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Abstract

The proper understanding of biomolecular recognition mechanisms that take place in a drug target 

is of paramount importance to improve the efficiency of drug discovery and development. The 

intrinsic dynamic character of proteins has a strong influence on biomolecular recognition 

mechanisms and models such as conformational selection have been widely used to account for 

this dynamic association process. However, conformational changes occurring in the receptor 

prior and upon association with other molecules are diverse and not obvious to predict when only 

a few structures of the receptor are available. In view of the prominent role of protein flexibility in 

ligand binding and its implications for drug discovery, it is of great interest to identify receptor 

conformations that play a major role in biomolecular recognition before starting rational drug 

design efforts. In this review, we discuss a number of recent advances in computer-aided drug 

discovery techniques that have been proposed to incorporate receptor flexibility into structure-

based drug design. The allowance for receptor flexibility provided by computational techniques 

such as molecular dynamics simulations or enhanced sampling techniques helps to improve the 

accuracy of methods used to estimate binding affinities and, thus, such methods can contribute to 

the discovery of novel drug leads.
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Biomolecular Recognition Mechanisms

Biomolecular recognition is at the heart of all biological processes that take place in living 

organisms. Understanding how a ligand binds to a biological receptor, how proteins interact 

with each other, how lipids and proteins aggregate in the cell membrane, and how these 

events trigger or block a wide range of biochemical reactions is of paramount importance, 

not only for the field of biophysics but also for other disciplines such as rational drug design. 

In the last decades, the interpretation of mechanisms describing biomolecular recognition 

has been the focus of a passionate debate that has contributed to push forward the research 

in many fields such as biophysics and pharmacology among others.[1–3] More than 50 years 

ago, our view of binding events underwent a Copernican turn evolving from an idea based 

on rigid lock-and-key like models to be described as a dynamic and flexible process.[4, 5] 

All these findings served to advance the field towards a better understanding of protein-

ligand binding but also introduced an extra degree of complexity to the description of 

biomolecular recognition processes. Biomolecular recognition is an intricate process of 

orchestrated and random motions, where the ligand from one side and the receptor from the 

other seek for complementary conformations to improve the binding affinity with its partner 

along this fascinating biomolecular dance.

The description of protein-ligand interactions is not a simple task due to the variety of 

motions and mechanisms interplaying in this complex but vital process. To comprehend how 

biomolecular recognition occurs, we first need to understand the role of all different partners 

involved in this association process. One of the main centers of attention has been to 

elucidate the role played by the ligand during the binding event. In particular, whether it is 

directly responsible for inducing a conformational change to the biological receptor upon 

binding or whether it stabilizes specific preexistent conformational states displayed by the 

dynamic protein. In other words, by which mechanisms do ligands such as substrates or 

synthetic drugs regulate biochemical reactions? In the last decades, the concepts of induced 

fit and conformational selection emerged as the most popular mechanisms to explain the 

intricate biomolecular recognition process. The idea of induced fit, introduced by Koshland 

more than fifty years ago, relies on the formation of an initial loose ligand-receptor complex 

that induces a conformational change in the protein, resulting in a series of rearrangements 

that lead to a complex with tighter binding.[4] This model implies that interacting 

biomolecules do not necessarily have a complementary shape prior the binding event 

because it is induced by the ligand. However, experimental evidences based on kinetic 

studies proved that the induced fit hypothesis was not able to describe all the variety of 

binding scenarios.[6] In 1999, Nussinov and coworkers coined the term conformational 

selection, also known as population shift, which is based on the idea that all conformations 

are present when the ligand is not bound to the receptor and, then, the ligand acts to 

selectively stabilize specific receptor conformations, causing a shift in the populations 

observed in the unbound ensemble towards this specific conformational state (see Fig. 1).[7–

10] Both theories, although they appear to be antagonistic, are not necessarily mutually 

exclusive. Recent studies show that conformational selection is usually followed by a 

conformational adjustment.[11] In this line, extended models that combine characteristics of 

conformational selection, induced fit and classical lock-and-key mechanisms have been 
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reported.[3] Despite being often disregarded, water plays a crucial role in molecular 

association. In the last years, great efforts have been put to determine the nature of the 

hydrophobic effect and its implications for biomolecular recognition. Experimental and 

theoretical studies have pointed out the capital importance of both entropic and enthalpic 

contributions of water networks to the free energy of binding.[12–15] Computer-aided drug 

design techniques try to incorporate some of the main features of biomolecular recognition 

process to improve the accuracy and predictive power of these computational methods. For 

example, a plethora of techniques have been proposed to account for conformational 

selection and induced fit during the estimation of binding affinities in structure-based virtual 

screening.[16–19]

The debate on mechanisms underlying biomolecular recognition has been always strongly 

linked to the study of allosteric effects. Allostery is a phenomenon that describes the 

interaction occurring between a regulatory site, also called allosteric site, and another site of 

the protein, usually the active site, that gives rise to a functional change on the latter.[5, 20] 

This process is mediated by an effector that binds to the allosteric site, which induces a 

conformational change to the protein that affects the activity of another site, altering protein 

function. Thus, the allosteric effector is responsible for regulating the biological activity of 

the protein. The allosteric term was coined and popularized in the early 1960s by Changeux, 

Jacob and Monod from their studies of conformational changes mediated by signal 

transduction in several enzymes, where they tried to initially explain allosteric effects from 

the induced fit perspective.[21, 22] Despite the youth of the term allostery, this concept 

underwent a rapid revolution when the Monod-Wyman-Changeux (MWC) model was 

proposed to account for positive cooperativity and allosteric effects of oxygen binding in 

myoglobin.[5] This model states that when an allosteric binding event occurs, a shift of the 

equilibrium of two pre-existing conformational states is observed. Consequently, the early 

works of Changeux and coworkers laid the foundations of some of the ideas that would 

eventually lead to the introduction of the conformational selection biomolecular recognition 

mechanism. The MWC theory of allostery was opposed to the Koshland-Némethy-Filmer 

(KNF) model, which explained the conformational transitions observed as a consequence of 

allosteric binding, in the same terms as the induced fit theory.[23] The KNF theory also 

incorporated some of the ideas introduced by Pauling on the study of cooperativity in 

oxygen binding in hemoglobin.[24] After several years of discussion, the MWC model and 

its subsequent generalizations[3, 25, 26] remained as the most widely used theories to 

account for allosteric effects. A third model of allostery, referred to us as entropic allostery, 

pictures the remote effects of ligand binding to have a purely dynamical character,[27] and 

some evidence for this model has been seen in experimental and computational work.[28, 

29] Allosteric transitions have been proven to be of great importance to explain signal 

transduction mediated by G-protein coupled receptors (GPCR).[30, 31] Depending on the 

nature of the ligand bound to the orthosteric or allosteric sites, some GPCRs are able to 

assume different conformations that may lead to the activation of different pathways. For 

example, β2-adrenergic receptor (β2AR), which activates several G-proteins, adopts different 

conformations and binds to a large diversity of ligands that are able to trigger different 

signaling pathways.[32]
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Allosteric effects alter the shape and/or dynamics of the protein. These changes cause a set 

of responses to the protein that affect not only the function of the protein itself but also its 

cellular pathway, or they may even produce a large-scale response in the organism. 

