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Climate change is expected to increase future temperatures,
potentially resulting in reduced crop production in many key
production regions. Research quantifying the complex relationship
between weather variables and wheat yields is rapidly growing,
and recent advances have used a variety of model specifications
that differ in how temperature data are included in the statistical
yield equation. A unique data set that combines Kansas wheat
variety field trial outcomes for 1985–2013 with location-specific
weather data is used to analyze the effect of weather on wheat
yield using regression analysis. Our results indicate that the effect of
temperature exposure varies across the September−May growing
season. The largest drivers of yield loss are freezing temperatures in
the Fall and extreme heat events in the Spring. We also find that the
overall effect of warming on yields is negative, even after account-
ing for the benefits of reduced exposure to freezing temperatures.
Our analysis indicates that there exists a tradeoff between average
(mean) yield and ability to resist extreme heat across varieties.
More-recently released varieties are less able to resist heat than
older lines. Our results also indicate that warming effects would
be partially offset by increased rainfall in the Spring. Finally, we
find that the method used to construct measures of temperature
exposure matters for both the predictive performance of the regres-
sion model and the forecasted warming impacts on yields.
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The potential impact of global warming and climate change on
socioeconomic outcomes has become an important and

growing area of scientific study and evaluation. Separate lines of
study include quantifying the likely impact of climatic change on
measures of civil conflict (1–5) and agricultural land values,
profitability, and/or production efficiency (6–22). Both lines of
literature continue to measure, discuss, and debate the effects of
warming temperature. An issue that has received much attention
in both sets of literature is how best to quantify exposure to ex-
treme temperatures. This is an important concern, as many studies
rely on historical spatial and temporal variations in weather out-
comes to identify the effects of weather extremes. If these his-
torical extremes are not measured correctly, estimates of their
impacts will not be credibly identified, thereby raising doubts re-
garding any climate change projections based on these impacts.
Here we use regression analysis to estimate wheat yields as a

function of observed weather variables and forecast yield impacts
under a variety of weather scenarios. Our main findings are as
follows. First, the effect of temperature exposure varies across the
September−May growing season, with the biggest drivers of yield
loss being freezing temperatures in the Fall and extreme heat in the
Spring. Second, the net effect of warming on yields is negative, even
after accounting for the benefits of reduced exposure to freezing
temperatures. Third, there exists a tradeoff between mean yield and
ability to resist extreme heat across varieties, and more-recently
released varieties are less able to resist heat than older ones. Fourth,
warming effects are partially offset by increased rainfall in the
Spring. Fifth, the method used to construct measures of tempera-
ture exposure matters for both the predictive performance of the
regression model and the forecasted warming impacts.
We focus on wheat as it is one of the first domesticated food

crops, forms the basic staple food of major civilizations in

Europe, West Asia, and North Africa, and is the most widely
planted crop globally. With a 2013 harvest of 8 million hectares,
the Great Plains of the United States form the largest contiguous
area of low-rainfall winter wheat in the world. Five states
(Kansas, Oklahoma, Texas, Colorado, and Nebraska) produce
nearly all high-quality hard red winter wheat in the United
States. In 2013, Kansas production generated 378 million bushels
of wheat at a value of 2.8 billion US dollars. Kansas production
value represents 15% of all wheat grown in the United States.
Our empirical approach uses data that combine variety-specific

wheat yield observations with weather data from the exact loca-
tion of the field trial. This permits two major advances for esti-
mating the relationship between weather and wheat yield:
(i) Location-specific weather data purge the results of aggrega-
tion bias that might be present in studies that use weather aver-
ages (or other aggregates) across space, and (ii) variety-specific
yield responses provide information about the impact of climate
on a large number of past, present, and future wheat varieties.
Ref. 11 discusses limitations of gridded weather data sets, which
have been used extensively because there is not often a weather
station in each location of interest. Our data avoid the five pitfalls
associated with gridded weather datasets (11). In addition, we
find that the warming effects estimated using these field trial data
are consistent with effects estimated from on-farm yield data,
thereby providing external validity for the results presented here.

