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Abstract

To examine whether the long non-coding RNA (lncRNA) metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is altered in the
endothelial cells in response to glucose and the significance of such alteration. We incubated human umbilical vein endothelial cells with media
containing various glucose levels. We found an increase in MALAT1 expression peaking after 12 hrs of incubation in high glucose. This increase
was associated with parallel increase in serum amyloid antigen 3 (SAA3), an inflammatory ligand and target of MALAT1 and was further accom-
panied by increase in mRNAs and proteins of inflammatory mediators, tumour necrosis factor alpha (TNF-a) and interleukin 6 (IL-6). Renal tis-
sue from the diabetic animals showed similar changes. Such cellular alterations were prevented following MALAT1 specific siRNA transfection.
Results of this study indicate that LncRNA MALAT1 regulates glucose-induced up-regulation of inflammatory mediators IL-6 and TNF-a through
activation of SAA3. Identification of such novel mechanism may lead to the development of RNA-based therapeutics targeting MALAT1 for dia-
betes-induced micro and macro vascular complications.
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Introduction

Diabetes is a surging epidemic not only in North America but also
worldwide. Among the diabetes-induced complications, retinopathy,
nephropathy, cardiomyopathy, neuropathy and atherosclerosis,
causing stroke and myocardial infractions are considered to be the
major causes of morbidity and mortality in the diabetic population
[1–3]. The macro and micro vascular affections are key features of
such complications. Endothelium is a major component of the vas-
cular bed and one of the key cell type affected by glucose [1–3]. As
endothelium forms a protective barrier for all major organs in the
body, maintaining endothelial homeostasis is essential for physiolog-
ical organ function [1]. Under conditions of nutrient excess, such as
diabetes, endothelial insult leads to overproduction of specific cyto-
kines causing an inflammation-like condition. Hence, understanding
the molecular mechanisms causing endothelial inflammation would
help prevent endothelial as well as end organ damage in diabetes [1,
2]. Several molecules have been identified as the major initiators
and mediators of inflammation [1, 3]. Here, we reveal role for
metastasis associated lung adenocarcinoma transcript1 (MALAT1), a

6.5 Kb nuclear residing long non-protein coding RNA, in hyperglyca-
emia induced endothelial damage. MALAT1 was originally shown to
control of tumour metastasis and cancer cell survival [4]. MALAT1
executes such functions by its ability to inhibit tumour cell death
through induction of proteins like Bax, Bcl-2 and P53 [5, 6]. These
molecules are involved in cell cycle progression, vascularization and
angiogenesis. However, specific mechanism(s) through which this
non-protein coding RNA mediates downstream effects remains
unidentified. Specifically, MALAT1’s roles in noncancerous cells sub-
jected to metabolic or nutrient stress haven’t been investigated in
depth.

Recently, MALAT1 has been identified as a regulator of inflamma-
tory cytokine production in other systems [7]. Study conducted by
Yan et al. was first to show MALAT1 alteration in the retina in diabe-
tes [8]. Here, we investigated whether MALAT1 regulates inflamma-
tory pathways involving inflammatory cytokines in diabetes.

Along with interleukin 6 (IL-6) and tumour necrosis factor alpha
(TNF-a), we investigated mechanisms by which MALAT1 may regu-
late these cytokines through serum amyloid antigen (SAA). We fur-
ther expanded these studies in vivo. Although both in type 1 and in
type 2 diabetes, production of inflammatory cytokines such as SAA,
IL-6 and TNF-a have been shown to play important roles, no studies
have previously been performed exploring the transcriptional mecha-
nisms, specifically with respect to that of the role of long non-coding
RNAs (lncRNA), in glucose-induced endothelial damage [3, 9]. In this
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study, we have tried to identify whether in endothelial cells (i) glucose
alters lncRNA, MALAT1, (ii) whether such alteration has functional
significance, i.e. associated with regulation of downstream inflamma-
tory mediators and (iii) whether changing MALAT1 expression cor-
rects glucose-induced inflammatory cascades.