Consequently, the attention has been focused on the design of allosteric drugs and the study 

of how these drugs are able to alter protein network pathways.[33–35] This strategy offers a 

wide range of possibilities for the synthesis of new drugs. For example, the chemokine 

CCR5 can be modulated by the approved allosteric drug maraviroc, which acts as a negative 

modulator.[36] However, the identification of allosteric sites and allosteric mechanisms is 

not a straightforward task because conformational states associated with this process may be 

less populated in the unbound receptor ensemble and can be difficult to trap by X-ray 

crystallography. Therefore, the study of such processes at molecular level is still a 

challenging task. In this review, we analyze some of the computational tools designed to 

help with the exploration of the free energy landscape of proteins that one can use to identify 

biologically relevant conformational states or to locate potential druggable binding sites in 

different drug targets. In particular, we will focus on how conformational selection and 

allostery features can be incorporated in the structure-based drug design process. We address 

all of these methodologies from the computer-aided drug design perspective with special 

focus on their applications. To this end, we selected some examples that illustrate the 

potential, but also the current limitations and challenges, of computational methods, these 

examples include a number of GPCRs and some highly flexible antibacterial drug targets 

involved in the isoprenoid biosynthesis.

Introduction to Receptor Flexibility

In parallel to the extensive debate on biomolecular recognition mechanisms, the fast 

progress of experimental and computational techniques has led to a better understanding of 

biomolecular interactions and ligand binding events, providing better tools to interpret the 

ligand recognition process.[2, 3, 37–39] The picture of a protein changed from a rigid and 

inflexible structure to an intrinsically dynamic and flexible body that displays a wide 

spectrum of motions. Those motions take place on a broad range of time scales that span 

from ultrafast bond vibrations occurring on the femtosecond time scale to large 

conformational changes that require milliseconds to even seconds to be completed. 

Flexibility has been shown to be a concept inherent to proteins that gives them the ability to 

adopt multiple conformations by generating what is known as a conformational ensemble. 

This plasticity results in continuous changes of the shape of the protein, for example, by 

creating transient cavities with functional properties or revealing transitions between 

conformational states that may open or close the gate for the interaction with endogenous or 

exogenous molecules. Protein flexibility is crucial for biomolecular recognition processes 

and it is directly linked to protein dynamics. The understanding of the variety of motions 

and dynamic processes interplaying in the protein ensemble is relevant in rational drug 

design.[17, 40, 41] To this end, it is valuable to find ways of analyzing protein motions and 

protein responses upon binding, but also of accounting for the inherent receptor flexibility 

when assessing the binding affinity between a potential therapeutic drug and its target.

In the last few years, the improvement of experimental techniques triggered a large number 

of advances in the field of protein dynamics. Techniques such as nuclear magnetic 
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resonance (NMR) have been proven to provide invaluable information on the understanding 

of protein motions and the generation of conformational ensembles.[38, 42, 43] In terms of 

biomolecular recognition, NMR data allows the visualization of heterogeneous protein 

ensembles where bound and unbound receptor conformations are represented. These 

observations are in line with the conformational selection view of biomolecular recognition.

[44] On the other hand, advances in specialized computer hardware and software have 

brought computational methods to a status where they can provide answers at the atomic 

level to diverse phenomena such as protein folding[45] or biomolecular recognition,[46] as 

well as play a relevant role in the structure-based drug design process.[41, 47] Particularly in 

the last decade, molecular dynamics (MD) simulations have undergone a step forward 

because of the increase in computational power translating to longer and more accurate 

simulations going beyond the microsecond time scale.[37, 48–50] Similarly, the advances in 

enhanced sampling techniques allow us to capture slow conformational changes that remain 

hidden in conventional molecular dynamics simulations.[18, 51, 52] The combination of 

experimental techniques, such as NMR, with molecular simulations has represented a step 

forward to comprehend how proteins move and interact with their partners, providing 

relevant information towards the better of understanding of mechanistic details in 

biomolecular recognition.[32, 53–55]

Intra- and inter-molecular interactions interplaying among ligand, receptor, and water 

molecules are the driving force of protein dynamics and recognition processes. To 

understand how molecules interact and, thus, their affinity, it is of great interest to improve 

the efficiency and accuracy of rational drug design. Affinity is strongly related to the 

concept of free energy, a quantity that measures the favorability of one state over another, 

for example, between a ligand bound to its target compared to the unbound situation. In 

biomolecular recognition, orchestrated enthalpy and entropy changes determine the 

favorability of the binding event. The ability to predict such a property is of great interest for 

drug discovery and, consequently, several methods with different levels of efficiency and 

accuracy have been proposed to estimate binding free energies. To correctly assess binding 

affinities, it is convenient to know the three dimensional orientation of ligands interacting 

with their receptors. Molecular docking and scoring functions have been proven useful in 

assigning rankings and scores to different poses that can be used to predict relative ligand 

orientations with respect to a receptor. Docking techniques are fast and efficient, presenting 

a wide range of applications in the early stages of virtual screening when large libraries of 

compounds are explored.[56–58] Docking techniques are fast but the large number of 

approximations taken into account limits their applicability beyond pose prediction and very 

rough ranking of compounds.[59] Despite some well-known limitations such as system 

dependency, docking methods and scoring functions are key techniques in hit identification 

in both academy and industry. When more precise binding affinities are needed, alchemical 

free energy methods represent a more robust and accurate way to compute binding affinities.

[60] The continuous improvements made in the last years are leading towards a greater 

applicability of free energy methods in the lead-optimization stage of the rational drug 

design process.[61–65]

It is crucial to identify the key conformations the drug target before starting with structure-

based drug design efforts because the inaccurate description of the binding site region 
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directly affects the correct estimation of binding affinities. Unbound receptors exist in an 

equilibrium conformational ensemble characterized by a set of conformational states and 

populations. During the binding event, either to a catalytic or an allosteric site, the relative 

distribution of states changes while the set of conformational states remains the same. Thus, 

it may be possible to design drugs that stabilize specific conformations of the ensemble by 

targeting these sites and trapping the active or inactive states of the protein. To this end, 

methods that efficiently explore the conformational space and techniques that provide 

accurate and fast calculation of binding affinities are crucial to improve the predictive power 

of virtual screening protocols (see Fig. 2). In the last part of this review, we focus our 

attention on the estimation of binding energies with special emphasis on the incorporation of 

receptor flexibility to account for different conformational states in the drug design process.

Receptor Ensemble-based Screening Methods

Structure-based screening methods require an initial receptor structure of a drug target, 

either obtained experimentally or through molecular modeling, to start with the rational drug 

design efforts (see Fig. 2). Usually these receptor structures correspond to crystallographic 

and NMR structures or can be generated from computer modeling, molecular dynamics 

simulations, or from enhanced sampling methods. The use of high-resolution crystal 

structures (if available) has long been the established approach to rationally design small 

drug molecules. In the framework of conformational selection, ligands act to selectively 

stabilize specific protein conformations and, thus, proteins can be co-crystallized in 

alternative conformations depending on the nature of the ligand. The use of only one 

receptor conformation limits the chemical space of potential ligands for a specific drug 

target. To improve the predictive power of receptor-based methods, it is useful to generate 

an ensemble of receptor structures where the most relevant conformations of the receptor are 

taken into account in the structure-based drug design process.

