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Community composition within the human microbiome varies
across individuals, but it remains unknown if this variation is
sufficient to uniquely identify individuals within large populations or
stable enough to identify them over time. We investigated this by
developing a hitting set-based coding algorithm and applying it to
the Human Microbiome Project population. Our approach defined
body site-specific metagenomic codes: sets of microbial taxa or genes
prioritized to uniquely and stably identify individuals. Codes
capturing strain variation in clade-specific marker genes were able
to distinguish among 100s of individuals at an initial sampling time
point. In comparisonswith follow-up samples collected 30–300 d later,
∼30% of individuals could still be uniquely pinpointed using meta-
genomic codes from a typical body site; coincidental (false positive)
matches were rare. Codes based on the gut microbiome were excep-
tionally stable and pinpointed >80% of individuals. The failure of a
code to match its owner at a later time point was largely explained
by the loss of specific microbial strains (at current limits of detection)
and was only weakly associated with the length of the sampling
interval. In addition to highlighting patterns of temporal variation
in the ecology of the human microbiome, this work demonstrates
the feasibility of microbiome-based identifiability—a result with
important ethical implications for microbiome study design. The
datasets and code used in this work are available for download
from huttenhower.sph.harvard.edu/idability.
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Recent large-scale investigations of the human microbiome
have revealed great variability in the body site-specific

community structure and function of microbial organisms across
healthy individuals (1, 2). In addition, it has been shown that
features of the human microbiome might stably associate with
individuals over substantial periods of time (3–5). These observa-
tions suggest that individuals might be uniquely and stably identified
within a population based on their resident microbiota. However, to
date there have been no rigorous efforts to quantitatively establish
the feasibility of microbiome-based identifiability. To do so requires
demonstrating (i) that one can identify a “metagenomic code” that
is specific to an individual in a sample population; (ii) that the code
can be robustly redetected at a later time; (iii) that the code is
unlikely to erroneously match a previously unseen sample; and
(iv) that such codes can be constructed for a sizeable fraction of in-
dividuals (Fig. 1). These criteria emphasize that human microbiome
identifiability is intimately associated with microbiome establishment,
structure, personalization, and temporal stability—fundamental
topics in ecological approaches to microbiome research.
At the same time, the human microbiome can be viewed as a

reservoir of genetic variation extending beyond an individual’s own
genome. Hence, the degree to which the human microbiome is
identifiable is relevant to forensic genetics and genetic information
privacy beyond the ecological significance outlined above. Human
genetic information has been applied to differentiate individuals for

over a century, beginning with the definition and application of the
ABO blood types (6). In more recent decades, the description of
higher-resolution genetic variants—notably, short tandem repeats
(STRs)—has substantially boosted the identifying power of hu-
man genetic information. These technologies are now widely ap-
plied in forensics to link suspects to crime scenes, identify disaster
victims, and establish familial relationships. Under ideal circum-
stances, identifying codes based on human genetic markers are
expected to be unique among billions of individuals (7), although
practical concerns (e.g., sample contamination and relatedness
among individuals) can reduce this number considerably (8).
Like STRs, SNPs in the human genome have strong identify-

ing power, with an estimated 30–80 independent SNPs required
to uniquely pinpoint each person on Earth (9). Such SNPs can be
readily inferred from a variety of nucleotide sequencing methods
commonly applied in modern biomedical research (10). These
advancements, coupled with a drive to make such data open to a
wider audience, have led to increased concerns for subject pri-
vacy in genomics research (11, 12). These privacy concerns ex-
tend beyond subject identification: human SNPs are increasingly
powerful for subject characterization, including prediction of
physical traits, disease risk, demography, and family history (10,
11). In part due to these privacy concerns, human DNA se-
quences are routinely removed from microbiome datasets (where
they arise as contaminants) before publication (13). However, the
prospect remains of linking these datasets back to their donors
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based on individualized microbiome sequences alone. Moreover,
just as human SNPs can be used to characterize an individual,
human microbiome features are increasingly being associated
with a variety of subject traits, including diet (14), health status
(15), age, and geography (16). Hence, if subjects are routinely
identifiable based on their microbiomes, one could potentially
discern additional private information about those subjects at
the same time.
In this work, we applied insights from computing theory and

microbial ecology to construct metagenomic codes from sets of
individual-specific and maximally stable metagenomic features.
This approach enabled rigorous assessment of human microbiome
identifiability in a large cohort. Microbiome features were gener-
ally less unique and less stable than features of the human genome,
meaning that microbiome-based identifiability did not match the
exceptionally high specificity of genomic identifiability outlined
above. However, based on a typical body site-specific microbiome,
approximately one third of individuals could be precisely pin-
pointed at later time points among populations of hundreds (with
few false positives). Thus, microbiome-based identifiability is pos-
sible for a nontrivial fraction of individuals in a typical cohort: a
potential genetic information privacy issue not typically considered
in microbiome study design.

