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Abstract 
  
Kisspeptin is a neuropeptide that signals via a Gαq-coupled receptor, GPR54, in 
gonadotropin-releasing hormone (GnRH) neurons and is essential for pubertal maturation and 
fertility. Kisspeptin depolarizes and excites GnRH neurons primarily through the activation of 
canonical transient receptor potential (TRPC) channels and inhibition of K+ channels. The 
gonadal steroid 17β-estradiol (E2) up-regulates not only kisspeptin (Kiss1) mRNA, but also 
increases the excitability of the rostral forebrain Kiss1 neurons. In addition, a primary postsynaptic 
action of E2 on GnRH neurons is to up-regulate the expression of channel transcripts that 
orchestrate the downstream signaling of kisspeptin in GnRH neurons. These include not only 
TRPC4 channels, but also low voltage-activated T-type calcium channels and high 
voltage-activated L-, N- and R-type calcium channel transcripts. Moreover, E2 has direct 
membrane-initiated actions to alter the excitability of GnRH neurons by enhancing ATP-sensitive 
potassium (KATP) channel activity, which is critical for maintaining GnRH neurons in a 
hyperpolarized state for recruitment of T-type calcium channels that are important for burst firing. 
Therefore, E2 modulates the excitability of GnRH neurons as well as Kiss1 neurons by altering 
the expression and/or function of ion channels; and kisspeptin provides critical excitatory input to 
GnRH neurons to facilitate burst firing activity and peptide release.  
 
 
Introduction 
 
Gonadotropin-releasing hormone (GnRH) neurosecretion and the control of the ovulatory cycle in 
females is dependent on estrogen feedback, primarily 17β-estradiol (E2) secreted from the 
ovaries which reaches the pituitary and the brain via the circulation. E2 treatment in 
ovariectomized (OVX) females initially inhibits GnRH and LH secretion by the process known as 
negative feedback, followed by E2-induced super-secretion (positive feedback) in a 
species-specific manner 12-42h later [1-3]. With the development of mouse and rat models in 
which GnRH neurons express enhanced green fluorescent protein (GnRH-EGFP), it has been 
possible to systematically study these neurons in order to evaluate the GnRH neuronal excitability 
and activity with the ultimate goal of understanding the neuronal activity underlying the different 
secretory patterns utilized by these cells [4-6]. In addition, kisspeptin neurons, located in the 
anteroventral and more caudal periventricular preoptic area (AVPV/PeN), express the E2 
receptor alpha (ERα), and E2 stimulates Kiss1 mRNA expression in this brain region [7]. 
Moreover, kisspeptin is one of the most potent excitatory neurotransmitters of GnRH neurons  
[8-11].  
Based on decades of intracellular sharp electrode and whole-cell recordings in a number of 
parvocellular hypothalamic neurons, we have modeled currents crucial for rhythmic burst firing 
and have continued to explore the role of these currents in GnRH and more recently in Kiss1 
neurons [12-14]. These currents include the low-threshold T-type calcium current (IT) the 
hyperpolarization-activated, cyclic nucleotide-gated current (Ih),  a calcium-dependent, 
after-hyperpolarization potassium current (IAHP) as well as a persistent, sodium current (INaP), all of 
which will be further discussed in this review (Figure 1). All of these currents have been studied 
extensively in thalamic relay neurons, in which the T-current is responsible for low threshold 
calcium spikes and the h-current serves as the  “pacemaker” to control the rate of rhythmic 
oscillations in these neurons [15-17]. Recently, several models have been developed that include 



 
 

3 
 

an ensemble of channels that appear to be critical for burst firing in parvocellular neurosecretory 
neurons [12,18-20]. Variations of these models have been described in a number of  reviews and 
primary publications [21-30] and therefore will not be extensively covered in this mini-review. 
Rather, this review will focus on the E2 modulation of both GnRH neurons and the presynaptic 
kisspeptin neurons, as well as discuss the role of kisspeptin as a unique excitatory 
neurotransmitter of GnRH neurons.  
 