Ensemble-based screening methods aim to account for receptor flexibility and are based on 

using several receptor structures in the docking phase of the virtual screening protocol.[66] 

Ensemble-based methods represent an indirect way of accounting for conformational 

selection in structure-based drug design and have been widely used to improve binding pose 

prediction and enrichment factors in virtual screening.[67–69] To illustrate the success of 

ensemble-based screening methods in drug lead identification, we selected undecaprenyl 

diphosphate synthase enzyme (UPPS) as an example. This enzyme involved in isoprenoid 

biosynthesis has been the focus of several studies and a large number of crystal structures 

co-crystallized with ligands of different nature have been reported in the last decade.[70–72] 

In 2013, Zhu and coworkers reported the discovery and design of a large set of new 

chemically diverse inhibitors for UPPS.[70] UPPS is an essential enzyme for the 

biosynthesis of the bacterial cell wall in most bacteria, such as Staphylococcus aureus or 

Escherichia coli, and it has been shown to be an interesting antibacterial drug target.[73, 74] 

According to the available crystal structures, UPPS is a reasonably flexible enzyme that can 

be found in three different conformations (closed, ajar, and open), depending on the nature 

of the substrate or the ligand bound to the different binding sites of the enzyme. In this case, 

the variety of X-ray crystal structures available is sufficient to build a representative receptor 

ensemble that can be used for structure-based drug design efforts. The receiver operating 
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characteristic/area under the curve (ROC/AUC) approach can be used to validate the 

predictive power of each structure of the ensemble for the virtual screening. In the 

ROC/AUC procedure a set of known actives compounds and presumed inactives are docked 

into each structure.[75] The AUC is associated with how well a ranking algorithm will rank 

and separate actives from inactives, and it is used to assess the performance that different 

conformations of the same receptor may have in virtual screening. Prediction and 

performance of receptor ensembles in virtual screening have been discussed at length in the 

literature.[41] Using a 112-compound screening dataset for UPPS, the best enrichment was 

observed for UPPS crystal structures that belong to open and ajar states, with AUC values 

close to 0.8. Then, the best predictive structures were selected and used as receptor 

structures to computationally screen large databases of compounds. Some of the 

computationally predicted compounds using ensemble-based docking methods led to the 

discovery of UPPS inhibitors. The reported antibacterial drug leads show therapeutic 

activity in animal models and have also been shown to restore the sensitivity of antibiotics 

such as methicilin, which made them promising leads for further antibiotic development.[70] 

In many cases, the use of an ensemble of conformations enhances the predictive power of 

virtual screening. As was shown for UPPS, crystal structure diversity is often enough to 

generate an ensemble that describes the most relevant receptor conformations to rational 

design of active compounds. However, an extensive set of crystal structures of different and 

relevant conformations is only available for a very limited number of proteins.

Exploration of the Conformational Space

Crystal structures that capture pharmacologically relevant binding conformations may not be 

available or are difficult to obtain and, occasionally, the bound crystal structures available 

for a drug target do not represent the conformation of interest. In particular, conformations 

associated with important states may be transient and, thus, trapping these particular 

conformations with experimental techniques can be a tedious task. For instance, allosteric 

sites are particularly difficult to capture in crystal structures due to their less conserved 

character with respect to catalytic sites. Protein function is only superficially understood 

from a single structure because proteins are inherently dynamic and display a wide range of 

motions that span from simple side chain rotations to accommodate a substrate in the 

catalytic site to large backbone rearrangements that may even alter the secondary structure. 

Molecular simulations have been proven as a useful tool to explore the conformational space 

of proteins and can overcome the lack of receptor structures by generating new alternative 

conformations.[47, 76] In addition, molecular simulations can sample conformational states 

that could be important to characterize allosteric sites that are not evident from the crystal 

structures available.[77] Protein motions directly affect the association between the ligand 

and the receptor but a single structure does not tell much about the intricate motions of 

protein dynamics. Molecular dynamics (MD) simulations are among the most widely used 

methods to study protein flexibility from the computational perspective.[78, 79] Since the 

first MD simulation of a protein performed more than thirty years ago,[80] MD has been 

used in a wide range of applications in the field of biomolecular recognition, however, short 

time-scale simulation are often not capable of capturing important conformational changes. 

In the last years, the significant increase in computational power has broadened the 
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applicability of all-atom molecular dynamics; longer and longer simulations were produced 

and this had significant implications for the interpretation of biomolecular recognition at the 

molecular level. Besides special purpose hardware,[49] graphics-processing-units (GPUs) 

have been used to speed up molecular dynamics simulations by an order of magnitude 

compared to the central-processing-units (CPUs).[48] Particularly interesting was the 

interplay between individual users and researchers in the folding-project that resulted in the 

reconstruction of the free-energy surface by means of Markov state models and the theory of 

exponential kinetics.[81] In a recent example, NMR techniques and 550 μs of all-atom MD 

simulations were used in conjunction to characterize the dynamic activation process of the 

β 2-Adregeneric receptor, identifying conformational states that were not observed in the 

crystal structures available.[32] The role of different ligands on the stabilization of selected 

conformational sates was also explored showing that this GPCR is highly dynamic and 

adopts a large number of different conformations. The understanding of GPCR dynamics 

and how different ligands trigger the association with different signaling proteins paved the 

way towards structure-based drug design efforts on these particularly interesting receptors. 

In addition, the analysis of binding modes and intermolecular interactions observed during 

the binding event may lead to the design of new allosteric modulators that will be able to 

modulate the activity of GPCRs. However, all methods used for molecular simulations have 

their limitations and it is important to be conscious of the advantages and drawbacks of each 

technique.[82] Some examples of the limitations that have been associated with molecular 

dynamics simulations could be: 1) instabilities associated with force fields in simulations 

that exceed the microsecond time-scale; or 2) poor description of quantum effects that, for 

example, are particularly important when transition metals take part in ligand binding, 

among others. Protonation states of certain residues are also a key property to consider in 

MD simulations and binding affinity calculations. A change of the protonation state can lead 

to an overestimation or underestimation of binding affinities, decreasing the success rate of 

structure-based screening methods. Running simulations with different protonation states or 

constant-pH simulations are tools that can help to ameliorate these limitations.[83, 84]

An interesting question is how the use of MD structures affects the quality of the structure-

based virtual screening procedure. In a recent example, Sinko and coworkers studied the 

influence of protein flexibility on the design of UPPS inhibitors.[85] To this end, they ran 

long MD simulations and analyzed the performance of high- and low-populated 

conformations on the docking of known inhibitors. UPPS is a highly flexible enzyme as 

shown by the variety of different crystallized conformations. The conformational changes 

displayed along the unbound MD trajectory were similar to those seen in the ensemble of 

bound and unbound crystal structures, in line with the conformational selection idea of 

biomolecular recognition. In this case, MD simulations are capable of sampling some of the 

most relevant conformational states of UPPS. Particularly interesting was the identification 

of a rarely sampled conformational state with an expanded pocket that is significantly 

important to properly describe ligand binding in UPPS. The results obtained from virtual 

screening suggested that different classes of known inhibitors recognize different active 

conformational states of UPPS. Only when this rarely sampled conformation with an 

expanded pocket was used as receptor conformation in the virtual screening procedure, the 

poses obtained with docking methods mimicked those observed in the open bisphosphante-
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bound UPPS crystal structures. This is in contrast to other inhibitor chemotypes, which 

require a less expanded active site conformation. Consequently, it is relevant for drug design 

to identify the conformational states where a specific inhibitor binds. Interestingly, apo MD 

simulations were able to capture the most relevant conformational changes that would be 

involved in the accommodation of the ligand in the biomolecular recognition process of 

UPPS.

The ROC and AUC analysis can be also used to quantitatively assess the performance of 

MD structures in receptor-based virtual screening. Nichols et al. used this strategy to assess 

the performance of MD structures in HIV reverse transcriptase (RT-HIV), another popular 

disease target with multiple experimentally determined crystal structures available.[86] 

ROC/AUC analysis can be used to accurately predict the level of enrichment of a virtual 

screening run by evaluating the predictive power of different conformations of the same 

receptor. In this case, a total of 200ns of MD simulations for two bound and two unbound 

RT-HIV receptors were used to generate the conformational ensemble for the virtual 

screening. The attention was focused on the NNRTI binding pocket that has been shown to 

be highly flexible, changing from a “collapsed” inhibitor-free state to an “open” inhibitor-

bound state. The results obtained from the virtual screening of the NNRTI pocket were 

compared with an ensemble of 15 experimentally determined structures that contain both 

unbound and bound structures. First, they found that bound receptors improve virtual 

screening results compared to unbound structures. Second, ROC/AUC results showed that 

the performance of nearly 20% of the MD structures studied was superior to the available 

crystal structures.