Results
The raw data include observed wheat yields matched by location
with daily min/max temperatures and total precipitation. There
are 268 observed seed varieties in the sample (SI Appendix, Table
S1). The yield and weather data vary substantially in-sample (SI
Appendix, Table S2 and Figs. S1−S5). Here and throughout the
analysis, the 9-mo September−May wheat growing period is

Significance

This study provides insights for wheat breeding efforts, public
policy, and agricultural decision making related to climate
change. Our findings provide opportunities for the international
wheat breeding community to intensify research efforts to in-
crease resistance to heat stress during focused developmental
stages. These efforts could result in net positive warming
effects since reduced exposure to freeze was found to be a
yield-enhancing benefit of warming. Our results indicate that
advancements in heat resistance could come at the expense of
higher average yields, and that there is currently limited scope
for producer adaptation through alternative variety selection.
Our results also suggest that irrigation could help mitigate the
effects of warming, which has implications for policies focused
on the conservation of increasingly scarce water resources.
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divided into 3-mo seasons: Fall (September−November), Winter
(December−February), and Spring (March−May). Degree days
are calculated using a sinusoidal interpolation of temperature
exposure within each day and are hereafter referred to as In-
terpolated Degree Days (IDD). Extending the approaches of
refs. 13 and 20, we also include variables that measure time ex-
posure to freezing temperatures. There exists substantial varia-
tion in the IDD and freeze variables across both locations and
years (SI Appendix, Figs. S6 and S7, Top).
Regression analyses that control for precipitation, technologi-

cal change, location-specific unobserved factors, and seed variety
suggest that degree days measured using interpolations between
daily minimum and maximum temperatures (13, 20) are a more
accurate predictor of wheat yield than average daily temperatures
and an alternative measure of degree days calculated using daily
mean temperatures (23–27). Thus, we focus on the interpolated
degree day approach here, but include findings for the latter two
approaches in SI Appendix, section S1. The results presented in
that section suggest that average temperature and degree days
calculated based on mean daily temperatures do not fully capture
variations in temperature exposure and consequently misrepresent
the effect of a warming climate on wheat yields.

Optimal Degree Day Thresholds for Yield Prediction Differ Across the
Fall, Winter, and Spring Months. It is not clear from the literature
what the appropriate degree day thresholds for wheat are, as
these can potentially vary depending on the method used for
constructing degree days and the season under consideration.
We follow the piecewise linear approach of ref. 13 and allow for
two separate degree day thresholds within each season. We di-
rectly control for exposure to freezing temperature separately,
and thus restrict our attention to thresholds above zero. We
estimate the regression model over all possible thresholds and
select as optimal the ones generating the best fit for the model
(highest r-squared). The lower threshold is restricted to be at
least five degrees above zero and ten degrees below the maxi-
mum observed temperature, while the upper threshold is re-
stricted to be five degrees above the lower threshold and five
degrees below the maximum. These restrictions are used to en-
sure that the thresholds are not too close to each other, nor too
close to the endpoints of the piecewise linear function. We
evaluate the robustness of these restrictions below.
Under the piecewise linear approach, the upper and lower

thresholds are used to construct three measures of temperature
exposure: IDD between 0 °C and the lower threshold, IDD be-
tween the lower and upper thresholds, and IDD above the upper
threshold. The optimal thresholds were estimated to be 10 °C
and 17 °C in the Fall, 5 °C and 10 °C in the Winter, and 18 °C and
34 °C in the Spring. Although the sample average for IDD above
34 °C in the Spring is slightly less than 1 (SI Appendix, Table S3),
it exhibits substantial variation as the coefficient of variation
is greater than 1. This variable is nonzero in two thirds of the
location−years in the data.

Freezing Temperatures in the Fall and Extreme Heat in the Spring Are
the Biggest Drivers of Yield Loss. The parameter estimates for the
preferred IDD model are reported in SI Appendix, Table S4,
column 3. An additional day of freezing temperatures in the Fall is
associated with a 9% yield reduction (Fig. 1). Fall growth can be
slowed by cold weather, and wheat will be pushed toward dor-
mancy, shutting down tiller formation, and thus reducing yield.
The upper degree day threshold in the Spring is 34 °C, above
which an additional degree day is associated with a 7.6% yield
reduction. Effects on fertility of high temperatures in the Spring
just before or during flowering can affect seed set, and exposure
later in the season during the grain-filling phase causes the plant
to start to senesce and shortens the amount of time the plant can
fill grain. Among positive temperatures, springtime exposure