E2 modulation of GnRH neuronal activity through channel expression  
  
As in thalamic neurons, IT, Ih , IAHP , and INaP are important for burst firing in GnRH as well as 
AVPV/PeN Kiss1 neurons [14,15,17,22,25,31-34]. We and others have continued to explore the 
modulation of these currents by E2 in GnRH and Kiss1 neurons in order to elucidate the 
conductances underlying burst firing activity.  

 
Three subunits of the T-type calcium channel (Cav 3.1, 3.2, 3.3) have been cloned, with the 
specific gating properties of the channel being dependent on its subunit composition [35,36]. 
Thus, the kinetic properties of channels composed of Cav3.1 and 3.2 subunits are different from 
those of Cav3.3 subunits [37]. GnRH neurons express all three of the T-type calcium channel 
subunits, and the IT in GnRH neurons shows different types of inactivation kinetics, with the slow 
Cav3.3 channel being the most prominent of the three [32,38]. Of importance is that IT is present 
in the majority of GnRH neurons, and the membrane potential at which half of  the T-type calcium 
channels are available for activation (i.e., are de-inactivated) is -80 mV [32]. As found in other 
neuronal systems, the role of IT is to initiate transient membrane depolarizations, which recruit 
high voltage-activated (HVA) calcium channels to increase calcium influx [39,40]. This is of 
functional significance since HVA calcium currents are prevalent in GnRH neurons [41], but they 
can only be activated from a more depolarized state, whereas low voltage-activated T-type 
currents are recruited from a more hyperpolarized state (i.e., they provide the signal for setting off 
burst firing) [32,38,41-44]. Importantly, the T-type CaV3.3 channel subunit expression and current 
density are significantly enhanced with a high LH surge-inducing E2 treatment, facilitating the 
excitation of GnRH neurons [32]. Therefore, the E2-dependent increase in T-type calcium 
channels may serve to augment the excitability of GnRH neurons in preparation for the GnRH 
(and LH) surge. In addition, the majority of HVA channel subtypes are expressed in GnRH 
neurons, and the mRNA levels of the L-type HVA calcium channel CaV1.3, the N-type HVA 
calcium channel CaV2.2, and the R-type HVA calcium channel CaV2.3 are also increased by LH 
surge-inducing E2 treatment [45]. Similarly, L- and N-type currents are increased by E2 during the 
afternoon as compared to morning in an E2-implant model that induces daily LH surges [41,46]. 
Collectively, these findings suggest a prominent role for calcium channels in the E2-induced 
excitation of GnRH neurons. GnRH neurons also express a hyperpolarization-activated, cyclic 
nucleotide-gated cation current (Ih), aka the pacemaker current, which also contributes to 
rhythmic firing [18,33,47,48]. Two Ih channel mRNAs, HCN1 and HCN2, are highly expressed in 
mouse GnRH neurons, and the mRNA expression of HCN1 is up-regulated by E2 [45]. Although 
E2 regulation of the h-current has not been evaluated in female GnRH neurons, Ih is up-regulated 
by E2 in Kiss1 neurons, an indication that this current is E2-sensitive [14,34].  