MD trajectories can be used to interpret and identify conformational changes that play a 

critical role in the biomolecular recognition process, but also are a useful tool to improve the 

predictive power of virtual screening by generating new structures that broaden the 

conformational ensemble. The increasing recognition of the importance of target flexibility 

culminated in the definition of the relaxed complex scheme (RCS), which is an ensemble-

based docking method that accounts for receptor flexibility to perform docking studies of 

compound libraries.[87, 88] RCS relies on the use of previously determined conformations 

with molecular dynamics simulations that are used as receptor structures to screen chemical 

compounds with docking techniques. The idea behind RCS is to enrich the variety of low-

energy conformations present in the ensemble in order to increase the diversity of ligands 

that bind to a receptor and, ideally, identify a larger number of hits obtained from compound 

libraries. RCS has been successfully applied to find compounds for several targets. For 

example, Schames and coworkers identified a novel binding cavity in HIV integrase using 

RCS in conjunction with docking,[89] which helped to inspire the discovery of FDA-

approved drug raltegravir.[90] More recently, Wassman et al. observed by means of MD 

simulations a transiently open binding pocket in tumor suppressor p53.[91] Applying the 

RSC virtual screening procedure on this novel site, they identified a compound that is 

potentially able to reactivate mutated forms of p53 in human cells. These examples highlight 

the importance of MD simulations and ensemble-based screening methods on the 

identification of new druggable pockets and the design potential active compounds.
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However, care must be taken when using MD structures for virtual screening because we do 

not know a priori if a specific MD structure will improve the estimation of binding 

affinities.[86] In general, enrichment may be better for ensembles of crystal structures than 

for ensemble of MD simulations structure,[92] however, some MD structures can enhance 

the prediction power compared to experimental structures. Occasionally, MD trajectories are 

not long enough to identify relevant conformational transitions that may lead to low-energy 

configurations of interest for drug design. The time-scales reached using MD simulations are 

typically the order of nanoseconds to even sometimes microseconds. However, many 

interesting processes take place on the timescales of milliseconds to seconds, which may 

reveal new binding sites important for structure-based drug design. These binding sites 

would be missed by conventional MD simulations. Thus, new strategies are needed to 

overcome such high-energy barriers associated with slow motions that connect low-energy 

states. Methods for identifying the most predictive structures and methods for sampling a 

greater part of biomolecular phase space would be useful for structure-based drug design 

and they will be the focus of the next sections.

Enhanced Sampling Methods

Some important processes such as biomolecular recognition, allosteric regulation, or signal 

transduction, usually take place on the micro- to millisecond or even longer times scales. 

Low-energy states relevant for these processes may be separated by high-energy barriers, 

which are rarely crossed over the course of conventional MD simulations, unless the 

simulation is really long. Such conformational changes associated with slow motions, may 

play a critical role in biomolecular recognition and their description is of capital importance 

to identify relevant conformations for rational drug design. Moreover, if one wishes to 

perform accurate free energy calculations by recovering the Boltzmann ensemble of 

structures, the crossing of high-energy barriers should be observed multiple times to obtain 

converged statistics. In the direction of improving the exploration of the conformational 

space, new strategies have been proposed to overcome the, sometimes, scarce 

conformational sampling associated with standard molecular dynamics simulations, and also 

to speed up the crossing of high energy barriers. Besides the aforementioned specialized 

computer hardware improvements and the increasing popularity of multi-scale techniques,

[93] a lot of attention has been paid to simulation techniques that speed up and improve the 

efficiency of conformational sampling while keeping the atomistic description of the system. 

These methods can be encompassed in the group of enhanced sampling techniques.

The basis of speeding up conformational sampling is the introduction of an artificial bias 

into the model upon which the simulations are based. These methods go from the simple 

raising of the temperature of the system to methods that display different levels of 

sophistication. Temperature accelerated replica exchange,[94] umbrella sampling,[95–97] 

metadynamics,[98, 99] or accelerated molecular dynamics[100, 101] are among the most 

widely used methods to enhance conformational sampling in all-atom simulations. Some of 

these methods require an a priori definition of a reaction coordinate: either a transition 

pathway between known initial and final states or a set of collective variables (CVs) are 

defined a priori to drive the course of the simulation. The calculation of free energy 

differences between two states connected by a reaction coordinate requires adequate 
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sampling of both low- and high-energy regions found along the reaction path. The umbrella 

sampling method introduces a bias potential to facilitate the transition over energy barriers, 

and is an efficient technique to sample high-energy regions. To this end, separate 

simulations, which overlap, are run in a series of windows along the reaction path to connect 

the initial and final states. It is important to ensure that the sampling along the reaction 

coordinate is as uniform as possible. The main difference between umbrella sampling and 

metadynamics is that in the latter a non-systematic sampling along a set of collective 

variables is performed. For this, a history-dependent bias potential is introduced to the 

Hamiltonian. This bias potential enhances sampling by adding Gaussian contributions to the 

potential energy along the sampled trajectory to prevent the system from visiting regions 

that have already been sampled. Then, the free-energy surface of the process can be 

accurately reconstructed as a function of the chosen set of collective variables. In a recent 

example, that comprehensively shows the potential of metadynamics to study ligand binding 

events, Limongelli and coworkers described the full unbinding pathway of inhibitor SC-558 

of cyclooxygenase-2 and identified an alternative binding-mode with similar thermodynamic 

stability to the one found in experiments that could help to explain the long occupancy of 

this inhibitor in the binding site.[102] However, the results obtained by means of 

metadynamics strongly depend on the set of CVs used for the simulations.[99] These 

techniques work remarkably well in analyzing free energy changes between known 

conformations but present some handicaps when looking for unknown conformations, for 

instance, when a drug-like compounds binds to the active site of its protein target but there is 

no knowledge of the final conformational state.

In this review, we focus our attention on accelerated molecular dynamics (aMD), an 

enhanced sampling technique that does not rely on the a priori definition of reaction 

coordinates. Extensive reviews on the theory underlying aMD simulations, its distinct 

flavors, and a wide range of applications can be found elsewhere in the literature.[101, 103] 

Here we focus on the potential of aMD as a tool to efficiently explore the rough free energy 

landscape of proteins and its direct contribution to structure-based drug design by providing 

new structures that may reveal new binding and allosteric sites relevant for biomolecular 

recognition.

Accelerated molecular dynamics enhances sampling through modification of the system’s 

Hamiltonian in a relatively simple way (only two to four parameters are required). In 

addition, it does not rely on the definition of a reaction coordinate or a set of collective 

variables (a priori knowledge of the underlying free energy landscape is not needed), and it 

conserves the essential details of the free-energy landscape. AMD typically modifies the 

underlying potential energy surface by applying a boost potential ΔV(r̍) at each point of the 

MD trajectory according to the equation on Fig. 3.[100] The value of ΔV (r̍) depends on the 

difference between a reference, ‘threshold’, or ‘boost’ energy, E, and the actual potential 

energy. Based on initial conventional MD simulations, the reference energy is chosen to lie 

above the minimum of the potential energy surface (PES). All states with energy above E 

are not modified in the standard aMD method. The larger the difference, the greater the 

modification of the PES becomes, pushing up low-energy valleys and in effect decreasing 

the magnitude of energy barriers.
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Acting as an MD simulation catalyst, aMD speeds sampling by lowering the size of energy 

barriers and smoothening the potential energy landscape as a function of parameters E and 

α , which regulate the level of acceleration, and their optimal values are system specific. 