above 34 °C is associated with the largest yield reductions (SI
Appendix, Fig. S8). Precipitation has an inverted U shape in the
Winter and Spring, whereas it is upward sloping at an increasing
rate in the Fall (SI Appendix, Fig. S9). The precipitation variables
are jointly significant (P = 0.02). The location and variety fixed
effects are each statistically significant (SI Appendix, Table S5)
and thus capture important variation across trial locations and
seed varieties. Restricting the temperature coefficients to be the
same across seasons is not supported by the data, nor is
restricting the low, medium, and high degree day coefficients to
be the same within each season (SI Appendix, Table S5).

The Overall Effect of Warming on Yields Is Negative, and Ignoring the
Effects of Warming on the Exposure to Freezing Temperatures
Overstates This Effect. Fig. 1 implies that warming temperatures
have potentially off-setting effects, as they reduce exposure to
freezing temperatures while simultaneously increasing exposure
to extreme heat. To evaluate which effect dominates, we predict
yield impacts for a range of uniform temperature changes across
the entire Fall−Spring growing season (Fig. 2). All scenarios
suggest that warming is associated with net yield reductions,
implying that the detrimental effect of extreme heat is larger
than the beneficial effect of freeze reduction. All warming im-
pacts are statistically significant at the five percent level, with the
exception of the +1 °C warming scenario, which is significant at
the ten percent level (P = 0.084). The warming effects are robust
to the restrictions on the degree day thresholds discussed above
(SI Appendix, Fig. S10). We also find that warming effects will be
substantially overstated if one ignores the effects of reduced
exposure to freezing temperatures (Fig. 2).

The Overall Effect of Warming on Yields Varies Across the Growing
Season. Fig. 3 decomposes the overall warming effect across the
Fall, Winter, and Spring months. Within each season, the neg-
ative effects of warming are larger than the beneficial effects of
reduced exposure to freezing. The one exception is Spring under
the 1 °C warming scenario, which shows a net positive effect. The
biggest drivers of yield reductions are associated with the Fall
and Winter months until the 5 °C warming scenario, at which
point the Spring effects are largest. These findings imply that
looking at any one season in isolation can misrepresent the

Fig. 1. Impacts of freezing and degree day temperature variables on wheat
yield for the preferred model (SI Appendix, Table S4, column 3), expressed
per 24 h (days). Dx,y refers to the degree day variables created from the IDD
variables for the thresholds x and y. Each four-bar cluster shows impacts for
the Fall, Winter, and Spring months. Bars show 95% confidence intervals
using SEs clustered by year and variety.
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overall effects of warming, as can only focusing on the marginal
effects from a regression model (i.e., Fig. 1).

The Warming Effects Estimated from Field Trial Yield Data Are
Consistent with Effects Estimated from County-Level Aggregate Yield
Data. Management practices for the field trials vary by location
and year. Production methods are considered, “best management
practices” for each location−year and are designed to eliminate
all yield-reducing features such as nutrient deficiencies or toxic-
ities, damage from insect pests and disease, and competition from
weeds. These optimal growing practices potentially differ from the
production practices of real farmers, who base management de-
cisions on profitability. To investigate the external validity of our
results, we reestimate the preferred model (SI Appendix, Table S4,
column 3) using county-level yield data for dryland hard winter
wheat from the National Agricultural Statistics Service (NASS).
The 11 trial locations form a small but representative sample of all
Kansas wheat-producing counties (SI Appendix, Table S6). Aver-
age county-level farm yields are lower than field trial yields on
average, which is consistent with the existence of a yield gap be-
tween field trial and on-farm production efficiency (28). We
match the NASS yield observations with the weather from the
field trial location in that county. The location and variety fixed
effects from the preferred model are replaced with county fixed
effects. We find that the temperature coefficient estimates and
associated warming effects remain largely unchanged relative to
our preferred model (SI Appendix, Figs. S11 and S12). This pro-
vides evidence of external validity for the results reported here.

