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Abstract

Objective—The perineal body must undergo a remarkable transformation during pregnancy to 

accommodate an estimated stretch ratio of over 3.3 in order to permit vaginal delivery of the fetal 

head. Yet measurements of perineal body elastic properties are lacking in vivo, whether in the 

pregnant or non-pregnant state. The objective of this study, therefore, was to develop a method for 

measuring perineal body elastic modulus and to test its feasibility in young nulliparous women.

Methods—An UltraSONIX RP500 ultrasound system was equipped with elastography software. 

Approximately 1 Hz free-hand sinusoidal compression loading of the perineum was used to 

measure the relative stiffness of the perineal body compared to that of a custom reference standoff 

pad with a modulus of 36.7 kPa. Measurements were made in 20 healthy nulliparous women. Four 

subjects were invited back for second and third visits to evaluate within- and between-visit 

repeatability using the coefficient of variation.

Results—The mean± SD elastic compression modulus of the perineal body was 28.9 ± 4.7 kPa. 

Within- and between-visit repeatability averaged 3.4% and 8.3%, respectively.

Conclusion—Ultrasound elastography using a standoff pad reference provides a valid method 

for evaluating the elastic modulus of the perineal body in living women.
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Introduction

The perineal body lies interposed subcutaneously between the vagina and the anal cannal. It 

is most consistently recognizable anatomically (Oh 1973) and on MR images (Larson et al. 

2010) in the midsagittal plane as a pyramidal structure made up of three regions: superficial, 

mid and deep. The left and right puboperineal muscles, originating ~1 cm on either side of 

the pubic symphysis from the posterior aspect of the pubic bone, each insert into the left and 

right lateral margins, respectively, of the perineal body mid region (Figure 1A). While the 

composition of the perineal body has been described has ‘fibromuscular’ (Soga et al. 2007) 

most text books consider it passive connective tissue. During the second stage of vaginal 

birth, the left and right puboperineal muscles, with the perineal body interposed, are 

arranged in series to form a “U-shaped” sling which a baby's head must stretch enough to be 

able to pass through (Figure 1B) Ashton-Miller and DeLancey 2009). For example, this 

sling is subject to a remarkable stretch ratio, ~3.3, during the late second stage of labor (Lien 

et al. 2004, Jing et al. 2012) raising the risk of stretch-related trauma. In regard to that risk, it 

has been hypothesized that the perineal body may act as a “fusible link” during late second 

stage (Ashton-Miller & DeLancey 2009) in that the more it can stretch, the less the adjacent 

puboperineal muscles have to stretch. This then reduces the risk for perineal body injury as 

well as the more common injury near the origin of the puboperineal muscles at the pubic 

bone during difficult deliveries (Kearney et al. 2006).

Despite the importance of the perineal body and the remarkable change in mechanical 

properties it must undergo during vaginal birth, there is a dearth of in vivo measurements of 

perineal body tissue mechanical properties, even in the non-pregnant state. Two non-

invasive methods of imaging the perineal body include MR and ultrasound. Since the latter 

is relatively inexpensive and already available in every labor and delivery unit, it was 

practical to use in the present study. Quasistatic ultrasound elastography is a test method 

based on compressing the tissue of interest under the ultrasound transducer strain 

distribution within a region of interest (ROI) is often illustrated by a color map, where large 

during ordinary B-mode scanning (Ophir et al, 1991). Computerized analysis of changes in 

the speckle distance are then performed. The strain, low stiffness (soft tissue) is indicated in 

red and small strain, high stiffness (hard tissue) in blue. The strain ratio between two ROIs 

can further be calculated. The stiffness of a target soft tissue can then be expressed as an 

elastic modulus (N/m2) given that strain ratio if the elastic modulus of one ROI is known a 

priori.

Elastography of perineal body is complicated by the absence of a natural reference material 

in that anatomical area; this is in contradistinction to the breast where adipose tissue can 

serve as a reliable reference material (Gong et al, 2011). For this reason it has not been 

possible to make a quantitative comparison of the stiffness of perineal body at different 

stages of pregnancy or between women at any one of those stages.