Results
We considered four types of metagenomic features from which to
construct personalized metagenomic codes (Fig. 1 and Table 1).
Two were taxon-level feature types: operational taxonomic unit
(OTU) abundance derived from 16S ribosomal gene sequencing
and bacterial and archaeal species abundance assayed from whole
metagenome shotgun (WMS) sequencing. In addition, we consid-
ered two gene-level feature types assayed from WMS sequencing:
species-specific marker genes (markers) from the MetaPhlAn da-
tabase (17) and tiled kilobase windows (kbwindows) drawn from a
large set of bacterial reference genomes. All feature abundance
measurements were based on sequencing data from individuals
sampled during the Human Microbiome Project (HMP) (13),
with individuals sampled at multiple times serving as the focal
population for the evaluation of feature stability and code con-
struction. Our process consisted of (i) adapting a classical algo-
rithm from computer science to the task of metagenomic code
construction; (ii) training the algorithm to prioritize optimal
metagenomic features; (iii) constructing codes based on multiple
body sites and feature types using individuals’ first-visit samples;
and (iv) comparing these codes to samples from later time points
and independent validation cohorts to quantify metagenomic
code stability and specificity. These analyses and results are
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Fig. 1. Metagenomic codes (overview). (A) Three individuals and their metagenomic features (represented by capital letters) are shown. For each individual,
a subset of features is highlighted that is unique among the three individuals. We refer to these sets as metagenomic codes. (B) The same three individuals
reevaluated after weeks to months. Individual 1’s microbiome has remained stable, and his code still uniquely identifies him among the population (a true
positive). Individual 2 has lost metagenomic feature C, and his code no longer identifies him (a false negative). Individual 3 has lost feature B and gained
feature C. Individual 3 is still a true positive with respect to his own code, but also matches individual 2’s code (a false positive). (C) Illustration of the four
metagenomic feature types considered in this work: OTUs, species, kilobase windows from reference genomes (kbwindows), and species-specific marker
genes (markers) (see Methods and Table 1 for details).

Table 1. Properties of metagenomic features and detection thresholds

Feature
description

Short
name

Sequencing
basis Units

Confident
detection
threshold

Relaxed
detection
threshold

Confident
nondetection
threshold

Body
sites

Paired
samples per
body site

Operational
taxonomic units

OTUs 16S rRNA gene Relative
abundance

>1e−3 >1e−4 <1e−5 18 25–105

Microbial species Species Whole
metagenome
shotgun

Relative
abundance

>1e−3 >1e−4 <1e−5 6 14–50

Species-specific
marker genes

Markers Whole
metagenome
shotgun

RPKM >5 >0.5 <0.05 6 14–50

Kilobase windows
from microbial
reference genomes

kbwindows Whole
metagenome
shotgun

RPKM >5 >0.5 <0.05 6 9–45

In analyses of per-feature stability, a feature was considered detected if its abundance exceeded the confident detection threshold; a feature was
considered acquired if it initially fell below the confident nondetection threshold and then later exceeded the confident detection threshold. When defining
a metagenomic code, features with abundance between the confident detection and confident nondetection thresholds were considered ambiguous. When
reevaluating a code at a later time point, the relaxed feature detection thresholds were used to add robustness to temporal variation.
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expanded in the sections below, with additional details provided in
Methods.