 
Critical for hyperpolarizing the membrane to de-inactivate and recruit IT and activate Ih are the 
inwardly rectifying K+ (Kir) channels.  It is well known that Kir channels are vital for maintaining 
excitable cells in a hyperpolarized resting state closer to the Nernst equilibrium potential for 
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potassium (EK+), but once cells are depolarized the channels allow for the quick transition to long 
depolarizing responses because of their inwardly rectifying properties [49]. With greater 
membrane hyperpolarization of GnRH neurons, there is an increase in the number of Na+ spikes 
generated during the rebound excitation (Zhang et al; unpublished observations). Indeed, KATP 
and G protein-coupled inwardly rectifying potassium (GIRK) channels appear to be the critical Kir 
channels in GnRH neurons for maintaining the membrane in a relatively more negative resting 
state. Blocking KATP channels significantly depolarizes GnRH neurons, which is indicative of tonic 
KATP channel activity that is significantly augmented with E2 treatment [48]. Also, GABA, opioids, 
neuropeptide Y and perhaps melanin-concentrating hormone inputs via their respective GABAB, 
µ-opioid, Y5 and MCH1 receptors activate GIRK channels to hyperpolarize GnRH neurons 
(Lagrange et al 1995, Wu etal 2009, Zhang et al 2009, Xu et al 2008) [47,50-52]. This combination 
of hyperpolarizing influences would allow for the recruitment of multiple excitatory conductances 
that are critical for generating burst firing in CNS neurons [15,18].   
  
Neuronal excitability is also determined by the afterhyperpolarization (AHP) that follows an action 
potential, and the three kinds of calcium-activated potassium channels that mediate AHPs have 
been identified in GnRH neurons [25,53-56]. This includes the fast AHP, which is mediated by the 
large-conductance Ca2+-activated K+ (BK) channels, the medium AHP (mAHP), which is mediated 
by small conductance, calcium-activated K+ (SK) channels, and the slow AHP (sAHP), which is 
mediated by a yet unidentified potassium channel. The BK channels appear to be involved in the 
repolarization of action potentials in GnRH neurons [57]. Inhibition of SK channels by apamin 
directly attenuates the mAHP  as well as augments the ADP in GnRH neurons, and, thus, these 
channels exert a significant influence on the firing properties of these neurons [58,59]. Of the SK 
channel subtypes, only SK3 mRNA exhibits significant expression in GnRH neurons, and 
surge-inducing E2 treatments decrease the expression and function of this channel in 
ovariectomized females [45,59]. The channel responsible for the slow AHP current has not been 
identified. This current, however, slows or limits the firing frequency (called spike frequency 
adaptation) and is a major player controlling neuronal excitability [60]. A reduced AHP current 
allows a faster trajectory to burst firing of GnRH neurons [25,56,59]. Thus, the up-regulation of low 
voltage-activated (CaV3.3) and high voltage-activated calcium (CaV1.3, 2.2, 2.3) and 
hyperpolarization-activated cation (HCN1) channels and the down-regulation of SK3 channels by 
E2 play a key role in increasing GnRH neuronal excitability.   
 
 
Rapid 17β-estradiol modulation of GnRH neuronal activity 

 
The relatively fast (~15 min) inhibition of GnRH and LH secretion by E2 is congruent with its 
initiation of a membrane signaling cascade.  In fact years ago, it was found that guinea pig GnRH 
neurons are rapidly hyperpolarized by E2 via activation of an inwardly-rectifying (G 
protein-coupled) K+ (GIRK) conductance in the presence of tetrodotoxin (TTX), which blocks fast 
Na+ channel activity and isolates GnRH neurons from action potential- driven synaptic inputs   
[47,61,62]. In mice, physiological concentrations (picomolar) of E2 rapidly augment KATP (also of 
the inwardly rectifying family) channel activity to hyperpolarize GnRH neurons [63]. E2 signals via 
a protein kinase C (PKC)- protein kinase A (PKA)  pathway, and hence a selective Gαq-mER 
ligand called STX is also able to mimic the effects of E2 in GnRH as in other hypothalamic 
neurons [63-66]. Both the effects of E2 and STX are abrogated by the estrogen receptor 
antagonist ICI 182,780 with a Ki of 0.5 nM in GnRH neurons [63,67], which is similar to the Ki for 
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antagonism of ERα [68]. Interestingly, the membrane-initiated signaling by E2 in GnRH neurons 
persists given that female mice treated with an E2 implant for 4-7 days similarly exhibit  
augmentation of the KATP current, which attenuates GnRH neuronal firing [48]. This would imply 
that membrane-initiated signaling by E2 is involved in negative feedback regulation of GnRH 
neurons.  

