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Stress plays a substantial role in shaping behavior and brain
function, often with lasting effects. How these lasting effects occur
in the context of a fixed postmitotic neuronal genome has been an
enduring question for the field. Synaptic plasticity and neurogenesis
have provided some of the answers to this question, and more
recently epigenetic mechanisms have come to the fore. The explo-
ration of epigenetic mechanisms recently led us to discover that
a single acute stress can regulate the expression of retrotransposons
in the rat hippocampus via an epigenetic mechanism. We propose
that this response may represent a genomic stress response aimed
at maintaining genomic and transcriptional stability in vulnerable
brain regions such as the hippocampus. This finding and those of
other researchers have made clear that retrotransposons and the
genomic plasticity they permit play a significant role in brain func-
tion during stress and disease. These observations also raise the
possibility that the transposome might have adaptive functions at
the level of both evolution and the individual organism.

hippocampus | retrotransposon | histone marks | brain |
genomic stress response

The brain is the central organ of stress and adaptation to
stressors because it not only perceives what is threatening or

potentially threatening and initiates behavioral and physiological
responses to those challenges but also is a target of the stressful
experiences and the hormones and other mediators of the stress
response (1–4). The neural and hormonal mediators of the stress
response affect most of the body’s organ systems, and prolonged
or severe stressors can have prolonged physiologic and behav-
ioral sequelae that can extend throughout the lifespan and be-
yond, to leave its imprint on our offspring (2, 5, 6). Short-term
activation of stress mediators can be beneficial to cope with
challenges, but long-term activation is accompanied by cumula-
tive, potentially detrimental effects referred to, with increasing
severity, as “allostatic load and overload” (3, 7, 8) Thus, although
the brain is the conductor of this neuroendocrine orchestra, it is
also shaped in many ways by its music, with both adaptive and
pathogenic results (1, 2, 9).
Stress has a well-established influence on brain structure,

function, and behavior; however “stress” is not a unitary phe-
nomenon, nor are its effects upon individuals entirely predictable.
The effects of stress upon an individual are dictated by a number
of factors: stress duration, severity, controllability, age, and sex
have clearly delineated roles in determining the impact of a par-
ticular stressor on an individual (10, 11). An individual’s stress
history also seems to play an important role in the capacity to
resist future stress exposures. Surprisingly, at least from the clas-
sical Darwinian perspective, the stress history of parents is a sig-
nificant factor in the resilience of their offspring (12). The desire
to understand how environmental stress transduces its effects into
lasting changes on physiology and behavior, which can vary even
among genetically identical individuals, has led scientists to hy-
pothesize that epigenetic factors might provide an explanatory
mechanism (1, 13, 14). The introduction of next-generation se-
quencing technologies to the exploration of epigenetics and stress

neurobiology has led to greater attention to the possibility that the
largely unexplored genomic space represented by retrotrans-
posons might also have functional significance for brain function
and stress susceptibility (15–17).

Stress and Brain Plasticity
One of most significant feats of modern neuroscience is the
demonstration that the adult mammalian brain demonstrates
a capability for reversible structural plasticity in response to ex-
perience. Plastic capacity includes alterations in dendritic struc-
ture as well as neurogenesis in structures like the hippocampal
formation (4). This capacity can be induced by exercise, stimu-
lating environments, or learning (18–22). Stress, both acute and
chronic, has long been known to effect brain plasticity, as have
steroid hormones, both gonadal and adrenal. Neurotransmitters
and trophic factors also influence the molecular and cellular
capacity for structural plasticity in the brain (4).
Stress affects plasticity in a number of brain regions, notably

the amygdala, hippocampus, and prefrontal cortex. In the medial
prefrontal cortex (mPFC) and hippocampus, exposure to chronic
stress causes dendritic atrophy and reduced synaptic number, an
effect accompanied by functional deficits in cognitive flexibility
and memory, a process that seems to be partially reversible in
younger brains (23–25). In aged brains, this capacity for recovery
of dendritic and synaptic complexity is substantially impaired
(26). In the orbitofrontal cortex and basolateral amygdala, the
pattern of stress-induced structural plasticity is reversed, with
exposure to chronic stress increasing dendritic complexity and
synaptic number in parallel with increased vigilance, aggressive-
ness, and anxiety (27, 28). These findings from animal models fit
well with a substantial body of findings linking exposure to stress
and elevated levels of adrenal steroids to reduced hippocampal
volume (3, 29). These effects also seem to be at least partially
reversible with exercise and environmental enrichment (19, 30,
31), which also seems to elevate levels of neurogenesis in man, as
it does in model animals (32).
However, youth can also be quite vulnerable to adversity; as the