The objective of this study, therefore, was to demonstrate the feasibility of estimating 

perineal body tissue properties in vivo by using a quantitative ultrasound elastrography and 

an artificial reference material.In this paper we report preliminary findings in 20 nulliparous 
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women and test the hypothesis that perineal body elastic modulus in nullipara is similar to 

that of published striated muscle.

Methods

The Development of the Synthetic Reference Standoff Pad

A custom-made polyvinyl chloride plastisol (PVCP) standoff pad (Figure 2A) was 

developed. A mixture of liquid plastic and plastic softener, in a ratio of 2 : 1 

(www.pouryourownworms.com), was heated to 400 °F and then poured into a custom mold 

to create a standoff pad with the sleeve that is pulled over the distal aspect of an ultrasound 

probe. Small micro glass beads were added to the mixture to add micro reflectors within the 

standoff pad. The standoff pad surface parallel to the transducer was cast with a layer of 

sandpaper at the bottom of the mold to produce a rough surface that reduces reflection 

artifacts (Huang et al, 2007). Samples made from the same mixture were cast and placed in a 

materials testing machine to measure the elastic modulus at a strain rate of 20%/s in standard 

compression tests. Figure 2B shows the typical compression test stress and strain curve, with 

the estimated elastic compression modulus of 35 kPa. Figure 2C demonstrates that after the 

first week of curing, the pad's modulus had stabilized with little additional change over the 

next month. The elastic compression modulus of standoff pad compression samples was 

found to average 36.7 kPa and this value was used as a common reference in estimating the 

perineal body modulus from the measured strain ratio.

Ultrasound Elastography Imaging Technique

Twenty health nulliparous women were recruited as controls in ongoing Institutional Review 

Board approved study of fetal head descent and term pregnancy's effect on perineal tissue 

properties. They had no connective tissue and neurologic disorder, no genital anomalies and 

were without prior urogynecologic surgery. Their perineal bodies were first visually 

inspected and then evaluated by a single operator who is an experienced midwife (LKL) and 

knowledgeable about perineal body anatomy. The data were collected using UltraSONIX 

RP500 ultrasound system (Analogic Ultrasound, Peabody, Massachusetts) with an L14-5/38 

linear transducer having a central frequency of 10 MHz running elastography software 

(Ophir et al, 1991, Zahiri-Azar and Salcudean, 2006) Each testing visit included three trials. 

Subjects were in supine position with sole of the feet together flat on the bed and knees apart 

as far as they felt comfortable to expose the perineum. The distance between the knees were 

kept same between trials. During each trial, the ultrasound transducer was held 

perpendicular to the skin surface of perineal body region (Figure 3: A, B) and was pressed 

into the perineum by free-hand manipulation using a sinusoidal compression force applied at 

~1 Hz using a metronome. Visual feedback on the screen guided the operator to target the 

maximum strain deformation in the standoff pad at around 10% between minimum and 

maximum compression. B-mode images and strain distribution color maps from 

elastography were recorded at 20 Hz for about 5s. A quality bar provided by the 

manufacturer indicated whether two consecutive image frames contained the same 

anatomical structures and whether the strain values were within a plausible range. Trials 

exhibiting obvious out-of-plane slippage motions, imaging artifacts and/or poor quality 

indicators were excluded from further analysis.
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Data Analysis Methods

An off-line Matlab program (version 2013a, MathWorks. Inc) was written for the data 

analysis. First, the anatomical regions were identified and tracked in B mode images (Figure 

3C) and then average strain in the ROI for perineal body (based on anatomy, roughly 

triangularly shaped with the height around 1.5cm ) and standoff pad were calculated from 

strain distribution maps(Figure 3D). The frames in which maximum strains in the standoff 

pad were achieved with satisfactory quality indicators were selected from the ~5 s cineloop 

to calculate each strain ratio between perineal body and standoff pad. The mean strain ratio 

was used to estimate the elastic modulus for each subject given the known standoff pad 

elastic modulus (36.7 kPa). A histogram of elastic moduli was plotted to examine the nature 

of the distribution in the healthy nulliparous perineal body.