 
In addition, nanomolar concentrations of E2 enhance action potential firing by modulating intrinsic 
afterhyperpolarizing and afterdepolarizing potentials via a PKA-dependent mechanism involving 
ERβ [59]. Picomolar concentrations of E2 also inhibit action potential firing via presynaptic 
ERα-dependent mechanisms [59]. E2 rapidly potentiates high-voltage-activated (HVA) Ca2+ 
currents (L- and R-type Ca2+ channels) via ERβ and a G protein-coupled receptor of 30 KD 
molecular weight (GPR30), suggesting that Ca2+ signaling is also a target for E2 membrane 
actions in GnRH neurons [41]. However, in slices prepared from GnRH-Pericam transgenic mice, 
E2 initiates calcium transients within 15 min in a subgroup of GnRH neurons [69]. In this 
transgenic mouse model the E2 effects are mediated indirectly via input from GABA neurons that 
express ERα. The role of ERβ to mediate rapid effects of E2 on GnRH neurons has also been 
shown following E2 treatment in vivo [70]. E2 rapidly (15 min) phosphorylates cAMP response 
element binding protein (pCREB) in GnRH neurons, an effect that is lost in ERβ-deleted animals, 
supporting a direct role for ERβ in mediating rapid E2 signaling in GnRH neurons [70]. However, 
how pCREB affects gene expression and cell excitability is not known. 
 
In primate and mouse embryonic nasal explants (the source of immature GnRH neurons) E2 
modulates Ca2+ oscillations in GnRH neurons [71-74], which synchronize with a periodicity of 
approximately 60 minutes in primates, a rhythm that is similar to the pulsatile GnRH release 
[71,73-75]. Furthermore, nanomolar concentrations of a membrane-impermeant E2 
(E2-dendrimer, EDC) and the Gq-mER ligand STX alter the patterns of Ca2+ oscillations in 
primate GnRH neurons [75,76]. As found previously with E2, STX also elicits an increase in the 
frequency and  synchronization of Ca2+ oscillations in rhesus macaque GnRH neurons [75,77]. 
The STX-induced modulation of Ca2+ oscillations (and GnRH release) from macaque nasal 
explants is not altered by GPR30 small interfering RNA transfection, suggesting that GPR30 is 
not involved. Importantly, the effects of STX are blocked by the ER antagonist ICI182,780 and by 
the PLC inhibitor U73122 [75]. This would suggest that STX (E2) is activating Gq-mER (as 
defined above) in rhesus macaque GnRH neurons that induces calcium oscillations via the IP3 
receptor (Figure 1) and/or a PKC signaling pathway [78]. Therefore, although the specific role of 
membrane-initiated E2 signaling for GnRH physiology is uncertain, it could potentially play a 
critical role in sculpting GnRH burst firing activity. 
 

 
Kisspeptin-GnRH neuronal circuitry  

 
Kisspeptin-54 is the endogenous ligand of G protein-coupled receptor 54 (GPR54, aka Kiss1R) 
[79]. GPR54 is highly expressed in GnRH neurons [45], and mutations in GPR54 cause 
autosomal recessive idiopathic hypogonadism in humans and deletion of GPR54 or Kiss1 in mice 
results in defective sexual development and reproductive failure [80,81]. The Kiss1 gene encodes 
a 145 amino acid protein, which is proteolytically processed to Kisspeptin-54 and several other 
smaller peptide fragments, and centrally administered kisspeptins robustly stimulate GnRH and 
gonadotropin secretion in both prepubertal and adult animals [82,83]. Neurons in the AVPV/PeN 
areas express kisspeptin, GABA and opioid peptides all of which are important for regulation of 
GnRH neurosecretion [84-89]. The AVPV/PeN expresses high levels of ERα and also ERβ, and 
the actions of the gonadal steroids on kisspeptin neurons are mediated, in part, via  
nuclear-initiated signaling (genomic) mechanisms [90-92]. Also, Kiss1 mRNA expression is 
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greatly increased in the AVPV/PeN following E2 treatment [7]. These findings combined with 
previous observations that lesions or anti-estrogen implants of the AVPV/PeN in rodents abrogate 
the positive feedback effects of E2 [93-96], have led to the hypothesis that E2 acts on AVPV/PeN 
Kiss1 neurons to induce positive feedback on GnRH and LH secretion. Notably, an E2 treatment 
that induces a LH surge increases both the h -current and T-type calcium current in the 
AVPV/PeN Kiss1 neurons [14,34].  
 