study of adverse childhood experiences in humans and rodent
models, such as maternal separation, make plain, stress in early life
can alter physiology and behavior across the entire lifespan (1, 33).
Although these stress effects are reversible, at least in youthful

brains, it is evident that reversibility is not the same as erasure.
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For example, whereas recovery from chronic stress results in
a return to prestress levels of dendritic length and spine number,
these features did not return in the same pattern: distal dendritic
retraction was not reversed whereas proximal dendritic length
was greater than in stress-naive animals (25). Similar effects have
been observed in cortex, hippocampus, and amygdala in re-
sponse to corticosteroid treatment, suggesting that the network
retained a structural memory of the stress exposure (34). This
structural stress memory is even more apparent with regard to
gene expression in stress-sensitive brain regions like the hippo-
campus. In a recent study comparing global gene-expression
patterns in mice with a variety of stress exposures, it was found
that the changes in gene expression induced by an acute forced
swim stress in naive animals overlapped by less than 10% with
the changes observed in mice exposed to the same swim stress
who had a history of chronic stress. Interestingly, this overlap was
even smaller when the comparison was with mice that had been
chronically stressed and then allowed to recover for 3 wk (35).
What these experiments make clear is that individual history is
important and that there is a memory of stress history retained by
neurons at the cellular level in regions like the hippocampus. Of
course these data lead us to the question of how such memories
might be created and maintained. One plausible hypothesis to
explain neuronal memory of stress experience is via epigenetic
mechanisms such as DNA methylation and histone modification.

Epigenetics and the Genomic Stress Response
Epigenetic mechanisms are attractive mechanisms for the
transduction of environmental inputs, like stress, into lasting
physiological and behavioral changes because many of them
show both the malleability and the persistence necessary to ex-
plain these outputs. Epigenetics is also attractive to researchers
interested in neurodevelopmental and neuropsychiatric disease
because many of the most significant disorders show significant
“missing heritability” at the genetic level (36–39). Although it is
to be expected that rapidly improving sequencing methods will
identify rare genetic variants and novel examples of epistasis, it
seems unlikely that strong genetic determinism is operative in
these disorders; therefore, there needs to be a search for other
mechanisms such as epigenetics.
Stress has a number of known effects on epigenetic marks in

the brain, producing alterations in DNA methylation and histone
modifications in most of the stress-sensitive brain regions ex-
amined, including the hippocampus, amygdala, and prefrontal
cortex (1, 13). Many of these changes may be maladaptive or
contribute to pathologies; however, some of these changes seem
to be adaptive. For example, dynamic regulation of DNA
methylation is required for the proper formation of fear mem-
ories in the mouse hippocampus (40). Our own work has shown
that both acute and chronic stress alter methylation of histone
H3 in the rat hippocampus. H3 lysine 4 trimethylation is in-
creased modestly by chronic restraint. After acute stress, H3
lysine 27 trimethylation drops by 50% whereas H3 lysine 9
trimethylation (H3K9me3) shows a hippocampus-specific two-
fold increase (41). H3K9me3 is a heterochromatin mark asso-
ciated with transcriptional silencing, notably of retrotransposons
(42); thus, we hypothesized that it might be a genomic stress
response aimed at repressing ectopic overexpression of retro-
transposon RNA during stress (16). Chromatin immunoprecipi-
tation (ChIP) sequencing has validated that most of the stress-
induced change is in fact targeted at these elements and that
some are in fact down-regulated after an acute stress. Further, in
the rat hippocampus, the H3K9me3-specific methyltransferase
Suv39h2 is bound by the glucocorticoid receptor and shows in-
creased expression after acute stress (15). The glucocorticoid
receptor has a number of complex interactions with the epi-
genome that are still in the process of being mapped out (1, 43).
Gonadal steroids have a similar capacity to produce epigenomic

reorganization both organizationally and activationally in the
context of sex determination and behavior (44–46), suggesting
that nuclear hormone receptors in general are significant shapers
of chromatin structure, in addition to their long-established role
as transcription factors.

