carbazole derivatives (Martin & Prasad, 2006). The existence of the α,β-unsaturated ketone moiety is a common feature of a large number of biologically active compounds which exhibit diverse pharmacological effects such as anti-microbial (Prasad et al., 2006), anti-tumor (Kumar et al., 2003), anti-cancer (Tatsuzaki et al., 2006; Yun et al., 2006) and radical scavenger activities (Kim et al., 2008) as well as being inhibitors of topoisomerase I (Yoon et al., 2007). Cyclo­hexenone derivatives, in particular, are well known lead molecules for the treatment of inflammation and autoimmune diseases (Tanaka et al., 1997). Several reports have pointed out the importance of cyclo­hexenones for anti-microbial and anti-tubercular activity (Vyas et al., 2009).

In the title compound (Fig. 1), the dihedral angle between the phenyl rings is 53.55 (7)°. Weak C6—H6A···O1i (i: x + 1, y, z) inter­actions help to direct the packing (Fig. 2 and Table 1).

S2. Synthesis and crystallization

In 30 ml of methanol, a mixture of 1 mmol (262 mg) of (1Z,4E)-1,5-bis­(4-methyl­phenyl)­penta-1,4-dien-3-one and 1 mmol (100 mg) of acetyl­acetone was refluxed for 5 h in the presence of 10 mg of sodium methoxide. The resulting solid product was collected, filtered under vacuum, washed with cold ethanol and recrystallized from ethanol to afford colourless columns which were suitable for X-ray diffraction. Mp. 371 K.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms. The 020 reflection was omitted from the final refinement as it was partially obscured by the beamstop.

Figures

Fig. 1.

Fig. 1.

The title molecule with labeling scheme and 50% probability ellipsoids.

Fig. 2.

Fig. 2.

Packing viewed towards the (102)plane. Weak C—H···O interactions are shown as dotted lines.

Crystal data

C22H22O F(000) = 648
Mr = 302.39 Dx = 1.192 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
a = 4.9614 (1) Å Cell parameters from 7504 reflections
b = 30.7302 (6) Å θ = 2.9–72.6°
c = 11.0726 (2) Å µ = 0.55 mm1
β = 93.268 (1)° T = 150 K
V = 1685.44 (6) Å3 Column, colourless
Z = 4 0.31 × 0.11 × 0.08 mm