Defining Metagenomic Codes Using Hitting Sets. Our approach for
defining metagenomic codes is based on the concept of a hitting
set. For a collection of nonempty sets {a1, a2,. . ., aN}, a hitting set
S is a set that has at least one element in common with each ai; the
set S is said to “hit” each ai (18). If removing any element from S
would cause it to not hit at least one ai, then S is called a minimal
hitting set. For example, S = {A, C} is a minimal hitting set for the
sets a1 = {A, B}, a2 = {B, C, D}, and a3 = {A, E}. To construct
metagenomic codes using hitting sets, we consider a population of
N individuals in which each individual i possesses a set of meta-
genomic features ui. For a given individual i, we define sets aij
containing the features present in individual i but absent from
each other individual j (aij = ui − uj). For example, in a Venn
diagram comparing features found in individuals 1 and 2, the set
a12 would represent features that were found exclusively in in-
dividual 1. If we can make a new set Si that contains at least one
element from each aij set (i.e., a hitting set for the aij sets), then Si
will be a metagenomic code that is unique to individual i: each
other individual is missing at least one element from Si, and
therefore the features in Si collectively distinguish individual i
from the rest of the population. This process will only be impos-
sible for individual i if another individual j possesses all of in-
dividual i’s features; in that case there are no features that
distinguish i from this j, the corresponding aij set is empty, and thus
we cannot build a hitting set for all aij sets.
Finding a minimal hitting set for a collection of sets is non-

deterministic polynomial-time (NP)–hard (19), and an efficient
greedy approximation can be used instead (20). This method it-
eratively grows a candidate hitting set by adding the most common
element among nonhit sets; in the metagenomic code application,
this translates to prioritizing features that are rare in the pop-
ulation (SI Appendix, Fig. S1). This greedy approach guarantees a
hitting set at most log2(M) times larger than the minimal hitting
set, where M is the number of distinct elements across the sets to
be hit. We used a similar form of greedy optimization to identify
metagenomic codes under the hitting set framework; however,
rather than prioritizing rare features to build unique codes

of minimal size, we instead prioritized features that would pro-
mote code stability and specificity over time.

Determinants of Metagenomic Feature Stability in the HumanMicrobiome.
This prioritization process required that we first identify which
properties of microbes or microbial genes within the human micro-
biome indeed promoted code stability, which speaks to the ecology of
the microbiota in addition to its ability to differentiate among human
hosts. We thus considered simple temporal stability of individual
microbial features and two ecological properties: (i) a feature’s
population prevalence, the fraction of individuals in the population
that possess the feature; and (ii) a feature’s per-sample abundance,
the relative number of copies of that feature in a particular in-
dividual. The human gut microbiome has been found to contain
individual-specific strains of bacterial species, with a substantial
fraction of this variation remaining stable over 1 or more years (4,
5). We extended these results by quantifying the stability of ad-
ditional metagenomic feature types at a wider array of body sites.
We then identified properties of metagenomic features that pro-
moted mid- to-long-term stability, which we prioritized when
building metagenomic codes.
A metagenomic feature’s abundance at an individual’s first

sampling visit was a strong, positive correlate of feature stability,
which we quantified as the probability of redetecting the feature
at the individual’s second sampling visit, weeks to months later
(Fig. 2A). Notably, feature absence at the second sampling time
point was best explained by temporal variation, as technical
variation in feature detection was low (the median replicate pair
was 97–99% similar; Methods and SI Appendix, Fig. S2A). The
difference in temporal stability between the most and least
abundant taxa was more extreme at skin and vaginal sites than in
the oral cavity and gut (mean stability ratio of 3.4:1 vs. 1.8:1).
Relative to oral and gut environments, the skin and vaginal body
sites are characterized by lower pH (21, 22) and support less
diverse microbial communities (1). Moreover, quantitative esti-
mates of human microbial biomass at the skin [102–107 CFU/cm2

(23)] and vaginal [107 CFU/g secretion (24)] sites are orders
of magnitude smaller than biomass estimates for oral and gut
sites [108–1012 CFU/mL (25)]. Low-abundance taxa at skin and
vaginal sites thus represent a smaller amount of overall biomass,
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Fig. 2. Properties associated with microbiome feature stability. For each (body site, feature type) combination, we counted cases of features confidently
detected across subjects’ first sampling visits (time 1). The fraction of these cases that remained confidently detected at subjects’ second sampling visits (time 2;
weeks to months later) provided a measure of feature stability. Stability was positively and strongly correlated with (A) feature abundance and (B) feature
prevalence. (C) Highly prevalent features that were not detected in subjects’ time 1 samples had a high probability of being acquired by time 2, particularly at
more exposed sites (e.g., skin). (D) Sampling time interval had a less marked effect on stability. NA, a (body site, feature type) combination with <10 confident
detection events at time 1. Abundance values for OTUs and species reflect relative abundance; abundance values for markers and kbwindows reflect RPKM units.
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which may allow them to be more easily perturbed, or such taxa
may reflect transient, and not stably associated, members of the
associated microbial communities.
Feature prevalence was also a strong determinant of stability