Method Validation and Repeatability

A PVCP phantom was made in a cylinder shape using the similar technique as the standoff 

pad, but with a 3 to 2 plastic-to-softener ratio. Samples of the phantom material were cast 

and tested using a standard compression test machine, and an average elastic compressive 

modulus of 23.6 ± 2.2 kPa was found. The phantom was then evaluated using the ultrasound 

elastography method with the standoff pad.

A subset of four women was invited for the second and third testing visits. The repeatability 

of the testing method was evaluated as coefficient of variation (ratio of standard deviation 

over mean) for within- and between visits.

Results

The mean (± SD) age of the 20 nullipara was 22.7± 2.4 years and the mean BMI was 22.6 ± 

3.2 kg/m2 . Among these twenty women, there are 30% Caucasian, 50% black, 20% Asian 

and 20% identified themselves as others. The estimated elastic moduli among healthy 

nulliparous women were normally distributed with a mean of 28.0 kPa and a standard 

deviation of 4.7 kPa (Normality Kolmogorov-Smirnov Test p = 0.200), ranges from 19.1 to 

38.6 kPa (Figure 4).

The estimation of phantom property using ultrasound elastography with standoff pad is 26.4 

± 1.2 kPa, which is 11.8% overestimation compared to the results from the standard 

compression test. For the subset of four women, the coefficient of variation (S.D./mean) for 

within-visit variation was 3.4% ± 2.9% and 8.3% ± 5.6% for between-visit variations.

Discussion

The results suggest that it is possible to estimate the compressive elastic modulus of the 

perineal body tissue in vivo using ultrasound elastography and a known synthetic reference 

material. The distribution of the perineal body modulus in healthy nullipara appears 

normally distributed and in a similar range to that reported for striated muscle using 

elastography techniques (Wells and Liang , 2011). We also demonstrated that the 

measurement technique has similar repeatability within- and between-visits to that reported 

for elastography used in evaluating uterine cervix stiffness (Swiatkowska-Freund et al 
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2014). The present technique slightly overestimated the compressive modulus (11.8%) 

compared to the standard compression test.

There has been increasing interest in using elastography to both evaluate the stiffness of the 

uterine cervix in order to supplement cervical length assessment when evaluating woman at 

risk of preterm delivery, and for planning for the induction of labor (for example, Fruscalzo 

et al. 2012, Molina et al. 2012, Hernandez-Andrade et al. 2012 ). The technique with the 

probe reference ‘cap’ has shown promise before in clinic applications (for example, Hee et 

al. 2013 and 2014). The present study used a similar technique to measure the modulus of 

the perineal body, an important anatomical structure that is widely discussed in the 

gynecology and obstetrics literature but rarely studied. Hungr N et al (2012) developed an 

PVC male perineum phantom with the mechanical property in the range of prostatic tissues 

and there are increasing elastography studies of male perineum (for example, Mohareri et al 

2014) focusing on the prostate cancer detection. Better quantification of perineal body 

properties in women should enhance our understanding of the function of this structure 

during child birth. Specifically, the quantification of perineal body modulus will make it 

possible to determine how perineal body modulus is related to puboperineal muscle injury, 

the single largest risk factor in causing pelvic organ prolapse (DeLancey et al. 2007); this 

carries a life-time risk of surgery of 12.6% (Wu et al. 2014). Ideally, we would want to 

evaluate the perineal body modulus while it is undergo large strain when baby head is 

crowning (Jing et al 2012), but this is difficult in practice due to technical challenges and a 

highly stressful environment in the delivery room at that time. In this study we estimated 

compressive modulus of perineal body, which is a measurement similar to the way a 

clinician manual palpates the body, as an important first step toward the objective 

quantification of the perineal body modulus. Future experiments or computational 

simulation could be used to study how the compressive modulus of perineal body relates to 

its tensile modulus as it undergoes large strain.

A general limitation of the free hand quasistatic elastography method used in this study is 

that both the compression force and its rate of application can be highly operator dependent. 