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer 3247 independent reflections
Radiation source: INCOATEC IµS micro-focus source 2529 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.042
Detector resolution: 10.4167 pixels mm-1 θmax = 72.4°, θmin = 4.3°
ω scans h = −5→6
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −38→36
Tmin = 0.84, Tmax = 0.96 l = −11→13
12558 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.6292P] where P = (Fo2 + 2Fc2)/3
3247 reflections (Δ/σ)max = 0.001
210 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.2370 (3) 0.78680 (4) 0.50574 (12) 0.0422 (3)
C1 −0.0733 (4) 0.77848 (6) 0.42988 (16) 0.0324 (4)
C2 −0.0376 (4) 0.73445 (6) 0.38590 (16) 0.0320 (4)
H2 −0.1435 0.7119 0.4177 0.038*
C3 0.1391 (3) 0.72401 (5) 0.30189 (15) 0.0280 (4)
C4 0.2939 (4) 0.75888 (5) 0.23953 (15) 0.0298 (4)
H4A 0.2923 0.7521 0.1521 0.036*
H4B 0.4841 0.7583 0.2718 0.036*
C5 0.1810 (4) 0.80493 (6) 0.25518 (16) 0.0331 (4)
H5 0.0083 0.8068 0.2043 0.040*
C6 0.1127 (4) 0.81281 (6) 0.38459 (17) 0.0369 (4)
H6A 0.2814 0.8132 0.4368 0.044*
H6B 0.0257 0.8417 0.3905 0.044*
C7 0.1933 (4) 0.67865 (6) 0.27681 (16) 0.0313 (4)
H7 0.0800 0.6575 0.3107 0.038*
C8 0.3907 (4) 0.66425 (5) 0.20954 (15) 0.0295 (4)
H8 0.4884 0.6858 0.1686 0.035*
C9 0.4725 (3) 0.61914 (6) 0.19209 (15) 0.0296 (4)
C10 0.3664 (4) 0.58378 (6) 0.25307 (18) 0.0389 (4)
H10 0.2265 0.5885 0.3067 0.047*
C11 0.4619 (4) 0.54214 (6) 0.23644 (18) 0.0392 (4)
H11 0.3877 0.5188 0.2800 0.047*
C12 0.6632 (4) 0.53343 (6) 0.15784 (17) 0.0355 (4)
C13 0.7678 (4) 0.56848 (6) 0.09696 (17) 0.0394 (5)
H13 0.9057 0.5635 0.0424 0.047*
C14 0.6762 (4) 0.61052 (6) 0.11375 (16) 0.0341 (4)
H14 0.7534 0.6338 0.0712 0.041*
C15 0.7656 (5) 0.48793 (6) 0.1393 (2) 0.0466 (5)
H15A 0.7277 0.4700 0.2095 0.070*
H15B 0.9608 0.4888 0.1300 0.070*
H15C 0.6750 0.4754 0.0664 0.070*
C16 0.3727 (4) 0.83857 (5) 0.20647 (15) 0.0310 (4)
C17 0.4337 (4) 0.83682 (6) 0.08492 (16) 0.0348 (4)
H17 0.3555 0.8146 0.0345 0.042*
C18 0.6061 (4) 0.86683 (6) 0.03656 (16) 0.0357 (4)
H18 0.6431 0.8648 −0.0465 0.043*