Transposons, Stress, and Brain Disorders
Our work demonstrated that an acute environmental stress dy-
namically regulated the expression of retrotransposon RNA in
the brain (15). However, it was not the first time that transposon
activity had been linked to stress. In fact, activation of trans-
posons by stress was first proposed by their discoverer, Barbara
McClintock (47). Indeed, McClintock’s early observations of
transposition also associated the phenomena with heterochro-
matin and pointed out that mobilization of heterochromatin
domains might alter gene expression (48). Thus, epigenetic marks
and transposition have been associated since the time of their
earliest description. McClintock believed that controlling ele-
ments, as she described them, permitted the genome to respond
more flexibly to environmental shocks and stresses (47), but this
hypothesis has not been the majority view up to the present.
Francis Crick and Susumo Ohno lumped all of the transposable
and repetitive elements into one heap of “selfish” “junk” (49, 50),
and the view that transposons are either useless or parasitic has
remained the dominant one.
Our finding, that rodent short interspersed elements (SINEs)

are epigenetically repressed in the hippocampus during an acute
environmental stress, suggest the capacity of mammalian genomes
to regulate retrotransposon RNA expression (15, 16). That heat
shock causes an increase in the same RNAs (51) strengthens the
support for the idea that expression of SINE RNA at least is
regulated in an adaptive fashion. B2 SINE RNA binds to RNA
polymerase II and represses transcription (52); thus, increased B2
expression during heat shock could be adaptive in that it would
reduce the number of transcripts available for translation and thus
reduce the number of misfolded proteins due to hyperthermia.
The same function seems to be conserved in the human Alu
SINEs (53). On the other hand, protein synthesis is required (54)
for memory consolidation in the hippocampus; therefore, sup-
pression of these RNAs during stressful events would be adaptive
because it would increase the probability of retaining memories of
successful escapes or danger cues.
Transposons have been implicated in pathological processes of

course, notably in cancer and autoimmune disorders (55, 56). In
the nervous system, dysregulation of transposon expression has
been linked to retinal degeneration (57), schizophrenia (58),
alcoholism, posttraumatic stress disorder (PTSD) (59, 60), and
a number of neurodegenerative disorders (17, 61). Recent work
has identified excess transposon expression in the Drosophila
melanogaster brain as a factor in age-related neurodegeneration.
In the fruit fly brain, dysregulation of the transposon RNA-
binding protein TDP-43 results in elevated levels of transposon
transcripts and neuronal death (61, 62). Aberrant TDP-43 ex-
pression or function has been associated with both amyotro-
phic lateral sclerosis and fronto-temporal dementia (61, 63).
It is notable that these findings demonstrate that control of
retrotransposon RNA expression is physiologically important,
whether the mechanism is RNA-processing (by dicer1) (57),
RNA-binding (TDP-43) (61), or repressive chromatin states
(15). Based on these findings, it is certainly plausible to argue
that a disorder like schizophrenia, which results in brain atrophy
over the course of development and which is characterized by
both neuroinflammation and abnormally high retrotransposon
activity (58, 64), might result from either environmental insults
or genetic susceptibilities that reduce the capacity of the de-
veloping brain to control retrotransposon activity.
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Transposons: Controlling Elements After All?
Transposon-induced mutagenesis and overexpression are in-
volved in disease and may eventually provide us with an expla-
nation for a variety of complex disorders. The same could be said
of the genes themselves, however, and genes are better un-
derstood for their normal function, even in those cases where
they are discovered and described due to a malfunction or mu-
tation. If parasitism is the only function of transposons, they would
be perhaps the only parasites whose hosts expend more energy to
replicate than they do on their own genes. Indeed, given how
much of the genome is composed of transposons in multicellular
organisms, relative to the small fraction present in prokaryotes or
even unicellular eukaryotes, it is hard to imagine how multicellular
life could have evolved with such a serious competitive disad-
vantage. Further, that diseases can be caused by aberrant ex-
pression of certain genes is certainly well-accepted whereas the
idea that genes are parasites cannot even be ascribed to Richard
Dawkins in his most extreme moments (65), and the idea itself
would render the modern Darwinian synthesis nonsense.
Of course, McClintock did not take the view that controlling