(Fig. 2B). Low-prevalence features (those that were rare in the
population) disappeared much more frequently between subjects’
first and second sampling visits than more common features,
suggesting that the former may also reflect transient visitors to the
human microbiome or potentially spurious detection events. As
mentioned above, naïve prioritization of these rare features might
result in a smaller (minimal) metagenomic code, but such minimal
codes would be very unstable over time.
Surprisingly, we found that individuals who lacked otherwise

highly prevalent features had a high probability of acquiring those
features over time (Fig. 2C). Highly prevalent features also tended
to be locally abundant (for species, Spearman’s r = 0.68; two-tailed
P < 10−58), and the enhanced acquisition of locally abundant, highly
prevalent features is consistent with models of microbiome assembly
that include neutral processes (26). Such models assume that sto-
chastic loss and dispersal from a common source are primary drivers
of microbiome variation. This effect was particularly evident for
metagenomic features measured at sites on the skin, which may
result from (i) increased rates of disturbance at the skin (leading to
stochastic loss of species) combined with (ii) enhanced rates of
direct transfer of skin-associated microbes between individuals
by skin-to-skin contact (27) or between individuals and the built
environment, which supports a disproportionate fraction of skin-
associated microbes (28). A fraction of apparent acquisition
events may also be explained by undersampling of low-abun-
dance features at the initial time point.
Last, although in practice this information would not be

available at an initial time point to prioritize for feature selec-
tion, we considered the effect of the time interval between in-
dividuals’ first two sampling visits. The average sampling interval
was 194 d, ranging from a minimum of weeks (30 d) to a maxi-
mum of 1 y (364 d). Compared with the influence of body site,
feature abundance, and feature prevalence, sampling time in-
terval appeared to have a remarkably smaller effect on feature
stability, although some cases of increased stability over shorter
time periods were apparent (e.g., gene-level features in the stool;
Fig. 2D).

Biologically Informed Greedy Code Construction. Per-feature sta-
bility results thus indicated that unique metagenomic codes op-
timized solely for rare features would not be robust to temporal
variation (Fig. 2B). Based on the stability and habitat specificity
of abundant features (Fig. 2A), we designed a greedy algorithm
to construct hitting sets that prioritize features with large “abun-
dance gaps”: the difference between each feature’s abundance in
individual i and its next highest abundance in the population. This
procedure had the effect of enriching more abundant features
within codes while secondarily enriching less prevalent features,
the latter of which are (i) more discriminative and (ii) less likely to
be acquired by other individuals over time (leading to loss of code
uniqueness; Fig. 2C). Our algorithm operated as follows, with
criteria for confident detection and confident nondetection defined
in Table 1:

• Create a vector of confidently detected features, F, for an
individual, i, ranked by descending abundance gap, as defined
above. Create an empty code set, S, and a set containing all
other individuals in the population, J.

• Remove the highest ranked feature (f) from F. Delete indiv-
iduals from J for whom f was confidently not detected. If f
differentiates at least one additional population member (i.e.,
at least on individual was deleted from J), add f to S.

• Repeat the previous step, stopping when either F becomes
empty (no features remain) or J becomes empty (we have

distinguished individual i from the rest of the population). If
J is empty, then S is a unique metagenomic code for individual
i; else, individual i has no unique code.

• Optionally, after J is empty but before F is empty, continue
adding features to S, stopping when S reaches a desired min-
imum size, d, or when F is empty. This procedure adds robust-
ness to noise and, effectively, error correction to avoid false
positives; in our study, d = 7.

• Optionally, after adding f to S, delete remaining features in F
with similar presence/absence profiles to f. When using the
d option above, this also helps to diversify the features added
to an already unique code; we defined similar as Jaccard
score >0.8.

A fully documented python implementation of this algorithm
is available online at huttenhower.sph.harvard.edu/idability.