There Exists a Tradeoff Between Mean Yields and the Ability to Resist
Heat, and Newer Varieties Are Less Heat Resistant than Older Ones.
We consider whether the ability to resist high temperatures in
the Spring varies across wheat varieties. We first consider a
varying-slope multilevel model (29) where the fixed portion of
the model takes the same form as our preferred model (SI Ap-
pendix, Table S4, column 3), but we allow the effect of degree
days above 34 °C in the Spring to vary across varieties. We were
not able to estimate this version of the model due to a small
number of observations for many included varieties (SI Appendix,
Fig. S13). We instead group varieties by the year in which they

were released to the public and use this clustering in both the
fixed and random components of the multilevel model. This al-
lows us to estimate Spring heat resistance across 42 release year
groupings between 1964 and 2014 (SI Appendix, Table S7). From
this model, two findings emerge. First, there exists a tradeoff
between the ability to resist heat and mean yield, with higher-
yielding varieties less able to resist temperatures above 34 °C (SI
Appendix, Fig. S14). We find that if the least resistant variety is
switched to the most resistant variety, average (mean) yield is
reduced by 6.6% and heat resistance is increased by 17.1%.
Second, newer varieties are less able to resist temperatures above
34 °C than older varieties (SI Appendix, Fig. S14). We estimate
warming effects for the most and least heat resistant varieties, and
find that the effects differ by an average of three percentage
points (SI Appendix, Fig. S15). This implies that there is limited
scope for producer adaptation through alternative variety selec-
tion from a historical perspective. However, future breeding ef-
forts could make this a more feasible strategy.

Interactions Between Temperature and Precipitation in the Spring
Imply That Warming Effects Are Partially Offset by Increased Rainfall.
Our preferred specification (SI Appendix, Table S4, column 3)
uses log yield as the dependent variable, which allows for the level
change in yields as a result of warming to be a function of both
temperature exposure and precipitation. However, the percent-
change impacts—which are of interest here—are restricted to be
independent of precipitation. Thus, we consider a more general
specification that includes interactions between the degree day
variables and precipitation for each of the Fall, Winter, and Spring
seasons. This generalization is not supported by the data in the
Fall and Winter (joint P values of 0.69 and 0.19, respectively), but
is supported for the Spring (joint P value of 0.00). A further ex-
tension to quadratic interactions is not warranted (joint P values of
0.77, 0.54, and 0.90 for the Fall, Winter, and Spring, respectively).
Thus, we include linear interactions for the Spring degree day and
precipitation variables, and predict warming effects holding pre-
cipitation at the 25th, 50th, and 75th percentiles of the sample
data (SI Appendix, Fig. S16). Results suggest that additional Spring
precipitation can partially offset the negative effect of warming, as
the warming impacts are 11 percentage points larger under the

Fig. 2. Predicted warming impacts on wheat yields under alternative uniform
temperature changes across the entire Fall−Winter−Spring growing season.
Impacts are reported as the percentage change in yield relative to historical
climate. Each two-bar cluster shows estimates for a given scenario across dif-
ferent regression model specifications. The preferredmodel (SI Appendix, Table
S4, column 3) estimates the warming effects using all temperature variables,
whereas the alternative holds all effects from the Freeze Days variables at zero.
Bars show 95% confidence intervals using SEs clustered by year and variety.

Fig. 3. Predicted warming impacts on wheat yields under alternative uniform
temperature changes across subsets of the growing season. Each four-bar
cluster shows estimates from the preferred model accompanied by alternatives
that restrict subsets of these effects to be zero. Just Fall ignores temperature
effects in theWinter and Spring. JustWinter ignores temperature effects in the
Fall and Spring. Just Spring ignores temperature effects in the Fall and Winter.
Bars show 95% confidence intervals using SEs clustered by year and variety.
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low-precipitation (25th percentile) versus the high-precipitation
scenario (75th percentile).