Materials and methods

Cell culture and reagents

Human umbilical vein endothelial cells (HUVECs) were obtained from

Lonza (Canada Missisauga, ON) and were cultured in endothelial basal

medium – 2. This medium was supplemented with the required growth
factors (Lonza –growth factor Kit) and 5% foetal bovine serum. Follow-

ing overnight serum starvation cells were incubated with 5 mM D-glu-

cose (NG) or 25 mM D-Glucose (HG) or 25 mM L-Glucose (LG, osmotic

control) or with other reagents as specified.

Animal studies

All animal studies, were approved by the Western University Council on

Animal Care Committee. The experiments were performed in accordance

to The Guide for the Care and Use of Laboratory Animals (NIH guide-

lines, revised in 1996). Animals were made diabetic using Streptozoto-
cin dissolved in citrate buffer maintained at a low acidic pH (70 mg/kg

of mice, IP injection X3 on alternate days), non-diabetic (Control) ani-
mals were given the Citrate buffer alone. After the third dose of injec-

tion, hyperglycaemia was monitored using Freestyle Freedom Lite blood

glucose monitoring system (Abbott Diabetes Care, Saint-Laurent, QC,

Canada). Diabetic animals were maintained in hyperglycaemic state for
2 months on a standard rodent diet with water ad libitum. The animals

were monitored regularly for blood glucose and body weight. At the end

of 2 months, the animals were killed, kidneys were isolated and frozen
for future use.

Real time quantitative PCR

RNA was extracted using TRizolTM reagent (Invitrogen, burlington, ON,

Canada). In brief, following Trizol treatment, chloroform was added to
the cell lysate and the samples were centrifuged at 12,000 9 g for

15 min. This was followed by subsequent treatment with isopropanol

and wash with ethanol with centrifugation. Collected pellets were treated

with RNAse free water. Following concentration determination by UV
spectrophotometry, 2 lg of total RNA was used to make cDNA using

reverse transcription kit from Applied Biosystems Inc, USA. The levels

of target gene and house-keeping gene (18SRNA, Grand Island a widely
used stable internal reference gene) were measured using a SYBR green

dye in a light cycler (Roche Diagnostics, PQ). The primer sequences for

human MALAT1 are forward primer Laval – CTTAAGCGCAGCGCCATTTT,

reverse primer CCTCCAAAC CCCAAGACCAA, human SAA3 – forward
primer CTGGGTCACTGCTCC TCTTC, reverse primer ACTAGCACC

TTTGCCCAGTG. Predesigned human TNF-a [Quantitech primer

HS_TNF_3_SG (Cat no-QT01079561)] and human IL-6 [Quantitech
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Fig. 1 Hyperglycaemia induces SAA 3 gene expression and protein production in the endothelial cells through long non-coding RNA MALAT1. Endo-

thelial cells were exposed to media containing normal (NG, 5 mM) and high D-glucose (HG, 25 mM) concentrations for various durations. RNA

analyses by RT-PCR (mean � S.E.) showed increase in (A) MALAT1 expression peaking at 12 hrs, but not when the cells were incubated with
25 mM of L-glucose (LG, osmotic control) in association with (B) increased SAA3 expression. (C) MALAT specific siRNA transfection (Si) caused

significant reduction in basal- and glucose-induced MALAT1 up-regulation. Such knockdown of MALAT1 further normalized basal- and glucose-

induced (D) SAA3 mRNA and (E) protein expression. [RNA data are expressed as a ratio to 18sRNA (mean � S.E.), normalized to controls, n = 3

or more per groups, *: significantly different from corresponding NG, #: significantly different from corresponding HG, Sc: scrambled siRNA].
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primer HS_IL-6_1_SG (Cat no-QT00083720)] were obtained from Qia-

gen (Toronto, ON, Canada).

ELISA assay

Following isolation of proteins from the endothelial cells using radioim-

munoprecipitation assay buffer, protein concentrations were measured

using BCA protein assay kit (Pierce, Rockford, IL, USA). Equal concen-

trations and amounts of total protein lysates from treatment groups
were used each For ELISA. Human SAA 3 (cat no. CSB E11836h) kit

was obtained from Cusabio-Biotech Co. Wuhan, Hubei, China For

human TNF-a and human IL-6, ELISA kits (cat no. DTA00C and D6050

respectively) from R&D Systems (Mineapolis, MN, USA) were used.
Following the treatments and incubation procedures as suggested by

the vendors, the samples were read at 450 nm and background cor-

rected at 568 nm.