Identifiable Microbial Codes in the Human Microbiome. We applied
the code-building algorithm above to first-visit samples from 120
individuals with multiple visits from the HMP cohort (60 with
WMS sequencing data). The algorithm was applied separately
for four metagenomic feature types (OTUs, species, markers,
and kbwindows) at a variety of body sites (Fig. 3 and Table 1).
We identified population-unique metagenomic codes for the
majority of individuals and body sites using gene-level features
(markers and kbwindows), but not using taxon-level features
(OTUs and species; Fig. 3A). This difference was due to the
smaller number and nonrandom assortment of taxon-level fea-
tures, which frequently resulted in individuals whose taxa were a
subset of other individuals’ taxa (meaning they had no unique
taxon-level code). Although the average difference between in-
dividuals’ microbial community composition and ecology is sub-
stantial, the pool of organisms populating any one body site habitat
is proportionally constrained at the species level (1). The presence
and absence of marker genes and kbwindows instead capture
strain-level variation within species and thus provided a richer
universe of features with which to distinguish individuals (Fig. 4).
Notably, although marker genes were defined to be species-

specific based on a catalog of sequenced genomes (17), we found
that markers selected for inclusion in codes were significantly
enriched for orphaned markers—i.e., marker genes that were
confidently detected in the apparent absence of their source
species (for all body sites, fold enrichment >4; Fisher’s exact test,
two-tailed P < 0.001; SI Appendix, Table S1). Such markers were
most likely carried in another genomic background due to mech-
anisms such as lateral transfer (29), and were of similar stability to
other markers included in codes. These orphaned marker genes
capture previously unseen and highly individualized genomic vari-
ation, granting additional distinguishing power to marker gene-
based codes and suggesting that strain-specific, lateral gene transfer
events may be a substantial contributor to individual microbiome
structure (see SI Appendix, Fig. S3 for an example).

Factors Leading to Loss of Code Robustness over Time (FNs). After
identifying individuals’ metagenomic codes from their first-visit
samples, we next compared the codes to individuals’ second-visit
samples (taken 30–300 d later) to assess code stability. An in-
dividual’s code was considered stable if all of its features were
redetected in that individual’s second-visit sample (based on a
relaxed threshold; Table 1). Taxon-level codes were very un-
stable: averaged over body sites, only 15% of OTU-based codes
and 13% of species-based codes matched their owners’ second-
visit samples [we refer to these as true positives (TPs); Fig. 3A].
For the remaining individuals, at least one code taxon vanished
over time, and therefore the code no longer matched its owner at
the second time point [we refer to these as false negatives (FNs)].
Gene-level codes were much more stable: 52% of marker- and
kbwindow-based codes correctly identified their owners’ second-visit
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samples (averaged over body sites; Fig. 3A). The gut habitat (as
represented by stool) produced the most stable codes across all
feature types, with 86% TPs among marker-based codes (see SI
Appendix, Fig. S3 for an example). Agreement in coding results for
pairs of technical replicates tended to be very strong, particularly
for WMS samples (SI Appendix, Fig. S2B). This finding suggests
that FNs result primarily from reduced robustness to temporal
variation and not technical variation.
Gene-level codes were more robust to temporal variation than

taxon-level codes in part because they required fewer, more
stable taxa to differentiate individual hosts. A single organism
often contributed multiple gene-level features to an individual’s
marker- or kbwindow-based code, representing both the organ-
ism’s presence as well as individual-specific strain variation (Fig.
4). At the less ecologically diverse skin and vaginal sites, code
markers often derived from only a small number of dominant
species. Relative to gene-level codes, taxon-level codes depended
not only on more taxa, but also required the inclusion of less
abundant taxa to achieve uniqueness (which tended to be less
stable; Fig. 2A). On the other hand, gene-level codes were able to
incorporate multiple distinguishing features from an individual’s
most abundant taxa, and they were therefore more robust to
temporal variation. Unlike taxon-level codes, gene-level codes
were not always robust against interchanges between distinct
strains of the same organism over time. Indeed, 17 of 67 marker
gene-based codes (25%) that failed to match their owner at the
second time point involved the loss of an encoded marker gene,
whereas the gene’s parent species remained confidently detected
(SI Appendix, Table S2 and Fig. S4).
We considered length of sampling time interval and antibiotic