Discussion
Scientific evidence continues to demonstrate the future impor-
tance of climate change on production of food, fiber, and fuel
(30). With the exception of potatoes, wheat is the food crop most
affected by climate change (31), and as such, greater knowledge
and understanding of the agronomic relationship between
weather outcomes and wheat yields is crucial to our ability to
forecast, understand, and respond to potential future increases in
temperature. This knowledge provides agronomists and plant
breeders with information about genetic traits that could lead to
increased heat resistance in future crop varieties. Knowledge of
the impact of potential climate changes on economic variables
such as agricultural land values allows policy makers, agricultur-
alists, and economists to better forecast and plan for a future that
differs from the past. This is of great importance with regards to
wheat, given that it is the largest source of vegetable protein in
low-income countries. These important and significant gains in
knowledge have caused the large growth in research efforts and
results in the area of climate change effects on agricultural yields.
Our findings indicate that wheat yields have become less re-

sistant to high Spring temperatures over time. These tempera-
tures likely coincide with critical developmental stages such as
flowering and grain filling; thus the finding provides opportunities
for the wheat breeding community to intensify research efforts to
increase resistance to heat stress during focused developmental
stages to minimize damages projected under future warming
scenarios. Efforts to mitigate damages associated with heat could
potentially result in net positive warming effects, as our results
indicate that reduced exposure to damaging freezes is a yield-
enhancing benefit of a warming climate. Thus, incorporating
higher tolerance to heat stress during critical developmental
stages is identified as a major research direction for crop scien-
tists. This parallels recent evidence suggesting that active selec-
tion and breeding for atmospheric CO2 responsiveness among
cereal varieties is a feasible adaptation strategy (32).
Our results indicate that advancements in heat stress resistance

could come at the expense of higher average yields. The estimated
tradeoff between yield and heat resistance is an important out-
come that has implications for breeding efforts, which have re-
cently placed particular emphasis on stress tolerances associated
with anticipated environmental and climatic changes (33). Main-
tenance breeding is an important and constantly evolving objec-
tive among breeders (34–36). Our results also indicate that newer
varieties are less heat resistant than older varieties. Newer varie-
ties have longer grain-filling periods, which increases yield po-
tential under ideal weather conditions but introduces additional
susceptibility to high temperature exposure during this critical
period. This reinforces the need for more focused breeding ef-
forts, as our results suggest that there is currently limited scope for
producer adaptation through alternative variety selection.
Our results also indicate that additional rainfall in the Spring

can partially offset the negative effects of warming. This has
important implications for devising agronomic and water man-
agement options to provide supplemental irrigation through
sprinklers or aerial watering coinciding with expected extreme
heat events during critical growth stages of the wheat plant to
help mitigate significant crop losses. Thus, this study provides
direction for policy making decisions, particularly for heat-prone
wheat production areas in the United States and elsewhere.
Furthermore, in considering an adaptation strategy based on
irrigation, both producers and policy makers should take into
account costs associated with water resource depletion.
In evaluating heat resistance across varieties, we were not able

to estimate a separate resistance for each variety. Instead, we
focused on the variety release year, a proxy for the imbedded

seed technology available at that point in time. This potentially
confounds the sensitivity estimate for years in which multiple
varieties were released. A more realistic grouping scheme—
perhaps based on genetic markers—could aid in the identifica-
tion of heterogeneous heat sensitivities and associated warming
impacts across varieties. Future research might also consider the
role of heterogeneous precipitation effects in predicting overall
effects of warming, as we found evidence of interactions between
cumulative precipitation and temperature exposure. In addition,
future efforts might also consider the timing of the weather
outcomes within the growing season. Two consecutive days of
high temperature exposure could have a more damaging effect
on yield then two separate days, as could hot daytime tempera-
tures followed by a hot night versus a hot day followed by a cool
night. The timing of precipitation events also matters, as it can
provide heat stress relief if it follows a period of high tempera-
tures. Upon addressing these issues, more realistic forecasts of
the effects of climate change on wheat yields could be pursued
based on the approaches outlined in ref. 11.
Another important finding relates to the manner in which de-

gree days are calculated from daily temperature observations.
Previous studies for wheat have typically relied on average daily
temperatures for constructing degree days (23–27). We find that
first interpolating the distribution of temperature exposures within
each day and then calculating degree days provides a statistically
significant improvement in model performance, both in and out of
sample. Previous approaches in the literature, such as a nonlinear
function of average temperature or degree days constructed from
mean temperatures, misrepresent the underlying variation in
temperature and its associated impacts on yields. We further
show that this misrepresentation has important consequences for
predicting the impacts of warming temperatures, as it un-
derstates the negative effects of extreme heat, and thus warming.
Further research is needed to better understand the potential