SiRNA transfection

SiRNAs targeted against human MALAT1 (product ID, nos’. 272231,
272233) were obtained from Life Technologies. In brief, all experimental

groups were replenished with serum, growth factor and antibiotics free

medium overnight. The cells were then either treated with SiRNA for

human MALAT1 or the scrambled SiRNA (product ID, AM4635; Life
Technologies) in Lipofectamine� 2000 transfection reagent (Invitrogen)

following protocols provided by the vendors. Following initial assess-

ments, we found that although both are effective, no. 272231 was
slightly more robust (although both reduced MALAT1 RNA ~65%; no.

272231 reduced SAA3 mRNA expression ~50%, compared to ~62% by

no. 272233). Hence, in the subsequent experiments no. 272231 was

used as MALAT1siRNA. For SiRNA for SAA we used SAA SiRNA (h)
which is non-specific but targets SAA1, SAA2 and SAA3 (Santa Cruz

Biotechnology, USA). We also used a second siRNA (cat no. AM16708;

Life Technologies Santa Cruz, CA). Following a similar strategy as

above, we used siRNA from Santa Cruz for subsequent experiments.
Following transfection the cells were exposed to various treatments and

were used for RT-qPCR and ELISA as above.

Intracellular ROS measurement

After the HUVEC cells have reached 75% confluence, they were subjected

to transfection and were exposed to normal and high glucose conditions in
a serum free medium. Following 12 hrs of high or low glucose incubation,

the cells were exposed to 20,70-dichlorofluorescein diacetate in required

concentrations for 20–30 min. The reactive oxygen species levels were

read by the fluorescence, emitted by the cell permeable dye converted to
20,70-dichlorofluorescein after being reacted with intracellular reactive oxy-

gen species. The excitation and emission wavelengths were 492 and

521 nm respectively.

Chemicals and reagents

All chemicals, unless otherwise specified, were obtained from Sigma
Chemicals, Oakville, ON Canada.

Statistical analysis

All experiments were performed in triplicate at least 3–5 times. The data

are expressed as means � S.E.M. Significance were determined using

ANOVA and/or Student’s t-test with post hoc analysis using Graph Pad
Prism software (La Jolla, CA, USA). The differences between groups

were considered significant at the level of P < 0.05.

Results

Glucose stimulates early induction of MALAT1 in
endothelial cells

As endothelial cells are primary targets of glucose-induced damage,
we investigated such changes in well-characterized HUVECs. Here,
we found that 25 mM glucose (HG) up-regulates MALAT1 RNA
expression compared to 5 mM glucose (NG). We found >2-fold

A B
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Fig. 2 Hyperglycaemia regulates expres-
sion inflammatory genes IL-6 and TNF-a
through MALAT1 in endothelial cells. (A)
HUVEC were treated with normal (NG,

5 mM) and high glucose (HG, 25 mM)
and were transfected with siRNA for MA-

LAT1 (Si) and scrambled control (Sc).

Such siRNA transfection reduced both

basal- and glucose-induced up-regulation
of (A) IL-6 and (B) TNF-a mRNAs, (C) IL-
6 protein and (D) TNF-a protein [mRNA

data are expressed as a ratio to 18sRNA
and all data (mean � S.E.) are normalized

to controls, *: significantly different from

corresponding NG, #: significantly differ-

ent from corresponding high glucose
groups, n = 3 or more per group].

1420 ª 2015 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.



increase MALAT1 expression levels after 6 hrs of incubation with HG,
reaching to a peak of >5-fold increase after 12 hrs (Fig. 1A). No such
changes were seen with 25 mM L-glucose (osmotic control, Fig. 1A).