use as two additional factors that might have influenced the
likelihood of a code failing to match its owner. FNs tended to be
associated with very slightly longer times between sampling visits

than TPs, but the differences were only marginally significant
(Fig. 3C), suggesting that many of individuals’ unique strains do
not drop below the limit of detection solely due to temporal
effects on a scale of weeks to months (5). This result was con-
firmed by logistic regression, which failed to find a statistically
significant fit between the odds of a FN and sampling time in-
terval. Although individuals were initially excluded from the
HMP cohort if they had previously used antibiotics, a small
number of individuals did receive antibiotics between their first
and subsequent visits; these individuals were not significantly
associated with FNs (Fisher’s exact test; SI Appendix, Table S3).

Factors Leading to Loss of Code Uniqueness (FPs). The code-building
algorithm was guaranteed to produce codes that were unique
relative to the sample population on which it was run (in this
case, first-visit samples from multivisit HMP individuals), limited
only by the dimensionality of available features. However, the
algorithm cannot guarantee that codes will remain unique rela-
tive to unseen sets of samples, even those derived from the same
individuals at later time points. For example, if an individual
acquired new metagenomic features between their first and
second sampling visits (as seen in Fig. 2C), then that individual’s
second-visit sample might match another individual’s first-visit
code. We refer to this as a false positive (FP).
In comparisons between individuals’ first- and second-visit

samples, FPs occurred for 17% of OTU-based codes, 11% of
species-based codes, 8% for marker-based codes, and 12% of
kbwindow-based codes (based on the relaxed detection thresh-
olds and averaged over body sites; Fig. 3A). Note that the prob-
ability of observing a FP increases as we compare a code with more
samples; the FP rate for OTU-based codes is therefore elevated due
to the larger number of individuals with 16S samples available for
comparison (120 as opposed to 60 with metagenomes). Regardless,
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Fig. 3. Temporal stability of metagenomic codes. (A) We identified unique metagenomic codes for individuals based on their first sampling visits (time 1); an
individual whose microbial features were a subset of a second individual’s features had no unique code (black bars). Red bars represent true positives (TPs):
codes that uniquely identified their owners at time 1 and again at the second sampling visit (time 2; weeks to months later). Blue bars represent false
negatives (FNs): codes that matched no one at time 2. Pink and cyan bars represent false positives (FPs): codes that matched someone other than their owner
at time 2, either in addition to their owner (TP+FP) or instead of their owner (FN+FP). (B) Average and SD of metagenomic code size. A target size (seven
features) was imposed to reduce FPs. (C) Distribution of sampling time intervals for TPs and FNs, with each individual represented by a hash mark. FNs were
weakly associated with longer sampling time intervals than TPs in a few body sites and very weakly in aggregate (Mann–Whitney u test). Green numbers
indicate the number of individuals profiled at time 1 and time 2 for each (body site, feature type) combination (see Methods for an explanation of why
kbwindows numbers differ from species and markers numbers).
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marker gene-based codes for stool proved highly robust against loss
of uniqueness over time, with only a single FP out of 50 codes
(2%). Hence, the general stability of the stool microbiome not
only promoted the maintenance of features over time (as ob-
served above), but also appeared to limit feature acquisition
events associated with loss of code uniqueness.
We further evaluated code uniqueness in the independent

validation subcohort of single visit HMP individuals, i.e., those
for whom only first-visit samples were available. Such subjects
were not considered in the earlier analyses of feature stability or
in the code construction process. For each set of codes, we
computed a single value, p, representing the probability of a FP
hit per code against one of these previously unseen subjects
(Methods and SI Appendix, Table S4). 1/p then represents the esti-
mated population size for which we expect a particular code type to
be unique. These population sizes varied among feature types and
body sites, averaging on the order of 100s of individuals. Modeling
the probability of a spurious hit as an exponential function of pop-
ulation size arrived at similar conclusions (Methods and SI Appendix,
Table S5). Marker-based codes for paired HMP stool metagenomes

were additionally evaluated against an independent set of 85 stool
metagenomes from healthy Danish subjects enrolled in the Meta-
HIT cohort (30) (SI Appendix, SI Methods). Whether comparing
HMP codes to MetaHIT samples or vice versa, codes were pre-
dicted to be unique to within ∼700 individuals, consistent with re-
sults from the intra-HMP comparison.
Although OTU-based codes were low confidence for most