Kisspeptin excites GnRH neurons primarily through activation of TRPC channels and to a lesser 
extent through inhibition of inwardly rectifying K+ channels (Figure 1) [8-11,78,97]. In addition, 
kisspeptin induces a transient elevation of intracellular calcium in GnRH neurons, which is 
thought to be due to release from intracellular calcium stores and has been hypothesized to play 
an important role in the kisspeptin-mediated depolarization [9]. However, the activation of TRPC 
channels in GnRH neurons by kisspeptin is not affected by buffering intracellular calcium levels by 
the calcium chelators EGTA or BAPTA or by depleting intracellular calcium stores [11,78,98]. 
Therefore, release of calcium from intracellular stores does not appear to play a critical role in the 
kisspeptin-mediated activation of TRPC channels, but may be involved in 
Ca2+/calmodulin-dependent inhibition of high voltage-activated Ca2+ channels [99]. The 
kisspeptin-activated TRPC current is attenuated by the general calcium channel blocker Cd2+ and 
by the low voltage-activated calcium channel blocker Ni2+, but not by the high voltage-activated 
calcium channel blocker amlodipine [11,98]. This would indicate that low voltage-activated 
(T-type) calcium channels may be involved in facilitating TRPC channel opening. However, 
reducing extracellular calcium to nominally calcium free has no effect on the kisspeptin-activated 
TRPC current, an indication that very little calcium is needed to enable the opening of TRPC 
channels in GnRH neurons. This is consistent with the small, but persistent, T-type calcium 
channel activity (window current) around -65 mV in GnRH neurons [32]. Therefore, with a 
sustained depolarization that exceeds that of classical neurotransmitters (e.g., glutamate), 
kisspeptin excites GnRH neurons primarily through the opening of a TRPC channel that is 
independent of intracellular calcium store release, but appears to be dependent on transient 
calcium influx through T-type calcium channels (Figure 1).  This ensures a fast and yet sustained 
depolarization of GnRH neurons. 
 
Although GnRH neurons express all of the TRPC channel subunits that are found in the brain (i.e., 
TRPC1,3,4,5,6,7), quanitative PCR analysis shows that TRPC4 is the main TRPC channel 
subtype in GnRH neurons and is expressed at levels 4-fold higher than TRPC1 and TRPC5 
[11,45]. In fact, TRPC4 mRNA is increased in high E2-treated mice [45].  
Phosphatidylinositol-4,5-biphosphate (PIP2) is an important regulator of TRPC channels, and 
depletion of PIP2 is required for kisspeptin-induced TRPC channel activation in GnRH neurons 
[98]. In addition to PIP2 depletion, kisspeptin activation of TRPC channels is also dependent on 
the non-receptor tyrosine (cSrc) kinase activation (Figure 1), since both global tyrosine kinase 
inhibitors such as genistein and the specific cSrc kinase inhibitor PP2 attenuate (inhibit) 
kisspeptin currents in GnRH neurons [98]. cSrc kinase directly regulates TPRC4 channel activity 
through tyrosine phosphorylation, which causes rapid insertion of TRPC4 channels into the 
plasma membrane [100]. Therefore, cSrc appears to be a key signaling molecule in the 
kisspeptin-mediated activation of TRPC channels in GnRH neurons. 
 