MALAT1 regulates inflammatory ligand
expression in hyperglycaemia

Zhang et al. have shown that MALAT1 is dispensable for growth,
development and survival under a normal physiological setting [4]. In
addition, they demonstrated that SAA3, a regulator of inflammatory
cascade is a direct target of MALAT1. SAA3 is further diminished in
the MALAT1 KO mice [4]. In our study, incubation of endothelial cells
in high glucose caused increase in SAA3 expression peaking at
12 hrs (Fig. 1B), in association with increased MALAT1. We used
siRNA to demonstrate a direct relationship both in low and high glu-
cose conditions. Such siRNA transfection lead to >60% reduction in
MALAT1 RNA in NG and lead to a significant drop in SAA3 expression
(Fig. 1C and D). Furthermore, such transfection of HUVECs in HG
normalized glucose-induced increase in MALAT1 RNA and SAA3
mRNA expression (Fig. 1C and D). We further examined SAA3 protein
levels both in NG and HG conditions with or without SiRNA transfec-
tion. As expected, glucose-induced ~2.5-fold increase in SAA3 pro-
tein, was normalized to control levels following siRNA knock down of
MALAT1 in HG (Fig. 1E). These data confirm that MALAT1 is a direct
regulator of inflammatory ligand, SAA3, both under basal and under
hyperglycaemic condition.

MALAT1 inhibition attenuates the inflammatory
response seen in hyperglycaemia

Results from the previous studies have shown that SAA3 augments
transcription of IL-6 and TNF-a with subsequent increase in the sig-
nalling of these classic inflammatory markers [9] in mice models.
SAA 3 was considered a pseudogene in humans, till Larson et al., first
showed that SAA 3 is regulated by prolactin and LPS in human mam-
mary gland epithelial cells [10]. Hence, we examined whether glu-
cose-induced increased human SAA3 carries out similar downstream
functions. In keeping with such notion, following 12 hrs of HG incu-
bation, when the increase in MALAT1 and SAA3 reached the peak,
there were augmented expression of mRNA and protein of IL-6 and
TNF-a (Fig. 2). Furthermore, siRNA mediated gene silencing of
MALAT1 also showed reduction in IL-6 and TNF-a mRNA and protein
levels confirming a direct regulatory relationship (Fig. 2).

MALAT1 induced inflammatory cascade is
significantly regulated by SAA

To examine whether hyperglycaemia induced inflammatory markers
induction by MALAT1 requires SAA, we tried silencing MALAT1 and
added Apo–SAA, a recombinant protein. Addition of Apo SAA further
aggravated the cytokine induction than high glucose alone at 12 hrs

even in the presence of MALAT1 SiRNA. However, when SAA was
silenced, we were able to bring down that drastic increase in IL-6
mRNA and TNF mRNA significantly (Fig. 3) but could nt normalize to
the control levels. These findings suggest that there are other path-
ways, in addition to the MALAT1-SAA axis may also be playing a role
following hyperglycaemic stress.

The early induction of MALAT1 in
hyperglycaemia is not evident at later time-
points and inflammatory cytokines follow similar
pattern

The early induction of MALAT1 RNA, seen following high glucose
incubation of HUVECs was not apparent at 24, 48 or 72 hrs,

A

B

Fig. 3MALAT1 induced regulation of cytokine induction occurs mostly
through SAA. HUVECs, treated with 5 mM glucose (NG) or 25 mM glu-

cose (HG), were transfected with siRNA for MALAT1 and scrambled

siRNA (SCr) used as control. Apo-SAA, a recombinant peptide, was
used to stimulate SAA pathways and bring about downstream effects.

(A) IL-6 and (B) TNF-a MRNAs were measured at 24 hrs time-point in

the presence and absence of MALAT1 silencing. [mRNA data are

expressed as a ratio to 18sRNA and all data (mean � S.E.) are normal-
ized to controls, n = 3 or more per group, *: significantly different from