individuals as described above, they were expected to remain
unique in populations of ∼500 individuals in the minority of cases
where they were stable. More broadly applicable gene-based
codes tended to be unique among ∼300 individuals. This differ-
ence appears to follow from the fact that gene-based codes draw
on a smaller number of taxa than OTU-based codes and hence
are more likely to recur in larger populations (SI Appendix, Fig.
S5). FPs were particularly common (1/p was small) for codes
based on the posterior fornix microbiome, which may reflect the
lower level of between-individual microbial diversity at that site
(1). These results demonstrate that marker gene-based codes, in
addition to being stable over time, tend to remain unique in
comparisons with 100s of previously unseen individuals.
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Fig. 4. Influence of strain-level variation on marker gene-based codes. (A) Species varied greatly in their likelihood to contribute marker genes to a code
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typically identified by individual strains (several markers each) of a few dominant taxa, whereas stool and oral sites were instead identified by combinations of
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Evaluating the Influence of Feature Detection Thresholds on Code
Performance. Defining and evaluating metagenomic codes relies
on definitions of confident detection and confident nondetection
for individual features (Table 1). We repeated the code definition
and evaluation process (Fig. 3A) using alternative detection thresh-
olds (SI Appendix, Fig. S6). Using a relaxed detection threshold
during code definition expanded the list of potential code fea-
tures, thus making it easier to construct unique codes for a given
population. However, because lower-abundance features proved
less robust to temporal variation (Fig. 2A), codes that incorpo-
rated them were progressively less likely to match their owner at
subsequent visits. These effects were more noticeable when con-
structing and evaluating taxon-level codes; gene-level codes typ-
ically had large pools of high-abundance features to draw on.
Using a more stringent feature redetection threshold during code

evaluation decreased the frequency of coincidental matches (SI
Appendix, Fig. S6). This result may indicate that erroneous detection
events at higher abundance are less frequent, or simply that newly
acquired features tend to arise with low abundance. At the same
time, true positive rates also tended to decrease when using a more
stringent feature redetection threshold. This trend is most likely
explained by temporal variation in individual microbiomes: code
features that were near the confident detection threshold at time 1
may have dropped below this threshold over time, resulting in a
failure to match their respective time 1 codes at time 2 (FNs).

Spurious Matches Are Common with Ecological Distance-Based
Identification. Microbiome samples are frequently compared using
ecological measures of distance. These measures establish the de-
gree of similarity between underlying microbial communities, taking
into account differences in feature presence, abundance, and phy-
logenetic distribution. The same measures can be applied to dem-
onstrate that, over time, repeated samples from the same individual
are more similar to one another than to samples from other in-
dividuals (3), which can serve as an alternative basis for microbiome
identifiability.
We evaluated the performance of distance-based microbiome

identifiability using the HMP datasets applied above for meta-
genomic code evaluation. For each metagenomic feature type, we
compared each second-visit sample to the collection of first-visit
samples from the same body site using the Bray–Curtis and Can-
berra distance measures. Bray–Curtis distance combines absolute
differences between features (making it more sensitive to a few
large changes), whereas Canberra distance weights all differences
equally (making it more sensitive to many small changes). Under
this scheme, there are only two possible results for a given second-
visit sample: it is closest to the first-visit sample from the same
individual or it is closest to the first-visit sample from another in-
dividual. The first scenario represents a true positive, whereas the
second scenario represents both a FN (as the sample failed to
match the correct individual) and a FP (as the sample spuriously
matched another individual).
Ecological distance-based microbiome identification was marked

by high FP rates. Focusing on Bray–Curtis distance and aver-
aging over body sites, second-visit OTU-based profiles spuri-
ously matched another individual’s first-visit sample in 81% of
cases, species-based profiles matched spuriously in 64% of cases,
marker-based profiles in 61% of cases, and kbwindow-based
profiles in 59% of cases (SI Appendix, Fig. S7A). Results were
surprisingly similar using Canberra distance, which suggests a
degree of robustness to the choice of distance measure (SI Ap-
pendix, Fig. S7B). True positive rates were reasonably strong and
varied from ∼20 to 40% across feature types and body sites: this
was comparable to performance of gene-level metagenomic
codes at a typical body site and exceeded the performance of
taxon-level codes (Fig. 3A). However, high FP rates limit the
value of these successful identifications: distance-based identifi-
cation always produces some closest match, and the match will

be incorrect more than half of the time. Hence, unlike meta-
genomic codes, ecological distance-based approaches are not a
feasible strategy for achieving microbiome identifiability in rea-
sonably large populations.