PKC is an important second messenger stimulated by Gq-coupled receptors. However, PKC 
appears not to be involved in TRPC channel activation in cell lines expressing cloned TRPC 
channels [101]. Similarly in GnRH neurons, PKC activation or inhibition has only minor or no 
effect on the kisspeptin-induced inward TRPC current [11,98].  
 
Since the initial studies showing that kisspeptin has prolonged effects on GnRH neuronal activity 
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[8-11], the question has been why is there very little spike frequency adaptation (slowing of action 
potential firing due to activation of K+ channels) during kisspeptin-induced sustained firing? 
Recently it was shown that kisspeptin reduces spike frequency adaptation and prolongs firing via 
the inhibition of a calcium-activated slow afterhyperpolarization current (IsAHP) via PKC [56]. GnRH 
neurons express two distinct IsAHP, an apamin-sensitive [25,56] and a kisspeptin-sensitive IsAHP 

[56]. Essentially, kisspeptin inhibits 50% of the IsAHP , and apamin inhibits the other 50% of the 
current [56]. Therefore, in addition to increasing the firing rate through an overt depolarization, 
kisspeptin facilitates sustained firing through inhibiting an apamin-insensitive IsAHP in GnRH 
neurons (via PKC). The physiological significance is that although single action 
potential-generated calcium influx is sufficient to spark the release of classical neurotransmitters, 
burst firing or tetanic stimulation is required for the release of neuropeptides as first eloquently 
shown by Wakerly and Lincoln in vivo [102] and then in vitro by others [103-105]. 
 
 
Role of pacemaker currents in Kiss1 neurons  
 
Kiss1 neurons in the AVPV/PeN appear to be presynaptic pacemaker neurons that drive GnRH 
neurons. At least 50% of GnRH neurons receive monosynaptic input from the AVPV/PeN 
neurons, some of which have been identified as Kiss1 neurons [106]. Importantly, higher 
frequency stimulation of AVPV/PeN neurons elicits a delayed excitatory response in GnRH 
neurons, which can be blocked by the kisspeptin inhibitory peptide 318 [106].  Recently, the 
development of Kiss1-CreGFP knock-in mice has allowed the targeting of GFP-expressing Kiss 1 
neurons for more detailed analysis [107] (see [30] for review). Both Ih and IT are prominently 
expressed in Kiss1 neurons [14,34], and the Kiss1 neurons also express the corresponding 
critical transcripts, HCN1 and Cav3.1 [14]. In particular, CaV3.1 calcium channels are highly 
expressed in AVPV/PeN Kiss1 neurons, and are exceptionally sensitive to E2 [14] (and Zhang et 
al., manuscript in preparation). The presence of a robust T-type calcium current is essential for 
the high-frequency rebound bursting that is manifested following a hyperpolarizing stimulus in 
these neurons [14].  
In addition, Kiss1 neurons express a persistent Na+ current (INaP) that is activated ~10 mV 
negative to the threshold for the transient sodium current in a membrane potential range in which 
few voltage-gated channels are activated and neuronal input resistance is high [14]. Thus, INaP 
tends to amplify the depolarization induced by T-type calcium channels. Most importantly in terms 
of providing excitatory drive to GnRH neurons, an E2 treatment that produces a LH surge, 
significantly increases both Ih and IT in AVPV/PeN Kiss1 neurons by 3.4- and 6-fold, respectively 
[14,34].  AVPV/PeN Kiss1 neurons rest at a relatively positive resting membrane potential of -55 
mV. Thus, some sort of robust inhibitory synaptic input is necessary for reaching hyperpolarized 
membrane potentials to recruit a critical mass of Cav3.1 (by removing their inactivation) and 
HCN1 channels for initiating burst generation [14,34].  
Indeed, GABA via GABAB receptors (Gαi.o-coupled to GIRK channels), can provide the 
hyperpolarizing stimulus for generating burst firing [14]. GABA neurons are abundant in the 
hypothalamus, and the majority of Kiss1 neurons in the AVPV/PeN express GAD 67 (glutamic 
acid decarboxylase, the GABA synthesizing enzyme) [108]. As such, Kiss1 neurons may 
themselves be an endogenous source of GABA, whose action could be auto-synaptic and 
perhaps be responsible for hyperpolarizing Kiss1 neurons via GABAB receptors. Although further 
studies are needed to elucidate all of the physiological mechanisms underlying high-frequency 
burst firing of AVPV/PeN Kiss1 neurons, it is clear that these neurons express the critical 
channels and receptors that permit E2-dependent burst firing. Therefore, Kiss1 neurons, similar 
to thalamocortical neurons, express the critical pacemaker conductances, and as such Kiss1 
neurons have the capacity to generate bursting activity and excite GnRH neurons, which supports 
the idea that Kiss1 neurons provide the excitatory drive for GnRH surge secretion. 
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Summary 
 