existence and magnitude of threshold values for measuring de-
gree days. Our findings suggest that there are large negative yield
effects at temperatures above 34 °C in the Spring. This threshold
was previously used in ref. 20 for wheat production in India and
ref. 9 for US farmland values; however, these studies assumed
this threshold ex ante whereas our finding is ex post to a thorough
statistical analysis of alternative threshold values. This comple-
ments the findings in ref. 13, which used a similar data-driven
empirical exercise and found thresholds of 29 °C, 30 °C, and
32 °C for corn, soybeans, and cotton, respectively. Although
exposures to 34 °C are somewhat rare in most wheat-growing
regions, global warming has the potential to increase their fre-
quency. Future research on climate change’s effects on wheat
production might benefit from the application of our method-
ology at a larger spatial scale, augmenting our approach with the
elements that improve prediction on a regional scale.
The relationship between temperature and plant growth is

likely to be more complex than modeled here, depending on the
crop, growth stage, location, and the interaction of other weather
variables including humidity, vapor pressure, and solar radiation.
This is particularly true for winter wheat, given the long growing
period that spans three distinct weather seasons. Greater un-
derstanding of extreme weather events is also needed to further
our ability to forecast the potential impacts of climate change on
crop yields. Further research could devote more attention to
improving specifications of the magnitude, duration, and fre-
quency of extreme weather events. Our results also indicate that
net warming effects will be substantially overstated if one ignores
the effects of reduced exposure to freezing temperatures. Crop
improvement will continue to advance with better knowledge of
these differential impacts of weather on wheat varieties.
This study is only one part of a larger effort to develop sus-

tainable wheat production worldwide. Achieving this goal in the
face of climate change requires integrated approaches across
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economic, agronomic, soil, biological, hydrologic, and other
scientific disciplines whose research can be guided by the results
provided in this study. Continued observation of the interaction
between increasingly variable weather conditions and wheat
production outcomes will allow refinement and enhancement of
this modeling approach and provide plant breeders, agricultural
policy makers, and private enterprises with important direction
for sustaining wheat production in an increasingly hot future.

Methods
Data. Weather data were taken from Kansas Weather Library. Daily tem-
perature observations correspond to each field trial location. Following ref. 13,
a sinusoidal distribution was fitted between daily minimum and maximum
temperatures to estimate hourly exposure for each degree Celsius. These
exposures were then summed for each month during the wheat growing
season, September through May (harvest typically occurs during June). A sine
function was fit from daily minimum temperature to the daily maximum
temperature, and then a second sine curve was fit from the maximum tem-
perature to the next day’s minimum temperature. Therefore, a “day” is de-
fined as the time between the minimum temperature (early AM) and the
next day’s minimum temperature. We also collect daily precipitation, which,
along with the temperature exposures, is summed up to a cumulative mea-
sure for the Fall (September−November), Winter (December−February), and
Spring (March−May) seasons. Wheat yield data are from Kansas Performance
Tests with Winter Wheat Varieties for the years 1985–2013. All yield data are
for dryland (nonirrigated, rainfed) Hard Red Winter Wheat, with some ob-
servations of Hard White Wheat. All yield data are in bushels per acre.

Regression Models. The data vary temporally across growing seasons and cross-
sectionally across field trial locations and seed varieties. Time-invariant factors
such as soil quality may vary across locations. Although we do not directly
observe these invariant factors in the data, we can control for them using
location fixed effects. We also include seed variety fixed effects, as the mean
yields will vary across this dimension. These variety fixed effects directly control
for changes in technology over time, as newer varieties are typically associated
with higher yields.We also considered location-by-variety fixed effects instead,
but found our results robust across this alternative (SI Appendix, Figs. S17 and
S18). A quadratic time trend is included to measure changes in the experi-
mental design of the field trials over time, which could result from changes in
best management practices (e.g., more timely fertilizer applications). The
trend parameters suggest a slight increase in yields over time at a decreasing
rate; however, the parameters are not statistically significant (P > 0.10).