elements were parasites; she felt that they helped the organism
and the genome respond to changing and stressful environments
(66). There is certainly evidence to support this view (Fig. 1);
transposons form or can be recruited to telomeres in yeast,
plants, insects, and rodents (66, 67). In CHO cells where telo-
mere function is disrupted, L1 retrotransposons preferentially
transpose into the region of the telomere, helping preserve
telomere function (68). In yeast, the Ty5 LTR-retrotransposon is
preferentially directed to the telomeres, save during stress, when
a change in phosphorylation status causes it to be directed away
from heterochromatin domains like the telomeres and toward
actively transcribed genes, allowing a stress-responsive reshuf-
fling of the genome (69). Similar responses have been observed
in plants (70). It is now thought that the telomerases that nor-
mally maintain the eukaryotic telomere derive from ancient
retrotransposon reverse transcriptases (67). Indeed, it has been
argued that both the epigenetic machinery that controls trans-
posons and builds telomeres, in concert with transposons, has
been a major factor in determining the structure and size of
eukaryotic genomes (66). Retrotransposons also play a role in
mammalian development from meiosis onward and are thought
to be the major drivers behind the evolution of the placenta,
which shows the highest level of retrotransposon activity thus far
described in a mammalian tissue (71). It is interesting to note
that the adrenal cortex, the principal site of glucocorticoid syn-
thesis, expresses the second highest level of endogenous retro-
virus (ERV)-type transposons in humans after the placenta (72).
Further, retrotransposons have been major factors in the de-
velopment of epigenetic imprinting (the agouti locus being
a notable example) and X-inactivation (Fig. 1A) (73, 74).
Transposable elements have also been a significant source of

ready-made promoter elements and transcription factor-binding
sites during the evolution of the genome (75, 76). This relation
with transposable elements seems to be true with regard to ste-
roid receptors in particular (77). Alu SINEs alone are known to
form the substrate for response elements for progesterone, glu-
cocorticoids, and vitamin D (78, 79). Steroids and their receptors
appear linked in a variety of ways to both chromatin structure
and retrotransposons. Steroid receptors themselves are capable
of causing interchromosomal interactions up to and including
translocations (80), and it is suspected that this capacity is ad-
ditive or synergistic with the capacity of long interspersed ele-
ments (LINEs) to produce chromosomal rearrangements (81). It
has been observed that SINE transcription can be induced in rat
liver cells by glucocorticoids (82) whereas L1 LINE elements
show increased expression when stimulated with androgens (83).
The interaction between LINEs and androgen receptors (ARs)

seems to be bidirectional in that the LINE-1 ORF1 protein
seems to interact directly with AR in prostate-cancer cells and
act as a positive coactivator of androgen-regulated genes (84).
The observation that steroidogenic organs like the placenta,
adrenals, and gonads (85, 86) show the highest levels of retro-
transposon activity is worthy of attention, especially given the
role of the brain as both an endocrine organ and steroid target.

Fig. 1. (A) Description of potentially beneficial actions of transposons that are
known to occur at the organismal level. The names next to the connecting lines
are those of the elements that have been shown to be involved in the relevant
function: e.g., the transposon-derived XIST element governs epigenetically
mediated X-chromosome inactivation, and an IAP ERV/LTR retrotransposon
created the epigenetically imprinted agouti locus. (B) Description of population-
level beneficial effects of transposon endosymbiosis, giving known examples in
smaller print: e.g., the evolution of both the mammalian immune system and
the placenta have been driven to a large extent by transposon-derived genomic
elements. (C) Outline of both known and potential interactions between ste-
roids and transposable elements, with more theoretical interactions followed
by a question mark. For instance, those organs that show the highest levels of
retrotransposon activity, such as the brain and placenta, also seem to be both
steroidogenic and steroid-sensitive although the link remains correlative (see
Transposons: Controlling Elements After All).
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Steroids drive the development of sexual differentiation (87,
88), and many neuropsychiatric disorders show marked differ-
ences in incidence and age of onset between the sexes (4, 89, 90).
Therefore, it is reasonable to presume that, to the extent steroids
regulate the expression of transposable elements, this regulation
could contribute to observed sex differences in mental disorders.
To extend the hypothesis about schizophrenia, elaborated above,
it could be argued that the earlier age of onset of this disease in
males could be due to the underexplored immunosuppressive
effects of androgens, which are at peak concentrations in the
adolescent males at risk for a first psychotic episode (91, 92).
Alternately, it could be due to direct activation of ectopic retro-
transposon expression by AR itself. Both of these hypotheses
seem plausible and needn’t be mutually exclusive, yet the ques-
tion remains entirely open. Similar hypotheses could be made
with regard to other mental disorders with different incidence
between the sexes, such as autism or major depression (93). The
interactions between the transposome and both sex and stress
steroids (Fig. 1C) seem likely to be fruitful targets for researchers
seeking to understand how transposons might contribute usefully
to normal function as well as those seeking novel explanations for
complex diseases to which sex and stress show clear contributions.
Within the brain there is evidence that transposons may have