control and @: significantly different from Apo SAA treated groups with

MALATSi, SAA Si: SAA3 siRNA].
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compared to normal glucose (Fig. 4A). It is possible that, either MA-
LAT1 has a shorter half-life or their stability is influenced by hyper-
glycaemia at a longer time period. It is also possible that following
initiation, other glucose-induced counter-regulatory mechanisms
come into place. Interestingly, analysis of mRNA expressions of IL-6
and TNF-a at 48 hrs showed a sustained increase even when MA-
LAT1 mRNA expression was normalized as shown in Figure 4. How-
ever, in spite of an initial rise at 12 hrs time-point following
hyperglycaemia (approximately 2.5-fold for both these transcripts), at
48 hrs the level of such up-regulations were lower (1.5- and 2-fold
increase for IL-6 and TNF-a respectively). It could be possible that
even though the stimulus by MALAT1 had subsided, the cytokines
(IL-6 and TNF-a) could turn on their own gene and cause their mutual
induction through a positive feedback loop. Even the protein expres-
sions of IL-6 and TNF-a were high at this point, IL-6 protein was
maintained at almost at the same level when we compared the fold
change at 12 and 48 hrs protein levels. The early rise (12 hrs) in
TNF-a protein (almost 2.5-fold) was reduced at 48 hrs (almost 1.5-
fold) time-point. These findings may suggest that IL-6 and TNF-a
may not be direct targets of MALAT1 and such regulations are medi-
ated through downstream molecules, in this case SAA, thus prolong-

ing the effects. However, exact cause(s) for this rise and fall of
MALAT1 and downstream mechanisms remain to be identified and
needs specific experiments, which are beyond the scope of this
study.

MALAT1 is increased in the kidneys of mice with
diabetes

To examine whether such changes are of relevance in vivo, we
analysed kidneys from streptozotocin induced diabetic mice and
age-and sex-matched controls after 2 months of follow-up. As
endothelial cells, lining the renal microvasculature are one of the
first cell type exposed to the hyperglycaemic milieu, we thought
that kidneys are good targets for analysing the inflammatory effects
of hyperglycaemia. Diabetic mice were hyperglycaemic (diabetic
mice 22.2 � 3.6 mmol/l versus controls 6.8 � 0.8 mmol/l,
P < 0.001) polyuric and showed lower bodyweight (diabetic mice
23.5 � 0.90 g versus controls 32.1 � 3.6 g, P < 0.001). We saw
a significant increase in MALAT1 RNA expression and a moderate
increase in SAA3 mRNA expression (almost ~20%) compared to

A

B

C

Fig. 4 The effect of hyperglycaemia on MALAT1, IL-6 and TNF-a at later time-points. HUVECs incubated with 5 mM (NG) and 25 mM glucose (HG)

showed (A) no significant alteration of MALAT1mRNA (measured by RT-PCR) expression after 24, 48 or 72 hrs. (B) IL-6 and TNF-a mRNA (mea-
sured by RT-PCR) and protein expressions (measured using ELISA) were increased following HG incubation at 48 hrs, but (C) returned to NG levels

after 72 hrs of incubation [mRNA data are expressed as a ratio to 18sRNA and all data (mean � S.E.) are normalized to controls, n = 3 or more

per group, *: significantly different than control and P < 0.05, AU: arbitrary units of protein].
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the controls. Such changes were associated with increased IL-6
and TNF-a mRNA levels in diabetes (Fig. 5).

MALAT1 silencing dampens the early rise in
oxidative stress

We were interested in finding out whether early inhibition of MALAT1
(at 12 hrs) has functional significance in endothelium. Glucose-
induced oxidative stress is a key alteration in the endothelial cells and
is a mediator of most, if not all, other downstream effects [11].
Hence, we measure oxidative stress as a functional indicator. We
silenced MALAT1 and compared the ROS generation following hyper-

glycaemic stress at 12 hrs. We found a 4.5-fold increase in ROS pro-
duction in high glucose condition, which was attenuated following
MALAT1 silencing (Fig. 6).

Discussion

In this study we have shown that lncRNA MALAT1 is induced follow-
ing short-term hyperglycaemia which turns on early inflammatory
events in the endothelium through SAA3. Although the ability of hy-
perglycaemia to induce inflammatory markers has been previously
studied, mechanistic role of a non-coding RNA to mediate such pro-
cess has not been identified previously.