Since the system moves in a smoother potential energy surface, high-energy barriers can be 

more easily conquered, making possible multiple transitions over these previously 

impassable barriers and, then, unexplored low-energy states are visited multiple times along 

the aMD trajectory. AMD is a flexible technique that allows different variants and 

extensions.[101] The most popular is the dual boost approach, which combines two different 

levels of acceleration, a more aggressive one applied to only the torsional angles of the 

system, and a less vigorous acceleration applied to all elements of the force field including 

explicit solvent, which is to sample diffusive motions in the solvent. The modifications 

introduced to the Hamiltonian bias the actual potential energy surface; the low-energy 

conformations become less stable and the populations are altered with respect to the original 

PES and, consequently, the system moves over a non-Boltzmann energy surface. Since we 

know the modification of the potential energy introduced at each point, a corresponding 

reweighting function is used to recover the Boltzmann statistics, and then thermodynamic 

properties may be accurately determined. However, recovering the canonical ensemble from 

non-Boltzmann aMD simulations is not a straightforward task, which complicates obtaining 

accurate free energy statistics When longer timescales are reached with aMD, the 

reweighting procedure is subject to statistical errors in the estimate of the weighting factor at 

each point.[104] A sufficiently long simulation is required to observe a proper reweighting 

of the Boltzmann canonical ensemble, which may limit the applicability and efficiency of 

free energy aMD-based calculations for certain large bio-molecular systems. Several 

alternative solutions have been proposed to improve reweighting process. In the case of drug 

design, selective aMD is a particularly interesting technique, which limits acceleration to a 

few dihedrals angles.[105] This reduces the amount of statistical error and the free-energy 

statistics can be properly recovered using the re-weighting factor.

AMD has been applied to several systems and has also been validated with experiments. 

Recently, Gasper and coworkers found a good correlation between experimental NMR order 

parameters and order parameters which were computationally predicted with aMD 

simulations. There was a significant improvement over standard MD predictions.[106] They 

made use of aMD simulations to describe the correlation of the structural fluctuations of 

thrombin in great detail. In addition, two allosteric pathways that mediate the activity of 

thrombin were identified.[29] From the perspective of drug design, GPCRs are at the 

epicenter of experimental and computational efforts. It is of great importance to be able to 

understand the activation mechanism of such complex drug targets prior to starting with 

structure-based drug design efforts, but most of these mechanisms remain unclear due to the 

lack of experimental structures. AMD is a powerful tool to explore conformational space 

and can be used to elucidate the activation pathways of these important receptors that may 

take on the order of milliseconds to be completed. In a recent example, Miao et al. focused 

their attention on the activation and dynamics of M2 muscarinic receptor, which regulates 

heart rate and contractile forces of cardiomyocytes.[107] The crystal structure of M2 

receptor was recently determined in the inactive antagonist bound state. Interestingly, aMD 

was capable of capturing the activation process that was not observed in previous 
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microsecond time-scale conventional MD simulations. It was found that the activation takes 

place through a series of events that trigger the formation of a Tyr206-Tyr440 hydrogen 

bond and relocation of alpha helix 6. Moreover, these results identified a dynamic network 

for allosteric regulation of M2 receptor that may open the way towards structure-based 

design of allosteric drugs.[108] AMD can also be used in combinations with other enhanced 

sampling techniques such as the adaptive biasing force method to determine the energetics 

of conformational changes upon the biomolecular recognition process. Recently, 

Wereszczynski and McCammon probed the conformational space of Get3 protein, by means 

of aMD simulations and analyzed conformational changes undergone in the presence of 

various bound nucleotides.[109] The calculation of an accurate potential of the mean force 

was used to compute the free-energy landscape of the Get3 opening/closing pathway. In 

addition, it was found in the apo aMD simulation that a semi-open conformation might be 

sampled when Get3 is free in solution, as well as play a crucial role on nucleotide 

recognition and be important for drug discovery.

Improvements in hardware, algorithms and methodological developments can be combined 

to perform high-throughput simulations to access the millisecond time scale. For instance, 

Pierce et al. amalgamated aMD simulations and GPUs to routinely study millisecond events 

from a desktop computer.[110] In particular, calculations were done on the bovine 

pancreatic trypsin inhibitor (BPTI) to show that 500ns of aMD simulation sample the same 

conformational space as a previously performed millisecond conventional MD simulation on 

the same protein. In another recent example, Buch and coworkers reconstructed the enzyme-

inhibitor binding process of the complex trypsin-benzamidine, including the description of 

its diffusion pathway, surface exploration and final binding.[50] The binding paths obtained 

from almost 500 molecular dynamic simulations of 100ns length were used to reconstruct 

the kinetic pathway of the inhibitor benzamidine from the solvent to the bound state passing 

through two different metastable states. To this end, GPUs, the ACEMD software, and 

Markov state models were used to describe the drug binding pathway to the drug target. The 

absolute binding free energy of the process was also estimated and showed a good 

agreement with the experimental value. Since enhanced sampling techniques probe a vast 

variety of protein conformational states, it is of great importance to make use of methods 

that are able to extract the most relevant information from these molecular simulations.

Extraction of the most Relevant Protein Motions

Protein dynamics is a key concept in conformational selection theory where the ligand 

selectively stabilizes certain conformational states that preexist in the unbound ensemble of 

protein conformations. In other words, a population shift towards the conformations 

stabilized by the ligand is observed upon the ligand binding event.[2] How can we evaluate 

this population shift that takes place in biomolecular recognition from a conformational 

ensemble that could be either generated by a MD trajectory or from a set of experimentally 

determined structures? MD trajectories contain a large amount of information that may 

obscure conformational changes relevant for function and rational drug design. Several 

methods were proposed with the aim to reduce the amount of MD trajectory data and 

analyze collective motions in proteins.[111–113] The concept of “essential dynamics” 

introduced by Berendsen and coworkers symbolized one of the first popular ways of 
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extracting the most relevant motions from molecular dynamics simulations.[114] In essential 

dynamics, the conformational space is divided into different subspaces, the “essential” 

subspace that contain the relevant collective degrees of freedom or principal components of 

protein motion, and the remaining space. In general, principal component analysis (PCA) is 

a tool to extract the most important motions of a protein conformational ensemble and it is 

frequently used to describe important conformational phenomena.[115, 116] In the case of 

molecular dynamics simulations, the complex motions associated with an MD trajectory are 

split into just a few variables giving an idea of the regions of the conformational space 

sampled during the MD simulation. Thus, it is a useful tool to study conformational 

selection by assessing a shift on the equilibrium distributions of ligand bound and unbound 

receptors. Sinko and coworkers made use of PCA to study the population shift mechanism in 

changing the equilibrium towards other conformations upon inhibitor binding in the UPPS 

enzyme. As we have mentioned above, a considerable expansion of the active pocket size is 

observed in UPPS upon binding of bisphosphonates inhibitors, which stabilize open 

structures that are only occasionally sampled conformations in the apo-simulation.[85] Thus, 

a shift in the populations towards a markedly different conformation was observed in the 

bisphosphonate bound UPPS structures. PC analysis shows how after the binding event the 

populations are shifted from the center of PC plot corresponding to the apo structure towards 

other regions of the conformational space (see Fig. 5 in reference [85]). Principal component 

analysis of the MD trajectory showed that inhibitors recognize different sets of 

conformations, which can vary significantly between families of ligands.