C19 0.7260 (4) 0.89973 (6) 0.10667 (17) 0.0339 (4)
C20 0.6674 (4) 0.90135 (6) 0.22736 (18) 0.0394 (4)
H20 0.7471 0.9234 0.2777 0.047*
C21 0.4943 (4) 0.87140 (6) 0.27656 (17) 0.0378 (4)
H21 0.4585 0.8734 0.3597 0.045*
C22 0.9152 (4) 0.93214 (7) 0.0529 (2) 0.0450 (5)
H22A 1.1003 0.9209 0.0606 0.068*
H22B 0.9060 0.9599 0.0960 0.068*
H22C 0.8619 0.9366 −0.0328 0.068*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0419 (8) 0.0429 (7) 0.0440 (8) 0.0040 (6) 0.0210 (6) −0.0051 (6)
C1 0.0284 (9) 0.0378 (10) 0.0315 (9) 0.0061 (7) 0.0061 (7) 0.0004 (7)
C2 0.0292 (9) 0.0332 (9) 0.0344 (9) 0.0010 (7) 0.0078 (7) 0.0028 (7)
C3 0.0261 (8) 0.0302 (9) 0.0277 (9) 0.0019 (7) 0.0017 (6) 0.0011 (6)
C4 0.0315 (9) 0.0296 (9) 0.0287 (9) 0.0011 (7) 0.0067 (7) −0.0015 (6)
C5 0.0362 (9) 0.0314 (9) 0.0323 (9) 0.0015 (7) 0.0074 (7) −0.0021 (7)
C6 0.0390 (10) 0.0312 (9) 0.0417 (10) 0.0040 (8) 0.0116 (8) −0.0033 (7)
C7 0.0325 (9) 0.0292 (9) 0.0329 (9) −0.0021 (7) 0.0076 (7) 0.0017 (7)
C8 0.0340 (9) 0.0285 (8) 0.0263 (8) −0.0009 (7) 0.0051 (7) 0.0002 (6)
C9 0.0326 (9) 0.0289 (9) 0.0276 (9) −0.0004 (7) 0.0038 (7) −0.0006 (6)
C10 0.0439 (11) 0.0328 (9) 0.0417 (10) −0.0010 (8) 0.0176 (8) −0.0004 (8)
C11 0.0471 (11) 0.0299 (9) 0.0415 (11) −0.0027 (8) 0.0109 (8) 0.0032 (7)
C12 0.0420 (10) 0.0287 (9) 0.0354 (10) 0.0038 (8) −0.0006 (8) −0.0027 (7)
C13 0.0438 (11) 0.0358 (10) 0.0401 (10) 0.0053 (8) 0.0150 (8) −0.0029 (8)
C14 0.0402 (10) 0.0306 (9) 0.0326 (9) −0.0001 (7) 0.0115 (8) 0.0010 (7)
C15 0.0545 (13) 0.0334 (10) 0.0522 (13) 0.0081 (9) 0.0064 (10) −0.0006 (9)
C16 0.0358 (9) 0.0267 (8) 0.0309 (9) 0.0027 (7) 0.0069 (7) −0.0011 (7)
C17 0.0418 (10) 0.0309 (9) 0.0321 (9) −0.0019 (8) 0.0058 (7) −0.0044 (7)
C18 0.0418 (10) 0.0350 (10) 0.0312 (9) 0.0033 (8) 0.0102 (8) 0.0012 (7)
C19 0.0322 (9) 0.0305 (9) 0.0396 (10) 0.0032 (7) 0.0077 (7) 0.0023 (7)
C20 0.0435 (11) 0.0352 (10) 0.0399 (11) −0.0067 (8) 0.0064 (8) −0.0068 (8)
C21 0.0468 (11) 0.0361 (10) 0.0315 (10) −0.0041 (8) 0.0099 (8) −0.0056 (7)
C22 0.0444 (12) 0.0414 (11) 0.0506 (12) −0.0057 (9) 0.0143 (9) 0.0013 (9)