What is critical for the control of GnRH neuronal excitability and ultimately the control of fertility is 
the hypothalamic circuitry. This “circuitry” not only includes the synaptic input to kisspeptin and 
GnRH neurons, but also the effects of circulating E2, which conveys vital feedback information 
about reproductive states, on the excitability of these neurons. All AVPV/PeN kisspeptin neurons 
express the endogenous burst-generating conductances (Ih, and IT, and INaP ) that allow these vital 
neurons to generate burst firing and release kisspeptin, which in turn excites GnRH neurons that 
also express Ih, IT and INaP [22,32,48,106]. A future challenge is not only to identify all of key 
channels and signaling molecules and how they are regulated by E2, but also how these channels 
fit into the kisspeptin-GnRH neuronal circuitry for generation of burst firing and peptide release.  
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Figure Legend 
 
Figure 1. Schematic diagram illustrating the Kiss1-GnRH connection and signaling 
pathways responsible for kisspeptin-induced depolarization and burst firing of GnRH 
neurons.  A.  Kisspeptin neurons express the conductances (h-, T- and NaP) and corresponding 
channels (HCN, CaV3 and NaV) that generate burst firing necessary for maximum release of 
kisspeptin from the nerve terminal. E2 treatment increases the mRNA expression of Kiss1. In 
addition, the critical currents (Ih and IT.) are increased by circulating E2. The respective ion 
channel transcripts (HCN and CaV3, as well as NaV) are also expressed in Kiss1 neurons (dashed 
lines). E2 regulation of the mRNA expression of these channels is under investigation (manuscript 
in preparation). Kiss1 neurons also express GABAB and κ-opioid receptors, which couple to GIRK 
channels. B.  Whole-cell current-clamp recording of spontaneous rebound burst firing recorded 
from an AVPV/PeN Kiss1 neuron. Arrows indicate the approximate range where the h-current (Ih, 
blue) and T-type calcium current (IT, green) and persistent Na current (INa, first red arrow) are 
active to depolarize the cell to threshold for generating an ensemble of fast Na+ spikes (INa, 
second red arrow) and AHP currents (IAHP, magenta) to repolarize the membrane to a 
hyperpolarized state to reinitiate the burst firing. The INa is composed of an initial INaP followed by 
an INaT (transient Na current). C. Kisspeptin binds to the Gq-coupled GPR54 receptor to activate 
phospholipase Cβ (PLCβ), which catabolizes PIP2, potentiates TRPC channel activity and inhibits 
the Kir channel activity.  PKC, activated by the PIP2 hydrolysis product diacylglycerol (DAG), 
inhibits the activity of a calcium-activated slow afterhyperpolarization (sAHP) current. The 
non-receptor tyrosine (cSRC) kinase, which is activated by kisspeptin/GRP54 signaling, 
potentiates the activity of TRPC4 channels.  Calcium entering the cell via T-type channels 
facilitates the activation of TRPC channels.  
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