We used multiple regression to estimate the following statistical model:

yijt = αi + αj + αt1t + αt2t2 + f
�
wjt ; β

�
+ «ijt ,

where yijt is log yield for variety i at location j in trial year t, αi and αj capture
fixed effects across varieties and locations, αt1t + αt2t2 captures the trend
component, and fðwjt ; βÞ captures the (potentially nonlinear) effects of
location-specific weatherwjt on yields. It is likely that the error terms «ijt are
heteroskedastic and autocorrelated. We therefore cluster SEs by year and
seed variety using multiway clustering, which allows for errors to be het-
eroskedastic, spatially correlated within each year, and temporally correlated
within each variety (37). We find that this is an important consideration, as SEs
are 3.6 times larger when clustering by year alone relative to unclustered (but
heteroskedasticity robust) errors, and 3.8 times larger when clustering by
year and variety. Future research might also consider clustering by location,
which is not feasible here because we only have 11 locations. Previous research
suggests that having only 10 clusters, either in a single or multiway frame-
work, can lead to inaccurate statistical inference (37).

We fix the growing season to the months September through May. The
length of the growing season, and associated distinction in plant growth
stages, makes identifying weather effects difficult in practice. Given these
various stages—Fall growth followed by Winter dormancy, and then joint-
ing, booting, heading, and grain development in the Spring—weather im-
pacts can vary substantially across seasons. Thus, our preferred specification
for the weather effects is based on seasonal (s= 1,2,3 for Fall, Winter, and
Spring) weather outcomes for temperature and precipitation.

The specification for the average temperature (AT) model is given by

f
�
wjt ; β

�
=

X3

s=1

β1stempjst +
X3

s=1

β2stemp2
jst +

X3

s=1

β3spjst +
X3

s=1

β4sp
2
jst ,

where tempjst and pjst are average daily temperature and cumulative pre-
cipitation, respectively. Following the piecewise linear degree day approach
of ref. 13, the specification for the degree day model is given by

f
�
wjt ; β

�
=

X3

s=1

β1sFrezjst +
X3

s=1

β2sDDlowjst +
X3

s=1

β3sDDmedjst

+
X3

s=1

β4sDDhghjst +
X3

s=1

β5spjst +
X3

s=1

β6sp
2
jst ,

where Frezjst measures exposure in days to freezing temperatures, DDlowjst

measures degree days between zero and the lower threshold, DDmedjst

measures degree days between the lower and upper threshold, and
DDhghjst measures degree days above the upper threshold. As an example,
in SI Appendix, Table S4, the lower and upper thresholds in the Fall under
the IDD model are 10 °C and 17 °C. We first calculate degree days above 0 °C,
10 °C, and 17 °C, call these DD0, DD10, and DD17, and then construct the
regression covariates as DDlow =DD0−DD10, DDmed =DD10−DD17, and
DDhgh=DD17, respectively.

The predicted yield impacts when the average weather variables change
from the 1985–2013 average w0 to the new values w1 are derived as the
percentage change in yield relative to baseline climate, impact =
100½eðw1−w0Þβ − 1�. We simulate new values for each 1 °C increase up to 5 °C
by increasing the observed daily maximum and minimum temperatures and
then recalculating the appropriate weather variables. The regression esti-
mates from SI Appendix, Table S4, are used as values for β.

To investigate heterogeneous effects of high Spring temperatures across
varieties, we first estimated the multilevel model

yijt = αj + αt1t + αt2t2 + f
�
wjt ; β

�
+u0i +u1iDDhghj3t + «ijt ,

where fðwjt ; βÞ is the same as above except that high degree days above
34 °C in the Spring ðDDhghj3tÞ are removed and their effect is allowed to
vary across each variety i. We assume that the random effects ðu0,u1Þ are
distributed Nð0,PÞ where

P
is a diagonal matrix with σ0 and σ1 along the

diagonal. This model was estimated using the “mixed” command in STATA
13. The model converged but the estimate of the hyperparameter σ1 was
numerically zero, as were the Best Linear Unbiased Predictors for the u1i.
Thus, we instead focused on the multilevel model

yirjt = αj + αt1t + αt2t2 + f
�
wjt ; β

�
+u0r +u1rDDhghj3t + «ijt ,

where the DDhghj3t parameter is instead allowed to vary across the release
year r of the variety.
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