The principal components space can also be built from a set of NMR or crystal structures in 

order to discern between different conformational states associated with different substrates 

or inhibitors bound to the receptor. Fig. 4 shows the PCA of some of the E. Coli UPPS 

crystal structures available.[70] The analysis of the principal components clearly separates 

the three binding conformations of UPPS: substrates are bound to closed structures, non-

bisphosphonate inhibitors belong to the group of slightly open conformations, and 

bisphonates are part of the widely open conformational states. It can be seen that the apo-

crystal structure also belongs to the ‘ajar’ group of crystal structures, which suggests that 

non-bisphonate inhibitors require less energetic costs to accommodate the ligand, because 

the equilibrium distribution is not strongly shifted from the apo structure. Open and ajar 

crystal structures were used as UPPS receptor structures in virtual screening that led to the 

discovery of new inhibitors with potent activity in cells and animal models.[70]

The principal component space built from the available crystal or NMR structures can be 

used in conjunction with molecular dynamics simulations to assess the conformational space 

explored during the MD trajectory and to compare the population shift of ligand-bound 

trajectories with respect to experimentally obtained structures. The extraction of the most 

relevant motions may also reveal new binding or allosteric sites. Multidimensional nuclear 

magnetic resonance and other advanced experimental techniques have been used to 

demonstrate the predominance of the conformational selection mechanism in a wide range 

of proteins.[2] From the computational perspective, the role of conformational selection in 

the formation of ligand-receptor complexes can be studied through molecular dynamics 

simulations by evaluating how the equilibrium distribution is shifted towards different 
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distributions in the ligand-bound receptor simulations compared to the unbound receptor 

trajectory. Grant and coworkers used this methodology to study conformational selection in 

G-proteins.[117] In particular, they focused their attention on the activation mechanism of 

Ras and Rho G-proteins through GTP binding that was traditionally described in terms of 

induced fit theory. To this end, they performed a series of conventional and accelerated MD 

simulations of free Ras and Rho proteins. Interestingly, free-nucleotide aMD simulations 

sampled multiple conformations, including regions populated by GTP and GDP crystal 

structures. These results show the ability of unbound G-proteins to interconvert between 

different conformations in the absence of a ligand. On the other hand, the conformational 

space explored by GTP and GDP aMD simulations was found to be more restricted to the 

region of available nucleotide-bound crystal structures. The influence of correlated motions 

in the aMD simulations was also studied by means of correlation diagrams that provide 

information about significant correlated motions between residues. These results predicted 

the coupling between nucleotide-site and the C-terminus via highly flexible Loop 3, 

suggesting that Loop 3 may represent a potential allosteric site present in G-proteins. PC 

analysis helped to classify the ensemble of structures in terms of the most important motions 

and to assess the enhanced sampling obtained by aMD. Then, MD trajectories are useful to 

connect these low-energy regions by describing the transitions between them. This 

information is useful for structure-based drug design because it can help to group the most 

relevant structures for drug discovery.

Selection of Biologically Relevant Structures for Ensemble-based Methods

An intrinsically dynamic receptor samples a substantial number of conformations, but only a 

subset of them are stabilized by the ligand upon binding, producing a shift of the population 

towards the conformations that favor binding. Consequently, it is of great importance to find 

ways of extracting these biologically relevant conformations from a molecular dynamics 

trajectory in order to identify the best set of structures to use in virtual screening. One option 

is to pick MD snapshots at regular time intervals from the MD trajectory. However, all 

proteins display different flexibility patterns and binding properties that vary with time and 

have an impact on the formation of favorable receptor-ligand complexes. The regular 

extraction of frames may contain redundant information and may not reflect the variety of 

the ensemble. Clustering techniques have been proven to be useful for generating 

representative structures for virtual screening.[88, 118] Among the variety of clustering 

techniques, particularly popular is the RMSD-based clustering that groups structures from 

the MD trajectory based on mutual structure similarity criteria. The idea behind clustering is 

to avoid the loss of ensemble information that may otherwise be lost in the selection of 

single snapshots. To identify relevant conformations, subsets of representative coordinates 

are chosen for the RMSD-based clustering calculation. For example, relevant binding 

conformations can be captured using the set of residues that embrace the binding site. More 

general information about the protein motions can be obtained using all alpha carbons of the 

protein of interest. Other ensemble selection methods have been proposed such as the QR-

factorization technique, which relies on the reordering of the redundant data in terms of 

increasing linear dependence.[88, 119] In a recent example, Durrant et al. ran MD 

simulations of the drug target Uridine Diphosphate Galactose 4’-Epimerase found in 
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Trypanosoma brucei and involved in the African sleeping sickness.[120] They successfully 

applied RMSD-based clustering of the active site that led to the identification of 14 low-

micromolar inhibitors with an impressive hit rate of 62%. A total of 24 cluster structures 

were used in combination with the AutoDock Vina docking scoring function[121] and a 

population-weighted ensemble-based docking score to rank the compounds obtained from 

the screening of the National Cancer Institute Diversity Set II.

The same protocol was used by Durrant et al. to rationally design inhibitors for the 

anticancer and antibacterial drug target farnesyl diphosphate synthase (FPPS).[122] 

Bisphosphonates are known to tightly bind the active site of isoprenoid biosynthesis 

diphosphate synthases such as FPPS and UPPS, two enzymes that work in series in the same 

pathway. As bisphosphonates present several undesired features due to their high polarity, it 

is strongly desirable to find alternative compounds for these interesting drug targets. To 

achieve this, Durrant and coworkers made use of the relaxed complex scheme, with an MD 

structure-based ensemble of protein conformations, to identify low-micromolar non-

bisphosphonate inhibitors for FPPS. In 2010, several non-bisphosphonate inhibitors that 

bind to a FPPS allosteric site were identified to block the synthesis of farnesyl diphosphate.

[123] In a recent publication, Lindert and coworkers identified, by means of RCS virtual 

screening protocol, a number of leads for non-bisphosphonate inhibitors that target the 

allosteric site of FPPS.[124] These compounds are classified as bisamidines and are 

chemically different from the compounds found to target the active site of FPPS.[122] As 

we have seen above, the best scoring receptors for some compounds were obtained from 

MD structures. NMR and X-ray crystallographic structures may not reveal allosteric sites 

that are less conserved due to protein dynamics. MD simulations in combination with 

clustering techniques can overcome this limitation, generating conformations where 

allosteric sites are well defined providing an enrichment in the virtual screening process. 

Interestingly, some of the compounds found by Durrant et al.[122] and Lindert et al.[124] 

also bind and inhibit UPPS, opening up the possibility of developing dual FPPS/UPPS 

inhibitors that target isoprenoid biosynthesis in bacteria, which may help to tackle future 

problems associated with drug resistance.

Mapping of Druggable Binding Sites

One of the first steps in structure-based drug design is to identify where a drug could 

possibly bind. The most common targeted sites are: active sites, allosteric sites, and protein-

protein interaction sites.[125, 126] These binding sites present different features, shape and 

dynamics that sometimes make them difficult to target. A growing number of promising 

allosteric drugs are showing that structure-based drug design efforts can usefully go beyond 

the active site region of the protein of interest. Some of these allosteric compounds exhibit 

higher target specificity or reduced toxicity and, thus, they also open the way for the 

exploration of new regions of the chemical space.[127] Allosteric effects are often related to 

protein conformational changes induced by a population shift between conformational states 

that belong to the conformational ensemble and, thus, allosteric sites may not be evident 

from the unbound X-ray crystal structures. The transient character associated with allosteric 

pockets make them difficult to predict when no bound crystal structure is available. Thus, it 

is important to find methods that account for protein flexibility in order to reveal druggable 

Feixas et al. Page 16

Biophys Chem. Author manuscript; available in PMC 2015 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



binding sites on the protein surface that are not evident on the initial structure. Ivetac and 

McCammon described a protocol to identify druggable binding sites that takes into account 

the receptor flexibility by means of molecular dynamic simulations.[128] MD simulations 

are used to sample multiple protein conformations and also for identifying novel structures 

different from the experimental structure, some of which may expose druggable binding 

sites not observed in the initial conformation. Once the MD ensemble was generated, the 

most representative conformations were selected using a RMSD-based clustering method. 