The best results are achieved when the examiner compresses and decompresses the tissue 

uniformly in the axial direction with a constant maximum speed that induces the proper 

strain rate (Zahiri-Azar and Salcudean, 2006). Lateral or out-of-plane motions can result in 

decorrelation, which reduces signal-to-noise ratio and introduce measurement error. In this 

study, there was only a single operator with knowledge of the highly variable nature of the 

anatomy and with adequate training to generate consistent measurements prior to data 

collection. The trials that resulted in visible out-of-plane motions were excluded from 

analysis. To minimize the variation of compression force, we provide the operator with 

visual feedback of standoff pad thickness on the display screen and trained the operator to 

apply a force which generated a maximum strain of 10% in the standoff pad. We also 

provided the operator with a metronome to help her generate the proper compression rate by 

calling for a 1 Hz sinusoidal compression force waveform over time. The target compression 

loading rate matched that used to test the synthetic standoff pad in the materials testing 

machine. Another general limitation of elastography is that the method assumed no tissue 

constraints during the deformation. This assumption is valid for the standoff pad, but 

because of a limited understanding of the complex anatomy of the perineal body region and 
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its connection with surrounding tissue, it is not clear at present how the surrounding tissue 

would affect the deformation of the perineal body when it is compressed by the probe. 

Detailed anatomical and histological studies are needed that are combined with 

biomechanical modeling to better understand structure-function relationships. In addition, as 

most biological tissues do not behave like a linear elastic material, it should be emphasized 

that the calculation of the tissue stiffness is only an estimation of the elastic modulus.

Recently, researchers have begun using shearwave elastography to evaluate cervical tissue 

stiffness (for example, Hernandez-Andrade, 2014; Palmeri et al 2013) because of its 

advantage that the generation of the mechanical impulse is operator independent and the 

stiffness measurement is an absolute measurement. However, morphological factors can 

influence shear-wave propagation such as complex tissue composition and boundary 

condition. Whether shearwave elastography could safely be used to image perineal body 

tissue during the second stage is an open question given the proximity of the fetal brain 

during delivery. However, the safety of compression ultrasonography is unquestioned 

because the mechanical loading of the perineal body is similar to the modest load applied by 

health providers during manual palpation.

In conclusion, quasistatic elastography with a reference standoff pad is a promising 

quantitative method evaluating the elastic modulus of the perineal body. Our preliminary 

data, despite their limitations, provide a first order in vivo estimation of the nulliparous 

perineal body modulus. These results provide a baseline for future studies aimed at address 

relevant clinical questions such as how much late stage pregnancy affects perineal body 

modulus and whether, for example, it is affected by perineal massage .
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Figure 1. 
(a) 3D pelvic floor anatomy reconstrcuted from a healthy, 45-year-old women's MRI in 

three-quarter, left, anterolateral view. Note the spatial relationship between perineal body 

(PB) and overall envelop of levator ani muscle (LA). U:Urethra; V: Vagina; EAS: the 

external anal sphincter (b) Schematic view of the components of levator ani muscles and 

perineal body (PB) from below shows the perineal body uniting the two ends of the 

puboperineal muscle (PPM). ATLA: arcus tendineus levator ani; PAM: the puboanal 

muscle; ICM: the iliococcygeal muscle; PRM: the puborectal muscle. Note that the vulvar 

structures and perineal membrane have been removed and the urethra and vagina have been 

transected just above the hymenal ring. Modified from Kearney (2004); (c) a three-quarter, 

left, anterolateral view of a model fetal head (dark blue) “crowning”, and the simulated 

stretch of the puboperineal muscle (PPR, the single red color band). Note that muscle band 

inserts onto the lighter blue band representing part of the perineal body (PB), with which it 

is in series. Modified from Lien et al. (2004)
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Figure 2. 
(A) The standoff pad shown slipped into place over the distal part of the ultrasound 

transducer. (B) A sample compression test result for the standoff pad material. (C) The 

measured change in the standoff pad's Young's modulus over a month. The error bars show 

the standard deviations for the material samples.
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Figure 3. 
(A) Caudal view of the transducer position on the perineal body and the scan angle. (B) The 

approximate anatomical regions of interest (dashed) for the standoff pad and the perineal 

body are shown within the dashed lines. (C) Anatomical relationships on the B mode 

images. (D) Sample strain ratio (SR) measurement comparing standoff pad and perineal 

body strains using elastography images.
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Figure 4. 
Distribution of measured perineal body compression moduli of 20 nulliparous women
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