In a chronic disease like diabetes, low grade inflammatory
changes associated with increased production of inflammatory medi-
ators may be a key mechanism in the pathogenesis of chronic dia-
betic complications [12]. Glucose-induced oxidative DNA damage
may trigger increased expression of specific cytokines causing tissue
damage. Here, we have identified a novel mechanism which may play
a key role in such process at the transcriptional level. Identification of
such process further opens up the possibilities of novel therapies tar-
geting specific RNA molecules. It is well known that only 1.5% of the
entire genome has protein-coding capacity [13, 14]. Non-protein
coding RNAs are probably of importance and relevance in normal
development and in various diseases through their capacity to regu-
late transcription and translation [13, 14]. Hence, they constitute
potential drug targets capable of producing phenotypic changes. The
specific roles of most of these lncRNAs remain mysterious although
they are known to play regulatory roles in various, if not all, biological
processes [13, 14]. MALAT1 (AKA NEAT2: noncoding nuclear-
enriched abundant transcript 2, HCN, LINC000 47) is a large, infre-
quently spliced non-coding RNA, which is highly conserved. MALAT1
is expressed in the nucleus and was originally described to regulate
metastasis and cell motility [4]. MALAT1 is now known to be of
importance in other disease processes [4]. MALAT1 regulates cell
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Fig. 5MALAT1 expression is up-regulated

in the kidneys of diabetic mice. Streptozo-
tocin induced diabetic mice maintained in

the hyperglycaemic state for 2 months

showed increased mRNA expression of
both (A) MALAT1 and (B) SAA 3. Such

increases were associated with (C) TNF-a
and (D) IL-6 mRNA up-regulation (data

are expressed as mean � S.E., expressed
as a ratio to 18sRNA, normalized to con-

trols, n = 4–5/group, *: P < 0.05).

Fig. 6 Effect of MALAT1 inhibition of endothelial ROS levels. In the

endothelial cells, 25 mM glucose (HG) glucose-induced increased ROS

production was prevented following MALAT1 SiRNA transfection (SiMA-
LAT1) but not by scrambled siRNA (Scr) transfection (NG = 5 mM glu-

cose, the data are mean � S.E., n = 3 or more/group, n = 3 or more

per groups, *: significantly different from NG-Scr, #: significantly differ-
ent from HG-Scr, AU: arbitrary units).
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survival through modulating p53 expression [5]. With respect to other
cytokines, MALAT1 has been shown to regulate TGFb signalling by
modulating activity of SMAD2/3 [15]. In addition, studies in MALAT1
knockout mice have shown SAA3 is regulated by MALAT1 and that
SAA3 stimulates IL-6 and TNF-a production through NFjB and p38
mitogen activated protein kinase signalling [4, 16]. Till to date there
has been no study revealing the signalling mechanisms associated
with MALAT1 induction and how it could play a role in hyperglycae-
mic stress. Interestingly, we found early increase followed by a drop
of MALAT1, which in turn positively up-regulate the inflammatory
ligand like SAA3, ultimately augmenting production of inflammatory
cytokines like IL-6 and TNF-a. However, this pattern is different than
the cancer cells where such expression levels remain high [5, 14].
Further duration-dependent studies at various stages of diabetes
using animal models (acute, short-term and long-term) would reveal
whether this lncRNA, MALAT1 is a real culprit as an initiator of inflam-

mation and oxidative stress. In keeping with such notion we have
shown that MALAT1, through SAA3, also regulates glucose-induced
inflammatory changes and oxidative stress. Such changes may influ-
ence endothelial stability. Endothelial homeostasis is essential for all
organs and for macro and micro vessels. If we understand the
switches involved in early endothelial inflammatory process, we may
be able to retard the progress and consequences of such damage.

In summary, in this study, we revealed a novel signalling
nexus involving the lncRNA, MALAT1 and SAA3 which then turns
on the inflammatory mediators in the endothelium as shown in
the summary diagram (Fig. 7). Understanding such mechanisms
may eventually lead to novel RNA based therapeutic strategies
for diabetic induced micro- and macro vascular complications.
However, it is to be noted that the demonstrated role of MA-
LAT1-SAA–Cytokine needs further evaluation in well-designed ani-
mal experiments with long-term diabetes. Such experiments may
show whether MALAT1 may lend itself as a possible drug target
in chronic diabetic complications.
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