Then, they performed solvent mapping analysis on each structure obtained from the MD 

ensemble using the FTMAP algorithm developed by Vadja and coworkers (http://

ftmap.bu.edu).[129] In the FTMAP algorithm, a set of small probe molecules corresponding 

to drug fragments is docked to the protein surface using empirical scoring functions in order 

to identify the so-called “consensus sites” that are represented by the accumulation of probes 

in certain regions of the protein surface and could be associated with potential druggable 

binding sites. In addition, residues can be ranked according to non-bonded interactions with 

probe molecules in order to identify the most favorable binding sites.

Ivetac and McCammon used this method to identify potential allosteric binding sites on the 

protein surface of two well-known GPCRs, β1 and β2 adrenergic receptors. The combination 

of an ensemble of 15 MD receptor structures and surface mapping analysis led to the 

detection of five potentially druggable allosteric sites on β1 and β2. The results were 

compared with available experimental data to confirm the existence of these druggable 

pockets. Two sites were found to be solvent-exposed corresponding to the extracellular and 

intracellular mouths of the GPCR. The extracellular site coincides with a well-known region 

of allosteric-binding activity, which may block the entrance of ligands to the orthosteric site 

of GPCR. Then, the other three pockets were found in the lipid-protein interface. 

Particularly interesting is the site that corresponds to the cholesterol-binding site, which has 

been found to be important to stabilize distinct states of β2-AR and may be important from 

the structure-based drug design perspective. GPCR activity can be regulated through 

allosteric modulation; the identification of potential allosteric sites on GPCRs without the 

knowledge of crystal structures opens the way towards the identification of new therapeutic 

agents for such important drug targets. In another illustrative example, Zhu and coworkers 

used a similar protocol to identify potential binding sites on their study of undecaprenyl 

diphosphate synthase (UPPS), a potent antibacterial drug target.[70] The variety of inhibitor-

bound crystal structures shows four different binding sites on the UPPS surface. In the case 

of bisphosphonates structures, the substrate site (site 1 in Fig. 5) is always occupied. 

Surprisingly, the most potent inhibitors were found to bind in site 4, which is quite far from 

the flexible region of the substrate site. Interestingly, it is the site where potent non-

bisphosphonate inhibitors are mainly bound. All of these sites were also predicted to be 

druggable by solvent mapping program FTMAP.

Accounting for Receptor Flexibility in the Estimation of Binding Affinities

Once the conformational ensemble, containing the most relevant and predictive structures 

for virtual screening, is defined for the different binding sites that one wants to target, the 

focus is shifted to how one can predict reliable binding affinities to rank and predict the 

most suitable compounds for interacting with each drug target. The level of accuracy of the 
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prediction of binding affinities will depend on the stage of the drug design process. For 

instance, in the lead-optimization stage where accurate binding affinities are necessary, 

alchemical free energies methods are one of the most precise choices, while in the early-

stages of drug discovery docking methods combined with scoring functions are of great use 

to rank large libraries of chemical compounds and reduce the search space because of their 

simplicity and speed. All of these methods contribute in different capacities to the 

identification and design of new candidate compounds. It is of great importance to 

understand the current limits of applicability and different sources of error in the estimation 

of binding affinities; several reviews extensively discuss the best practices in virtual 

screening and free energy calculations with particular focus on rational drug design.[60–63, 

130, 131] In this section, we will briefly discuss the inclusion of receptor flexibility in the 

estimation of binding affinities using different methods. Protein flexibility and receptor 

conformational changes upon binding strongly affect the calculation of ligand-binding 

affinities and, consequently, the predictive power of virtual screening.

Docking methods in combination with scoring functions are used for defining rankings of 

compounds based on specific binding modes and affinities by performing three-dimensional 

searches of the best ligand pose and using a wide spectrum of different scoring algorithms.

[58, 121, 132] One of the reasons for the relative speed of docking methods is that often a 

rigid receptor conformation is used, in a way that the ligand just needs to be accommodated 

in a fixed structure. However, docking and scoring functions can account for receptor 

flexibility in different ways.[133–135] As we have seen, an indirect way is to use a receptor 

ensemble where different conformations of the active site are included.[88] Using 

techniques such as soft docking, or the softening of van der Waals potentials, that allow for 

certain overlap between the ligand and the receptor, one can also introduce some flexibility.

[136, 137] The main drawback of this method is that it may increase the rate of false 

positives, and the flexibility of the receptor is not fully taken into account. On the other 

hand, some docking algorithms have been developed to explicitly account for protein 

flexibility in the estimation of binding modes and affinities. A few of them allow selected 

side chains to rotate and account partially for the receptor flexibility in the active region.

[138] A different approach is introduced by induced fit docking algorithms, where the 

induced fit rearrangements associated with ligand binding are also considered in the docking 

procedure.[139, 140] However, it is still a challenge to predict large conformational changes 

that may lead to different binding modes. Rosetta Ligand offers a different perspective on 

ligand docking by accounting for both receptor and ligand flexibility during the docking 

stage.[141] Currently, this method allows for full protein backbone and side-chain 

flexibility.[142] Finally, there are also strategies used to account for conformational 

selection in ligand docking, where methods used for the prediction of protein-protein 

interactions are combined with ensemble-based docking methods.[19] The study of docking 

and scoring functions that account for receptor flexibility is an active field in constant 

evolution and to improve the performance and transferability of scoring functions among 

different systems is one of the major challenges of current research. The description of 

large-scale conformational motions is still challenging and may represent a step forward for 

docking techniques. In summary, accounting for receptor flexibility in docking protocols 
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often improves the prediction of binding affinities that may lead to the selection of more 

adequate compounds for experimental validation.

Docking methods have been shown to be extremely useful to sort out a large number of 

chemical compounds and identify potential hits in the very first stages of structure-based 

drug design processes, when a large high-throughput virtual screening of large libraries of 

compounds is performed. Once the initial hits are confirmed by experiments, some of the 

chemical features of these compounds are finely tuned up to improve binding affinities in 

the so-called lead-optimization stage. Scoring methods are still quite limited beyond the hit 

identification phase, but may be used to visualize the binding mode associated with small 

compound modifications. Thus, less approximate and more robust techniques are needed for 

further refinement of the prediction of binding affinities for potential drug candidates. An 

intermediate method between the efficiency of docking and the accuracy of free energy 

perturbations (FEP) and thermodynamic integration (TI) methods are the molecular 

mechanics/generalized Born surface area (MM/GBSA)[143] and the molecular mechanics/

Poisson-Boltzmann surface area (MM/PBSA).[144] These methods, that try to find the 

balance between efficiency and accuracy, consist of calculating binding free energies from 

molecular mechanics force fields and continuum solvent models. In contrast to alchemical 

free energy calculations, only the states corresponding to the ligand bound and unbound are 

simulated using MD. To improve the accuracy of the method, binding free energies are 

averaged through multiple conformations. These techniques fail to achieve convergence 

when large conformational changes are observed in protein dynamics and then, multiple 

conformations or MD snapshots are required. However, the calculation of the entropy term 

becomes remarkably costly when the number of conformations taken into account increases, 

which prevents its application. Then, this method may suffer from insufficient sampling in 

some cases due to difficulties in achieving convergence. Some truncation methods have 

been proposed to reduce the computational cost using a certain cut-off.[145] Other 

alternatives are focused on just taking into account the protein-ligand MD simulation, 

reducing computational cost but this does not account for conformational changes in the free 

and bound receptor.[146] In a recent example Rastelli et al. used a single-energy minimized 

ligand-receptor complex in MM/GB(PB)SA to successfully estimate binding free energies 

of a set of inhibitors of Plasmodium falciparum DHFR.[147] Both MM/GBSA and MM/

PBSA exhibited good correlations with experimental values and with binding affinities 

obtained after averaging over multiple MD snapshots. The accuracy of MM/PBSA was 

found to be higher than that of MM/GBSA for the calculation of absolute binding free 

energies but the performance was similar for relative free energy calculations.[148]

In the lead-optimization phase, it is of great importance to understand the relative 

differences between binding affinities of related ligands to the same drug target. Currently, 

the most accurate ways of computing relative binding free energies are the FEP and TI 

techniques.[61] In contrast to endpoint techniques, FEP and TI belong to the group of 

pathway methods, where the system is transformed from one state to the other by means of 

alchemical changes introduced to the Hamiltonian in combination with MD or Monte Carlo 

simulations in explicit solvent water molecules. These methods rely on the definition of a 

thermodynamic cycle to calculate absolute or relative binding free energies.[149] 
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Alchemical transformations between two states are possible with the fine-tuning of ligand-

receptor interactions. Free energy differences can be calculated between the bound and 

unbound states of the ligand and its receptor, however, alternate cycles can be defined to 

account for free energy of solvation or relative binding free energy between two ligands. 