Geometric parameters (Å, º)

O1—C1 1.228 (2) C11—H11 0.9500
C1—C2 1.452 (2) C12—C13 1.387 (3)
C1—C6 1.506 (3) C12—C15 1.506 (2)
C2—C3 1.352 (2) C13—C14 1.386 (2)
C2—H2 0.9500 C13—H13 0.9500
C3—C7 1.450 (2) C14—H14 0.9500
C3—C4 1.508 (2) C15—H15A 0.9800
C4—C5 1.535 (2) C15—H15B 0.9800
C4—H4A 0.9900 C15—H15C 0.9800
C4—H4B 0.9900 C16—C21 1.390 (3)
C5—C6 1.511 (2) C16—C17 1.397 (2)
C5—C16 1.524 (2) C17—C18 1.386 (3)
C5—H5 1.0000 C17—H17 0.9500
C6—H6A 0.9900 C18—C19 1.388 (3)
C6—H6B 0.9900 C18—H18 0.9500
C7—C8 1.339 (2) C19—C20 1.385 (3)
C7—H7 0.9500 C19—C22 1.514 (3)
C8—C9 1.460 (2) C20—C21 1.391 (3)
C8—H8 0.9500 C20—H20 0.9500
C9—C14 1.394 (2) C21—H21 0.9500
C9—C10 1.398 (2) C22—H22A 0.9800
C10—C11 1.381 (3) C22—H22B 0.9800
C10—H10 0.9500 C22—H22C 0.9800
C11—C12 1.388 (3)
O1—C1—C2 121.44 (16) C12—C11—H11 119.1
O1—C1—C6 121.55 (16) C13—C12—C11 117.25 (16)
C2—C1—C6 116.89 (15) C13—C12—C15 121.09 (17)
C3—C2—C1 123.22 (16) C11—C12—C15 121.66 (17)
C3—C2—H2 118.4 C14—C13—C12 121.60 (17)
C1—C2—H2 118.4 C14—C13—H13 119.2
C2—C3—C7 119.64 (15) C12—C13—H13 119.2
C2—C3—C4 120.88 (15) C13—C14—C9 121.04 (16)
C7—C3—C4 119.37 (14) C13—C14—H14 119.5
C3—C4—C5 113.86 (14) C9—C14—H14 119.5
C3—C4—H4A 108.8 C12—C15—H15A 109.5
C5—C4—H4A 108.8 C12—C15—H15B 109.5
C3—C4—H4B 108.8 H15A—C15—H15B 109.5
C5—C4—H4B 108.8 C12—C15—H15C 109.5
H4A—C4—H4B 107.7 H15A—C15—H15C 109.5
C6—C5—C16 113.91 (15) H15B—C15—H15C 109.5
C6—C5—C4 110.97 (14) C21—C16—C17 117.07 (16)
C16—C5—C4 110.25 (14) C21—C16—C5 123.69 (16)
C6—C5—H5 107.1 C17—C16—C5 119.24 (16)
C16—C5—H5 107.1 C18—C17—C16 121.24 (17)
C4—C5—H5 107.1 C18—C17—H17 119.4
C1—C6—C5 112.23 (15) C16—C17—H17 119.4
C1—C6—H6A 109.2 C17—C18—C19 121.53 (17)
C5—C6—H6A 109.2 C17—C18—H18 119.2
C1—C6—H6B 109.2 C19—C18—H18 119.2
C5—C6—H6B 109.2 C20—C19—C18 117.33 (17)
H6A—C6—H6B 107.9 C20—C19—C22 121.69 (17)
C8—C7—C3 125.02 (16) C18—C19—C22 120.98 (17)
C8—C7—H7 117.5 C19—C20—C21 121.51 (17)
C3—C7—H7 117.5 C19—C20—H20 119.2
C7—C8—C9 127.22 (16) C21—C20—H20 119.2
C7—C8—H8 116.4 C16—C21—C20 121.32 (17)
C9—C8—H8 116.4 C16—C21—H21 119.3
C14—C9—C10 117.34 (16) C20—C21—H21 119.3
C14—C9—C8 118.65 (15) C19—C22—H22A 109.5
C10—C9—C8 123.97 (16) C19—C22—H22B 109.5
C11—C10—C9 120.96 (17) H22A—C22—H22B 109.5
C11—C10—H10 119.5 C19—C22—H22C 109.5
C9—C10—H10 119.5 H22A—C22—H22C 109.5
C10—C11—C12 121.80 (17) H22B—C22—H22C 109.5
C10—C11—H11 119.1
O1—C1—C2—C3 179.54 (18) C10—C11—C12—C15 −179.6 (2)
C6—C1—C2—C3 −4.5 (3) C11—C12—C13—C14 0.1 (3)
C1—C2—C3—C7 170.34 (16) C15—C12—C13—C14 −179.66 (19)
C1—C2—C3—C4 −5.8 (3) C12—C13—C14—C9 −0.6 (3)
C2—C3—C4—C5 −14.9 (2) C10—C9—C14—C13 0.3 (3)
C7—C3—C4—C5 169.05 (15) C8—C9—C14—C13 177.83 (17)
C3—C4—C5—C6 44.1 (2) C6—C5—C16—C21 5.5 (3)
C3—C4—C5—C16 171.31 (15) C4—C5—C16—C21 −120.04 (19)
O1—C1—C6—C5 −149.12 (18) C6—C5—C16—C17 −174.85 (17)
C2—C1—C6—C5 34.9 (2) C4—C5—C16—C17 59.6 (2)
C16—C5—C6—C1 −179.03 (15) C21—C16—C17—C18 −0.6 (3)
C4—C5—C6—C1 −53.9 (2) C5—C16—C17—C18 179.74 (17)
C2—C3—C7—C8 −169.72 (18) C16—C17—C18—C19 0.2 (3)
C4—C3—C7—C8 6.4 (3) C17—C18—C19—C20 0.2 (3)
C3—C7—C8—C9 172.86 (17) C17—C18—C19—C22 179.64 (18)
C7—C8—C9—C14 177.15 (18) C18—C19—C20—C21 −0.3 (3)
C7—C8—C9—C10 −5.5 (3) C22—C19—C20—C21 −179.72 (19)
C14—C9—C10—C11 0.4 (3) C17—C16—C21—C20 0.5 (3)
C8—C9—C10—C11 −176.95 (18) C5—C16—C21—C20 −179.83 (18)
C9—C10—C11—C12 −0.9 (3) C19—C20—C21—C16 0.0 (3)
C10—C11—C12—C13 0.6 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6A···O1i 0.99 2.60 3.515 (2) 154
C8—H8···O1ii 0.95 2.47 3.353 (2) 155
C14—H14···O1ii 0.95 2.55 3.410 (2) 151