beneficial roles. Gage and coworkers have demonstrated that L1
line retrotransposition occurs during mammalian brain de-
velopment and neurogenesis and that the rate of transposition is
influenced positively by environmental influences like exercise
(94, 95). In parallel to our own observations, L1 activity seems to
be under epigenetic control involving DNA methylation and
MeCP2 (96). Gage and coworkers have argued that this retro-
transposon-induced mosaicism permits increased neuronal di-
versity in analogy with the retrotransposon-derived V(D)J
recombination system that drives antibody diversity in the im-
mune system (97), which is one of the best-described and un-
derstood examples of the adaptive value of the transposition
machinery (98–100). In this vein, it is interesting to note that
there are substantial differences in the regulation of stem-cell L1
elements in humans and apes (101). Although the capacity of these
elements to produce neuronal diversity through transposition is
clear, it is likely that this genotypic diversity is not the only means by
which these elements contribute to brain function. In the human
cortex, transposition occurs at a fairly low rate (102), suggesting that
diversity produced by transposition may not be as significant a factor
there as it is in the hippocampus. We have alluded to the gene
regulatory capacity of SINE RNA above, and it is likely that other
varieties of retrotransposon RNA could have similar regulatory
functions. Transposons are noted for their capacity to induce DNA
strand breaks, generally with negative consequences, but recent
findings that DNA double-strand breaks are associated with normal
exploratory behavior in regions important for memory formation,
like the hippocampus (103), suggest that retrotransposons could
contribute to memory formation as well although this mechanism is
almost completely unexplored.
It remains undetermined whether retrotransposons are truly

symbiotic in eukaryotic genomes (104, 105), but it can be hy-
pothesized that this relationship is in fact the case and that they
have been coopted so as to be largely beneficial (Fig. 1B). If one
compares prokaryotic genomes with eukaryotic genomes, it is
immediately plain that the transposon content of the former is

orders of magnitude smaller than in the latter whereas, on the
other hand, horizontal gene transfer is much more common in
prokaryotes than in eukaryotes. In prokaryotes, the energetic and
competitive constraints on genome size are quite high, and the
common availability of horizontal gene transfer allows bacteria to
acquire adaptive genes on an as-needed basis and discard them
when the need disappears. Within a multicellular organism, the
local genetic diversity is very low (unless an infection has occurred);
this low diversity means that opportunities for adaptive horizontal
transfer are minimal. As a consequence, multicellular eukaryotes
would need to take their genetic diversity along with them if they
wished to maintain the flexible genomic response to environmental
stress available to prokaryotes via horizontal transfer. If this view
of transposons as a portable library of diversity holds true, the
transposome can be regarded as a sort of endosymbiont. One
prediction of this idea is that eukaryotes with a more prokaryotic
lifestyle, with more access to horizontal gene transfer, would have
smaller genomes with lower transposon content. This prediction is
supported by the observation that unicellular eukaryotic genomes
have low (less than 5%) or no detectable transposable elements
(106–108). The obverse should also be true: large multicellular
eukaryotes should have higher transposon content in their
genomes, especially plants, because they cannot rely on behavioral
strategies to defeat environmental insults. This prediction too
seems to hold, because the human genome is roughly 50% trans-
poson (109) whereas the maize genome, where transposons were
originally identified, is 80% transposon (66, 110). It can be seen,
then, that a functional, potentially symbiotic role for transposable
elements in eukaryotic genomes is entirely plausible.

Conclusions and Outlook for the Future
Transposons are more than junk; they have played a significant role
in genome evolution and arguably in the maintenance of genome
structure and stability (66). They have been successfully coopted by
the mammalian immune system to provide antibody diversity, and
a similar process may be at work in generating genomic, and by
extension behavioral, diversity in the brain (17, 97, 111). Our work
suggests that the brain may also need to regulate retrotransposon
RNA expression on a rapid and dynamic basis and that this regu-
lation could have adaptive significance (16). At present, very little
other evidence exists to inform our understanding of what the
functional role of transposons in the brain might be, but the tools to
gather this evidence are readily available in the form of next-gen-
eration sequencing and modern bioinformatics. Simple questions,
such as how retrotransposon expression differs between brain
regions in response to different environmental inputs, remain un-
answered. More complex questions, such as how retrotransposons
detect stress, how they might promote behavioral diversity, and the
mechanisms by which cells choose to regulate their expression, also
remain to be answered, both generally and with regard to the
nervous system. Epigenetic marks are certainly among the tools
cells use to regulate transposon expression, and it seems likely, at
least in the context of stress, that steroid hormones will also be
involved in orchestrating retrotransposon expression, just as they do
with regard to genes. The number of open questions is too great to
list here, but it is sufficient to say that, should transposons prove to
have a significant functional role in the nervous system, that finding
will increase the level of complexity required to understand that
system by an order of magnitude.
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