Using FEP, Bollini and coworkers were able to optimize a number of docking hits to obtain 

potent anti-HIV inhibitors with EC50 values in the range of 55 to 320 pM in human T-cells.

[150] Further chemical modifications of these inhibitors proposed by means of FEP 

calculations have been shown to improve the solubility and activity against other HIV 

variants with respect to previously approved FDA drugs. However, alchemical free energy 

calculations are associated with an elevated computational cost because they require 

sufficient sampling to obtain suitable overlap between the phase space of the successive 

states of the reaction coordinate that connects the initial and final states. Consequently, to 

achieve convergence of free energy calculations, it is of great importance to sufficiently 

sample the conformational changes that the system undergoes under alchemical conditions, 

as well as converge the energy of those conformations, which can require large amounts of 

sampling. Since the value of the binding free energy relies on sampling, all simulations will 

be different, leading to different values. This problem can be partially offset by running 

multiple independent simulations to get better statistics and an estimation of the error. For 

instance, methods such as the independent-trajectory thermodynamic integration (IT-TI) that 

take into account multiple independent simulations have been used to calculate accurate 

relative binding free energies for some inhibitors of the H5N1 avian influenza virus 

neuramidase.[151] Alchemical free energy methods are accurate but time consuming and the 

analysis of several ligands that bind to the same receptor still requires large amounts of 

computational time. Additionally, the best accuracy is often achieved within a congeneric 

series of compounds. Enhanced sampling methods can be used to address the sampling 

limitation associated with free energy calculations by exploring the free energy landscape 

more effectively, as discussed below.

Biomolecular recognition is an intricate process that takes place in a series of orchestrated 

ligand and receptor motions and conformational changes. In this conformational dance, the 

ligand acts to selectively pick some preexistent receptor conformation, which leads to the 

stabilization of certain conformations. Consequently, it is crucial to identify the 

conformations that will improve the estimation of binding affinities. As we have seen above, 

enhanced sampling techniques perform remarkably well to rapidly identify low energy 

configurations. If these methods are combined with existent alchemical free-energy 

methods, the convergence of these calculations may be more quickly achieved, decreasing 

computational cost as well as making free energy methods more applicable for the rational 

drug design process.[52] Accelerated molecular dynamics have been applied in a number of 

different ways to free-energy calculations. To overcome the issues related to reweighting 

and improve free-energy convergence, Oliveira and coworkers proposed the upside down 

aMD method.[152] This method makes the energy barriers more accessible by lowering 

high-energy barriers and keeping low-energy configurations unchanged. This technique 

improves population statistics of low energy minima, while accelerating the transition 

between energy barriers and facilitates the exploration of the conformational space. 

However, when the system of interest has a large number of degrees of freedom and a 
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complex free energy landscape the method is difficult to parameterize. To extend the 

application of the upside down approach to biomolecules, Sinko et al. proposed what they 

called windowed aMD.[153] This method requires more parameters than original aMD, but 

has been shown to achieve a rapid convergence of free energy calculations. However, the 

improvement in reweighting efficiency stemmed from the frequent transitions between the 

normal potential energy surface and the modified potential energy surface. These transitions 

can be harder to parameterize with increasing system complexity, but windowed aMD was 

successfully used to calculate binding free energies between the antibiotic vancomycin and 

two small glycopeptides-binding partners. Finally, one of the main sources of error 

associated with reweighting is the level of acceleration and the size of the system. 

Selectively applied aMD restrains the acceleration to only a portion of the system, more 

precisely, to a set of predefined dihedral angles in order to overcome the issues associated 

with reweighting.[105] Free energy calculations on the decoupling of oseltamivir’s binding 

to neuromidase were performed for a set of twenty dihedrals. However, while this technique 

provides a better statistical recovery it requires the manual selection of dihedral angles that 

are important for the biomolecular recognition process.

Conclusions

Over the last decades, several biomolecular recognition mechanisms have been proposed 

that try to explain how ligand binding occurs and how such a binding event triggers a set of 

responses in the receptor. Proteins are inherently flexible bodies displaying a wide range of 

motions that span from local side-chain rotations to global conformational changes. In the 

course of this permanent motion, proteins are capable of adopting multiple conformations 

generating an ensemble of structures that may accommodate a wide variety of ligands. In the 

framework of the conformational selection mechanism, during the process of biomolecular 

recognition some of these conformations are selectively stabilized when the ligand binds to a 

specific binding site of the receptor and, thus, such conformations are particularly relevant 

for structure-based drug design. Ensemble-based screening methods aim to account for 

receptor flexibility, helping to improve the predictive power of receptor-based drug 

discovery. However, an extensive set of crystal structures of different and relevant 

conformations of the bound and unbound receptor is only available for a very limited 

number of proteins. The computational techniques that we have described in this review 

offer a way to extensively explore the conformational space of proteins and can help to 

identify biologically and pharmacologically relevant states that are difficult to trap with 

experimental techniques. The allowance for receptor flexibility improves the accuracy of 

algorithms used to estimate binding affinities between a potential therapeutic drug and its 

target. Methods that efficiently explore the conformational space and techniques that 

provide accurate and fast calculation of binding affinities are important to improve the 

predictive power of virtual screening protocols. In addition, accounting for receptor 

flexibility also can aid in the identification of cryptic binding sites that may remain hidden in 

the unbound receptor structures. This is of particular interest for recognizing potential 

allosteric sites. Allosteric transitions open a new broad range of possibilities in the field of 

drug design. Thus, the identification of allosteric sites is of paramount importance towards 

the discovery of new drugs that can target such relevant allosteric pathways.
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Research Highlights

Receptor flexibility plays a key role in structure-based drug design.

Receptor ensemble-based methods improve predictive power of virtual screening.

MD and enhanced sampling techniques are useful tools to explore conformational 

space.
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Fig. 1. 
Schematic pathways of biomolecular recognition. Conformational selection and induced fit 

mechanisms are depicted in dashed and solid lines respectively.
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Fig. 2. 
Accounting for receptor flexibility in structure-based virtual screening. Examples of 

methods used at each step that are discussed in the present review.
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Fig. 3. 
Accelerated Molecular Dynamics. Equations to calculate boost energy, V*(ṙ), and boost 

potential, ΔV(ṙ). The true potential energy function is shown as a solid black line, ΔV(ṙ). A 

series of modified potential energy functions are represented in different colors for various 

values of α as shown in the plot while E was always fixed at 60 (black dashed line).
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Fig. 4. 
Principal Component Analysis. PCA build with E. coli UPPS crystal structures. Substrate 

bound structures in yellow are closed; apo (PDB ID code 3QAS) and non-bisphosphonate 

inhibitors in red are in slightly open conformation; bisphosphonate inhibitors in blue are 

crystallized in open conformations.
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Fig. 5. 
Binding sites of UPPS. Site 1 (substrate site) and Site 2–4 are binding sites where inhibitors 

can bind. Bisphosphonates can bind to all sites as shown in PDB ID code 2E98. All of these 

sites were predicted by FTMAP to be druggable.
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