Symmetry codes: (i) x+1, y, z; (ii) x+1, −y+3/2, z−1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LR2135).

References

  1. Bella, M., Schultz, M. & Milata, V. (2012). Arkivoc, iv, 242–251.
  2. Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Kim, B.-T. O. K.-J., Chun, J.-C. & Hwang, K.-J. (2008). Bull. Korean Chem. Soc 29, 1125–1130.
  5. Kumar, S. K., Hager, E., Pettit, C., Gurulingappa, H., Davidson, N. E. & Khan, S. R. (2003). J. Med. Chem. 46, 2813–2815. [DOI] [PubMed]
  6. Martin, A. E. & Prasad, K. J. (2006). Acta Pharm. 56, 79–86. [PubMed]
  7. Mayekar, A. N., Li, H., Yathirajan, H. S., Narayana, B. & Suchetha Kumari, N. (2010). Int. J. Chem. (Can.), 2, 114–123.
  8. Prasad, Y. R., Kumar, P. R., Deepti, C. A. & Ramana, M. V. (2006). Eur. J. Chem. 3, 236–241.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  11. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  12. Suwito, H., Mustofa, J., Kristanti, A. N. & Puspaningsih, N. N. T. (2014). J. Chem. Pharm. Res. 6, 1076–1088.
  13. Tabba, H. D., Yousef, N. M. & Al-Arab, M. M. (1995). Collect. Czech. Chem. Commun. 60, 594–604.
  14. Tanaka, M., Nara, F., Suzuki, K., Hosoya, T. & Ogita, T. (1997). J. Am. Chem. Soc. 119, 7871–7872.
  15. Tatsuzaki, J., Bastow, K. F., Nakagawa-Goto, K., Nakamura, S., Itokawa, H. & Lee, K.-H. (2006). J. Nat. Prod. 69, 1445–1449. [DOI] [PMC free article] [PubMed]
  16. Vyas, D. H., Tala, S. D., Akbari, J. D., Dhaduk, M. F. & Joshi, H. S. (2009). Indian J. Chem. Sect B, 48, 1405–1410.
  17. Xing, R. G., Li, Y. N., Liu, Q., Meng, Q., Li, J., Shen, X., Liu, Z., Zhou, B., Yao, X. & Liu, Z. (2010). Eur. J. Org. Chem. pp. 6627–6632.
  18. Yoon, G., Kang, B. Y. & Cheon, S. H. (2007). Arch. Pharm. Res. 30, 313–316. [DOI] [PubMed]
  19. Yun, J.-M., Kweon, M.-H., Kwon, H., Hwang, J.-K. & Mukhtar, H. (2006). Carcinogenesis, 27, 1454–1464. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015008324/lr2135sup1.cif

e-71-0o436-sup1.cif (386KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008324/lr2135Isup2.hkl

e-71-0o436-Isup2.hkl (178.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008324/lr2135Isup3.cml

. DOI: 10.1107/S2056989015008324/lr2135fig1.tif

The title mol­ecule with labeling scheme and 50% probability ellipsoids.

. DOI: 10.1107/S2056989015008324/lr2135fig2.tif

Packing viewed towards the (10Inline graphic)plane. Weak C—H⋯O inter­actions are shown as dotted lines.

CCDC reference: 1062089

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES