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To study the effects of malaria-control interventions on parasite
population genomics, we examined a set of 1,007 samples of the
malaria parasite Plasmodium falciparum collected in Thiès, Senegal
between 2006 and 2013. The parasite samples were genotyped us-
ing a molecular barcode of 24 SNPs. About 35% of the samples
grouped into subsets with identical barcodes, varying in size by year
and sometimes persisting across years. The barcodes also formed
networks of related groups. Analysis of 164 completely sequenced
parasites revealed extensive sharing of genomic regions. In at least
two cases we found first-generation recombinant offspring of par-
ents whose genomes are similar or identical to genomes also pre-
sent in the sample. An epidemiological model that tracks parasite
genotypes can reproduce the observed pattern of barcode subsets.
Quantification of likelihoods in the model strongly suggests a re-
duction of transmission from 2006–2010 with a significant rebound
in 2012–2013. The reduced transmission and rebound were con-
firmed directly by incidence data from Thiès. These findings imply
that intensive intervention to control malaria results in rapid and
dramatic changes in parasite population genomics. The results also
suggest that genomics combined with epidemiological modeling
may afford prompt, continuous, and cost-effective tracking of prog-
ress toward malaria elimination.
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Intensive intervention to reduce the burden of malaria has proven
successful in a number of countries in Africa (1). In certain re-

gions of Senegal, implementation of a redesigned National Malaria
Control Program (NMCP) in 2006 that included rapid diagnostic
tests, artemisinin combination therapies, enhanced insecticide-treated
bed nets, and indoor residual spraying resulted in a more than 95%
decrease in the number of confirmed cases by 2009 (2). We had
been collecting parasite samples in one of these regions annually
since 2006. These samples afford a unique opportunity to deter-
mine the extent to which intensive intervention is manifested in
genetic changes in the parasite population. Genetic changes would
be expected to include bottlenecks in the parasite population size,
increased random genetic drift, reduced genetic variation, greater
self-fertilization during transmission, and increased allele sharing
and identity by descent.
A key question for tracking malaria elimination is whether

such genomic changes would be large enough to be detected in a
cost-effective manner in samples of reasonable size. If changes in
parasite population genomics took place rapidly enough after
intervention, and if they were large enough to be detected, then
parasite genomics could play an important role in malaria
elimination. Given sufficiently rapid onset and detectability of
changes in parasite genomics, an epidemiological model that
incorporates parasite genotypes could in principle be used to
estimate the epidemiological parameters that most closely match
the genomic observations. Estimates of epidemiological parameters

such as transmission intensity would aid in understanding the dis-
ease situation on the ground, so that the efficacy of intervention
strategies could be evaluated in real time and adjustments made as
necessary. This approach could prove especially useful in regions of
low transmission where classical epidemiological approaches can be
applied only with great difficulty and in regions that are not easily or
safely accessed by personnel committed to malaria control.
In this paper, we show that data from a barcode of 24 SNPs in

longitudinal samples from Thiès, Senegal over an 8-y period of
moderate numbers of samples (100–200 samples/y) reveals rapid
and easily detectable signals of changes in parasite population
genomics following enhanced intervention. Moreover, an epi-
demiological model that incorporates parasite genotypes can
reproduce the observed barcode patterns. Estimates of epide-
miological parameters in the transmission model using likeli-
hoods strongly suggest a reduction of transmission from 2006–
2010 with a significant rebound in 2012–2013. The decrease in
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Traditional methods for estimating malaria transmission based
on mosquito sampling are not standardized and are unavail-
able in many countries in sub-Saharan Africa. Such studies are
especially difficult to implement when transmission is low, and
low transmission is the goal of malaria elimination. Malaria-
control efforts in Senegal have resulted in changes in pop-
ulation genomics evidenced by increased allele sharing among
parasite genomes, often including genomic identity between
independently sampled parasites. Fitting an epidemiological
model to the observed data indicates falling transmission from
2006–2010 with a significant rebound in 2012–2013, an inference
confirmed by incidence data. These results demonstrate that ge-
nomic approaches may help monitor transmission to assess initial
and ongoing effectiveness of interventions to control malaria.
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transmission of malaria in 2006–2010 after enhanced intervention
followed by a rebound in 2012–2013 was confirmed directly by
incidence data from Thiès. Our findings suggest that genomics
combined with epidemiological modeling may afford rapid, con-
tinuous, and cost-effective tracking of progress toward malaria
elimination.

Results
Genome Relatedness Among Independent Samples. To look for ge-
nomic signals associated with intervention, we studied samples of
Plasmodium falciparum from Thiès, Senegal during the period
2006–2013.
All samples were genotyped for 24 unlinked SNPs, constitut-

ing a molecular barcode, and were assayed for the presence of
single genomes (monogenomic infections) or multiple distinct
genomes (polygenomic infections) (3–5). Samples with mono-
genomic infections were used in further analyses. We find that,
accompanying intensified intervention after 2006, the allele fre-
quencies of the SNP alleles often change dramatically from year
to year. Such fluctuations in allele frequency afford an estimate
of the variance effective population size, which is a measure of
the uniformity of reproductive success among parasite genomes:
The smaller the variance effective size, the greater the variation
in reproductive success. Maximum likelihood estimates of the
variance effective size indicate a decrease of at least 10-fold after
2006, with estimates of the variance effective size fluctuating
around 10–40 thereafter (SI Appendix, Table S1).
Additional evidence for reduced effective population size is the

finding that parasites sampled from monogenomic infections in
different patients, different households, different places in the
catchment area, and different times across the transmission season
(August–January) often occur in subsets in which each parasite
genome exhibits an identical 24-SNP barcode (SI Appendix, Fig.
S1A and Dataset S1). Moreover, the barcode defining some of
these subsets is found in parasite samples from different years, in
one case in samples separated by 3 y and in another in samples
separated by 7 y (SI Appendix, Fig. S2A).
Detailed analysis of the 2006–2013 samples also revealed that

many parasite genomes apparently are closely related to others,
based on the similarity of their 24-SNP barcodes. A network
showing the barcode relatedness among a sample of 65 parasite
genomes that also were sequenced in their entirety is shown in
Fig. 1A (see also SI Appendix, Fig. S3). Many of the related
samples share multiple barcode alleles with the subset. In Fig.
1A, each color except gray corresponds to a barcode repeated
three or more times among the samples; gray corresponds to
barcodes present in one or two samples. Among the connecting
lines, increasing edge thickness indicates a greater degree of
relatedness between parasite types, ranging from 95.8–100%
relatedness (zero or one SNP difference, indicated by the thickest
lines) down to 79–87.4% relatedness (five SNP differences, indi-
cated by the thinnest lines).
To determine whether the observation of repeated barcodes in

monogenomic infections is associated with transmission in-
tensity, we assayed the 24-SNP barcode in parasites from 97
monogenomic infections collected in 2009–2010 from patients in
Malawi (Dataset S2). Unlike the samples collected in Senegal,
we find no subsets of samples with identical barcodes such as
those depicted in Fig. 1A; we attribute this finding to the con-
tinuing high transmission rate in Malawi (1).
To exclude the possibility that barcode relatedness is an arti-

fact of genotyping only 24 SNPs, 164 parasite genomes were
sequenced completely (Dataset S3), primarily from parasites
sampled in 2008–2012 and including all the genomes whose
barcodes are depicted in Fig. 1A (6). A network connecting ge-
nomes that share significant blocks of sequence is shown in Fig.
1B (see also SI Appendix, Fig. S4), where the colors correspond
to the barcodes in Fig. 1A. Not surprisingly, the 24-SNP barcode
provides less complete information about allele sharing than
does whole-genome sequencing, and some of the weaker re-
lationships detected by barcoding are not confirmed by the

genome sequences. Nevertheless, the major groups of related
parasites detected by networks among the 24-SNP barcode are
clearly related across the entire genome.
Based on an analysis of the 164 fully sequenced parasite genomes

from Thiès, an optimal choice of SNPs in a 24-SNP barcode would
allow confident detection of parasites that are more than about
70% related across the genome, whereas an optimized expanded
barcode of 96 SNPs would allow confident detection of genomic
relatedness of 50% or more (SI Appendix, Fig. S5). For both the
24-SNP and the 96-SNP barcodes, the limiting factor in inferring
genomewide identity from barcode identity is the wide range of
barcode identities when genomewide sequence identity is low.
Whole-genome sequencing also revealed blocks of genomic

sequence shared between independent parasite samples. Fig. 2A
shows the size distribution of blocks of genomic sequence shared
between pairs of strains. The blocks range in size from 10 kb
to >3 Mb (the parasite genome size is 23 Mb), and the distri-
bution of shared block length is approximately exponential.
These blocks of shared sequence also seem to be associated with
transmission intensity, because an analysis of 23 of the parasite
genomes from Malawi that were sequenced in their entirely
(Dataset S3) reveals no evidence of blocks of shared sequence
such as those depicted in Fig. 2A.
One of the sequenced genomes (SenT120.11, indicated in Fig.

1B) is obviously the offspring of a cross between parents related
to the two adjacent groups, and indeed genomes virtually iden-
tical to the parents are included in the two groups (SenT036.10
in the oval and SenT136.11 in the square). Fig. 2B shows the
clear segregation of large blocks of genome from the parents.
Some chromosomes did not undergo recombination in this
particular meiosis: For example, chromosome 3 derives entirely
from the SenT036.10 parent and chromosome 9 entirely from
the SenT136.11 parent. Comparison of apicoplast and mito-
chondrial DNA shows that the SenT036.10 parent provided the
female gametocyte for this cross. SI Appendix, Fig. S6 shows a
similar pattern of large, shared blocks in the genome of SenT069.11,
as is consistent with this strain being the offspring of a cross
between parents essentially identical to SenT131.10 (the female
gametocyte) and SenT058.10 (the male gametocyte). In this case

SenT120.11

A B

SenT131.10

Fig. 1. Relatedness among parasite isolates. (A) Network of barcode re-
latedness based on genetic distances between barcodes (19), in which edge
thickness represents degree of identity. The thickest edges connect samples
95.8–100% related (identical or one SNP difference), and the thinnest edges
connect samples that are less than 87.5% related (five SNP differences).
Colored dots indicate barcodes present three or more times in the samples;
gray indicates those present one or two times. (B) Network of sample re-
latedness based on full sequence data, in which edge thickness represents
the fraction of the genome that is identical by descent; node colors corre-
spond to those in A. The red square and circle indicate clusters containing
the parents of parasite sample SenT120.11.
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five chromosomes derive from one or the other parent with no
evidence of recombination.

Implications for Malaria Epidemiology. The results in Figs. 1 and 2,
as well as those in SI Appendix, Figs. S1A, S2A, S3, and S4 and
Table S1, exhibit the genomic signatures expected to accompany a
drastic reduction in parasite population size, including increased
random genetic drift, allele sharing, inbreeding, and identity by
descent. Suppose, however, that one did not know that Senegal
had instituted aggressive malaria-control measures during the
sampling period. Would the genomic signs alone imply that there
had been some dramatic decrease in incidence? Or suppose that
such genomic signatures began to change in a population under
control measures. Would that change imply that the control was
losing effectiveness?
Based on a simplification of the malaria-transmission dynamics in

an existing agent-based model (7), parasite genome dynamics were
added to construct a combined genetic-epidemiological model to
address these questions. The genetic-epidemiological model is
stochastic and includes parasite lineage extinction, survival with
clonal reproduction, outcrossing, and immigration. In the model,
(i) individual human hosts experience the same risk of infection;
(ii) vector-to-host cotransmission of multiple parasites from poly-
genomic infections is permitted; (iii) genetic recombination be-
tween unrelated parasites in multiply infected individuals is
equivalent to recombination between two genomes chosen
randomly from the existing population; and (iv) the 24-SNP
barcode loci are unlinked so that each pair of SNP alleles segregates
independently.
The free parameters used in the calibration to the collected

barcode data include the lineage extinction rate, the immigration
rate, the size of the human population, the reproductive rate at
the beginning of the multiyear period (Ra

0), the value reached
after a linear transition between 2006 and 2010 (Rb

0), and the
value from 2012 onwards (Rc

0). Note that R0 is the maximum
value of a seasonally varying reproduction rate (SI Appendix, SI
Supporting Information). This piecewise function of R0 allows us
to assess whether there were significant increases or reductions
in transmission between these fixed intervals.
An incremental mixture importance sampling (IMIS) algorithm

was implemented to fit the parameters of the epidemiological
model to the observed barcode patterns in Thiès efficiently and
accurately (8, 9). First, an initial set of simulation parameters was
sampled from a uniform prior in the six free dimensions of the
parameter space. Based on the likelihood values calculated at
each sample point in parameter space, an iterative process was
conducted until the weighted mixture of samples was sufficient

to represent the posterior probability distribution to a specified
accuracy (SI Appendix, SI Supporting Information and Table S2).
For each point in parameter space, 20 simulations were carried

out starting from different random seeds, and random parasite
barcodes were sampled annually during the peak season and an-
alyzed as described for the actual data from Thiès. A likelihood
metric was constructed from deviations between measurements
and model simulations using the following seven summary statis-
tics: (i) the fraction of polygenomic infections; (ii) the number of
sampled barcodes that are unique within a measurement year;
(iii) the number of barcodes sampled twice in a year; (iv) the
number of barcodes sampled more than twice in a year; (v) the
number of barcodes persisting over 2, 3, 4, 5, and >5 y (allowing
for missing years within the interval); (vi) the number of new
barcodes that persist for more than 2 y; and (vii) the number of
persisting barcodes that disappear after at least 2 y. Details are
given in SI Appendix, SI Supporting Information.
For each of these features, an individual measure of deviation

was calculated as the sum of squared differences normalized to
the estimated variance. Variances in the simulated data were
estimated from multiple stochastic realizations, and uncer-
tainties in the actual data were calculated from binomial statis-
tics with the assumption that different years constituted inde-
pendent measurements.
Results for a single high-likelihood simulation sampled from

the model fitting are illustrated in Fig. 3. The bar graphs in Fig.
3A show the yearly proportion of parasite barcodes that are
unique in the sample or are present in subsets of the actual data,
compared with the simulated data shown in Fig. 3B. More details
on the number and sizes of subsets for the simulated data are
presented in SI Appendix, Fig. S1B, and persistence across years
is shown in SI Appendix, Fig. S2B. The dynamics of simulated
parasite genomes for the same simulation are shown in Fig. 4A in
response to a seasonally varying reproductive rate that falls from
2006–2010 and rebounds in 2012–2013.
A key finding from the epidemiological model is that the ob-

served barcode data are sufficient in themselves to imply a de-
creasing and then rebounding reproductive rate (R0) across years.
Fig. 4B shows a projection of the result of iterative six-dimensional
sampling in parameter space, sampling most densely in the region
of maximum likelihood. As indicated by the diagonal line, essen-
tially all the posterior probability distribution requires a significant
drop in transmission intensity over the years 2006–2010.
The simulations also imply a significant rebound in reproductive

rate in 2012–2013 (Fig. 4C). A separate set of 2,400 simulations
based on Latin hypercube sampling of the three R0 dimensions,
carried out at the most likely values of population size, generation
time, and import rate, verified the significance of the rebound in
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2012–2013 (P = 0.0039) (SI Appendix, Fig. S7). Estimating the
annual maximum reproduction rate R0 by iterative resampling
confirms that the minimum R0 is in 2010–2011 with the rebound
detectable only in 2012–2013 (methods are described in SI Appendix,
SI Supporting Information and results in SI Appendix, Fig. S7).

Validation from Incidence Data. Do the inferences from genomic
epidemiology coincide with observed rates of incidence of
malaria in Thiès in 2006–2013? To address this question, we
analyzed data compiled under the auspices of the Senegal Na-
tional Malaria Control Program (2). The 2006–2013 data from
Thiès alone and from all of Senegal excluding Thiès were nor-
malized to the malaria incidence per person observed in 2006
(when incidence was 0.114 per person in Thiès and 0.132 per
person in Senegal excluding Thiès) and then were fitted to a
nonlinear model consisting of an exponential decrease in in-
cidence per person plus a rebound term. The results for Thiès
are shown in Fig. 5A. Although there is a slight rebound starting
in about 2009–2010, this rebound is not statistically significant
until 2012 and then is only marginally so (P = 0.04, t test). By
2013 the rebound is highly statistically significant (P = 0.007,
t test), consistent with the genomic signals and inferences from
epidemiological modeling in Fig. 4. The rebound in Thiès is not
observed nationwide and hence probably results from a change
in local conditions. The relative incidence for all of Senegal ex-
cluding Thiès is shown in Fig. 5B; in this case there is no sig-
nificant rebound (P = 0.129, t test).

Discussion
Several aspects of our results and analysis warrant emphasis. One is
that the expected genomic signatures of reduced transmission are
detected surprisingly rapidly following intervention. This timeline
closely follows implementation of control efforts by the NMCP in
Senegal. After significant restructuring in 2005, the NMCP de-
veloped a control strategy for 2006–2010 that involved supplying
rapid diagnostic tests to all health centers (2007), nationwide ac-
cess to artemisinin combination therapies (2007 and 2008), and
distribution of insecticide-treated bednets (2007–2009) (2).
Although such genetic signatures have been observed in parasite

populations associated with sustained low transmission in South
America (10, 11) and Southeast Asia (12), the situation in Thiès
represents the first time (to our knowledge) that they have been
observed in African parasite populations. In Thiès, the genetic-
epidemiological simulations, fitted solely to population-genomic
signatures, demonstrate a dramatic reduction in transmission in-
tensity in 2006–2010 followed by a recent rebound. As an added
benefit, the genetic-epidemiological model yields estimates not

only of the transmission intensity year-on-year but also the un-
certainty of each of these estimates (SI Appendix, Fig. S8).
In contrast to the observations in Thiès, no genomic signatures

of parasite relatedness were noted in a set of samples analyzed
from a region in Malawi in which no significant reduction in
transmission has occurred. The reasons for the observed rebound
in Thiès are not yet clear; however, vector resistance to
insecticide-treated nets, failure of the insecticide in older nets, or
change in the relative importance of vector mosquito species may
contribute. In addition, with effective control strategies, the at-
risk population may shift in response to reduced parasite expo-
sure, with adolescents and adults losing their acquired partial
immunity (13).
Our results do establish a foundational link between observations

of parasite population genomics and epidemiological models that
incorporate genetic mechanisms. Combining genomic observations
with epidemiological modeling provides a powerful and comple-
mentary tool for elucidating population-level details of transmission
in low-prevalence settings from a small sample of parasite genomes.
In particular, modeling parasite genetics allows one to take a col-
lection of many different types of measurement—effective pop-
ulation size, multilocus linkage disequilibrium, heterozygosity of
mixed infections, complexity of infection—and from these mea-
surements form a quantitative assessment of the transmission dy-
namics most consistent with the full information available.
Although our simplified parasite barcode model has allowed a

robust and intuitive interpretation of how changes in population
genomics track with changes in transmission intensity through
time, the addition of different layers of complexity in future
studies has the potential to clarify other features of these data. For
example, the few very large clusters of repeated sequences in 2008
and 2011 are a challenge to reproduce within the simple model
structure. Nevertheless, different types of heterogeneity and
complexity can be added to explore their qualitative effects on
genetic signatures: multiple weakly linked subpopulations experi-
encing different levels of exposure, interactions between acquired
immunity in a population, and strain-specific genetics, as well as
selection pressure from antimalarial drug use. More complex
models will require more detailed data to constrain the parame-
terization, but as sample sizes grow and the resolution of patient

A B

Fig. 3. Model output calibrated to observed barcode data. (A) Unique and
repeated subsets of barcodes in observed data. (B) Unique and repeated
subsets of barcodes in data output from the fitted model.

A

B C

Fig. 4. Changing transmission dynamics in the epidemiological model fitted
to barcode data. (A) Seasonal changes in relative number of affected in-
dividuals and unique barcodes across years. Ra

0 is the initial maximum rate of
parasite increase, which is assumed to decrease linearly to a minimum rate (Rb

0)
and then to rebound to a rate Rc

0. The curves shown are for the maximum
likelihood estimates of the three rates of parasite increase. (B) Log-likelihoods
for values of Rb

0 versus Ra
0. (C) Log-likelihoods for values of R

b
0 versus Rc

0.
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metadata increases, our ability to resolve features of malaria
transmission vulnerable to intervention strategies will improve.
It also is noteworthy that genomewide relatedness can be

detected based on only the number of shared alleles in a 24-SNP
barcode. However, full-sequence data provide additional insights.
Analysis of 164 complete genome sequences indicates substantial
allele sharing across independent isolates. Approximately half of
all genomes share significant sequence identity with at least one
other genome, with the extent of sequence identity ranging from
10–90% or more (Fig. 2A). Genomes sharing a significant number
of SNPs with common barcodes in large subsets or that persist
across multiple years account for a substantial proportion of the
genomewide identity by descent.
To define an optimum number of SNPs to detect the emer-

gence of closely related parasites in a population, we performed
an in silico analysis. The minimum proportion of genome sharing
that can be detected is limited by the probability that two in-
dependent barcodes might share multiple SNP alleles by chance
alone. SI Appendix, Fig. S5 shows the ability of a 24-SNP barcode
to detect genomewide sequence concordance when the SNPs are
chosen to be maximally informative, which in this case means
having minor allele frequencies in Thiès as close as possible to
0.5. Genomewide sequence concordance of ≥70% can be de-
tected quite confidently. Genomewide concordance of ≥50% can
be achieved with a maximally informative barcode of consisting
of 96 SNPs (SI Appendix, Fig. S5).
Major advantages of barcode genotyping are that it is rapid,

inexpensive, sensitive, reliable, and fully deployable in the field.
Although whole-genome sequencing costs continue to decrease,
library construction, sample preparation, and analysis costs re-
main significant. SNP genotyping technologies such as the mo-
lecular barcode are deployed currently in field settings in Senegal,
Malawi, Zambia, and Mozambique using existing real-time and
dedicated high-resolution systems (4). These instruments offer
high throughput, straightforward analysis, and relatively low
costs (less than $10 per sample for barcoding, including reagents
and consumables).
In principle, the advantageous features of SNP barcoding would

allow continuous monitoring of progress in malaria elimination
independent of entomological or prevalence surveys. With steadily
increasing throughput of genomic technologies and decreasing
cost, population genomics also potentially could be used to track
parasite genotypes through time and geographically across routes
of human or vector migration. These methods would allow the
source or sources of parasite resurgence to be identified and
controlled so that elimination could be maintained.
A major implication of this work is that intensification of

existing prevention and treatment interventions can impact the
parasite population dramatically, resulting in the survival of a
smaller, less diverse parasite population. It is important to rec-
ognize that this reduction in diversity could result in the emer-
gence of parasites with altered biological properties, including the
selection of parasites with an enhanced propensity for trans-
mission. These results give us new insights into the transmission
network in the Thiès region of Senegal. The observation that more

than half of the parasites analyzed at the full-sequence level share
some portion of their genome indicates a limited transmission
network. More generally, in areas of low transmission, it might be
possible to identify the likely sources of imported infections by
comparing the parasite genomes in the imported infections with
those from possible sources inferred from patients’ travel history
derived from analysis of data from cellular telephone global-
positioning systems or from more traditional questionnaires.
Limited local transmission implies that parasites from imported
infections and those from the source often may share significant
portions of their genomes.
Measuring transmission is necessary to enable adaptable control

and elimination campaigns that respond to changes in malaria
epidemiology and as, paradoxically, intervention reduces trans-
mission to low levels, standard methods of measurement become
less feasible. At about the time that improved situational aware-
ness of transmission rates is required to understand how much
transmission has decreased, how much further it needs to be re-
duced, and how effective current measures have been, our ability
to measure transmission accurately decreases. The mosquito en-
tomological inoculation rate (EIR) often is assayed by rate of
human biting or incidence of sporozoites. The methods are not
standardized across studies, and data on transmission intensities
are available for only about half the countries of sub-Saharan
Africa (14). An additional complication is that entomological
parameters become very difficult to estimate as transmission drops
to lower levels and finding sporozoite-positive mosquitoes through
standard sampling becomes rare. In Thiès, for example, the EIR is
thought to be at the low end of the range 1−5 (15). With con-
tinuously low transmission intensity, parasite rates and incidence
can become sparse, heterogeneous, and clustered in time or space.
At the other end of the spectrum, when transmission intensity is
high, human parasite infection rates and incidence begin to satu-
rate. In addition, the incidence of detected clinical cases depends
highly on acquired population immunity in addition to trans-
mission, and thus the relationship between clinical incidence and
population immunity will change as local transmission rates depart
from historical equilibriums. For these reasons, among others,
when transmission is low and traditional measures of transmission
become unreliable, prevalence surveys either can be expensive and
labor intensive or else may be performed only on a biased sub-
sample of the population. Our results suggest that new approaches
combining genomics with epidemiological modeling have the po-
tential to provide accurate and timely transmission estimates
without costly surveys or changing incidence relationships. Our
results demonstrate that genomic approaches can serve to monitor
transmission to gauge the initial and ongoing effectiveness of in-
terventions to control malaria. Improved measurements of trans-
mission will enable adaptive campaign measures that respond to
changing conditions and therefore improve outcomes.

Materials and Methods
Sample Collection. All human samples were collected from individuals after
recruitment and written consent of either the subject or a parent/guardian.
This protocol was reviewed and approved by the ethical committees of the
Senegal Ministry of Health (Senegal) and the Harvard School of Public Health
(16330, 2008) for Senegalese subjects and University of Malawi College of
Medicine (Blantyre) and The Brigham and Women’s Hospital (2006-P-002031).

Samples were collected passively from patients reporting to the clinic for
suspected malaria between approximately September and December each
year. Patients over the age of 12 y with acute fevers within the past 24 h of
visiting the clinic and with no reported history of antimalarial use were con-
sidered; they were diagnosed with malaria based on microscopic examination
of thick slide smears and rapid diagnostic tests.

Sequencing and Analysis. Extracted genomic DNA from patient samples from
Malawi and Senegal were sequenced using Illumina Hi-Seq (Illumina, Inc., San
Diego, CA) machines. Reads were aligned using the Burrows-Wheeler Aligner
version 0.5.9-r16 (16) against the 3D7 reference assembly (PlasmoDB v7.1;
17). A consensus sequence was called for each strain using the GATK Unified
Genotyper (18) (see SI Appendix, SI Supporting Information for parameter
values and quality-score thresholds).

Fig. 5. Malaria incidence per person, 2006−2013, normalized to that observed
in 2006 and fitted to a model with an exponential decrease plus a rebound. (A)
Data from Thiès, in which the rebound is statistically significant. (B) Data from
all of Senegal excluding Thiès, which shows no significant rebound. Incidence
data are from the Senegal National Malaria Control Program (2).
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A total of 190 fully sequenced samples from Senegal were available for
study; all were identified as monogenomic infections by barcode. Of these, 176
were collected in a clinic at Thiès. One sample was removed because it had a
very low call rate (3%). To screen out possible cryptic polygenomic infections
and cross-sample contamination, samples also were eliminated if they had an
unusually low rate of calls (<0.3%) with the minor allele (the mean rate for the
rest of the sample was 0.8%); this screen removed 11 samples. The remaining
164 samples were analyzed.

All SNPswith a call rate of at least 80%were used. Triallelic SNPs (1%of the
total) were treated as biallelic, with the most common allele treated as the
major allele. Details of the hidden Markov model to identify specific regions
of genomes that were identical by descent are reported in SI Appendix, SI
Supporting Information.

Epidemiological Modeling. The general features of the epidemiological model
and the parameters estimated to fit the observed barcode data are summa-
rized in Results. Details of the model as to state, time dependence, initiali-
zation, sampling, and fitting to observed data are described in SI Appendix,
SI Supporting Information.

Malaria Incidence Analysis. Malaria incidence per person 2006−2013 was nor-
malized to the values observed in 2006 and analyzed for Thiès alone or for all
Senegal excluding Thiès. The relative incidence data were fitted to a nonlinear
model with an exponential decrease plus a rebound of the form y= a ×Exp(−bx)+
cx, where y = relative incidence. Curve fitting and statistical analysis were
performed using the NonlinearModelFit package in Mathematica. Details of
the parameter estimates, SEs, and statistical tests are summarized in Table S3.

Optimized Barcodes. To address the extent to which genomewide identity by
descent can be estimated through the use of molecular barcodes, we set out to
identify and characterize optimal barcodes based on the fully sequenced
samples from Thiès, Senegal. We excluded highly discordant strains and
screened the others for all polymorphic sites to include SNPs with a minor
allele frequency >0.2, and from these screens we compiled 24-SNP and 96-SNP
optimal barcodes of sites ranked by highest minor allele frequency and in
which ≥80% of samples had no ambiguous or missing calls. We then calcu-
lated the barcode similarity for each pair of strains among all sequenced
strains, counting ambiguous or missing calls as mismatches. To avoid biasing
the percent similarity because of matching major alleles, we restricted the
percent-similarity calculations to include only sites where the minor allele was
present. The similarity index therefore was calculated as the number of sites
where the minor allele matched divided by the total number of sites where
the minor allele was present. The barcode similarity indices then were com-
pared with genomewide sequence concordance.
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