Discussion
Our results indicate that human-associated microbial commu-
nities contain sufficient strain-level variation to distinguish in-
dividuals relative to a fixed population and robustly over time.
Although notions of microbiome personalization have been ex-
plored previously using ecological distance measures, we dem-
onstrated that an approach based on discrete metagenomic codes
is required for true microbiome-driven identifiability. Although
the populations considered here were small relative to real-world
human communities (20–50 individuals), we estimate that this
lower bound on microbiome-driven identifiability scales to at least
hundreds of individuals, and this population size is representative
of the cohorts currently used in microbiome research. This finding
has important ethical ramifications for microbiome study design,
particular those involving stool, as we have shown conclusively
that metagenomic samples from a variety of body sites can be
linked to individuals without additional identifying information.
Comparing metagenomic codes with previously unseen pop-

ulations suggested that codes are unique within subpopulations
of order-of-magnitude hundreds of people. Beyond this point, we
expect to see a FP match between a given code and some un-
related individual. Notably, this coincidental match probability
for microbiome-based codes is considerably larger than rates
associated with human genomic DNA, which—under ideal
conditions—can be vanishingly small (6). This discrepancy be-
tween metagenomic and genomic codes is due to at least three
factors: (i) the bounded but nontrivial variation in the micro-
biome over time (relative to an essentially constant human ge-
nome); (ii) current limits of detection for rare features (e.g.,
individual SNPs or low abundance microbes) in the microbiome;
and (iii) the nonindependence of microbial features due to
ecological covariation. As our results provide only a lower bound
on microbially driven identifiability, it is possible that techno-
logical advances, such as single cell sequencing and isolation of
rare strains, will result in superior identifying power.
Previous research regarding the host-specific stability of the

human microbiome has focused largely on stool, which we
demonstrated to be exceptionally stable and not representative
of other human body sites: the vast majority (86%) of marker
gene-based codes from stool uniquely matched their owners after
30–300 d. However, even at the typical body site, ∼30% of codes
uniquely identified their owners at later time points with few
spurious matches (i.e., codes tended to pinpoint their owners or
no one). As a result, it is not safe to assume that microbiome
data can be completely anonymized, as a nontrivial fraction of
samples can be accurately traced back to their original sources,
along with potentially sensitive metadata. Even in the absence
of such metadata, the prospect of associating the identified in-
dividuals with sensitive phenotypes [e.g., health status, cohabitation
(31), or sexually transmitted infections] based on microbiome data
alone becomes increasingly real as the list of associations between
microbiome features and subject environment, history, and
lifestyle expands.
At the same time, the variation in identifying power we ob-

served between body sites underscores the fact that human-
associated microbial habitats, in addition to being highly variable
between individuals, are dynamical systems that vary nonrandomly
within individuals over time. Improving our understanding of this
balance between interindividual and temporal variation is
critical not only to microbiome-based identifiability, but also to
determining the ecological and molecular rules governing the
human microbiome.
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Methods
Data Collection, Quality Control, and Preprocessing. Rawmicrobiome data used
in the main analyses of this study were produced through the HMP (13) and are
publicly available through the HMP’s data repository (www.hmpdacc.org).
Eighty-five additional, publicly available stool metagenomes derived from the
MetaHIT project (30) were used in a validation analysis (SRA BioProject
PRJEB2054; SI Appendix, SI Methods). Outside of these two published resources,
no additional human subject sequencing data were collected or analyzed in this
work. OTU abundances were calculated from HMP 16S sequencing data using
Mothur (32). Microbial species and species-specific marker gene abundance
were quantified from HMP and MetaHIT WMS data using MetaPhlAn in the
“rel_ab” and “clade_profiles” analysis modes, respectively (17). By default,
MetaPhlAn reports marker gene abundance in units of “reads per kilobase of
marker gene (RPK).” RPK values were converted to RPKM units (reads per ki-
lobase per million sample reads) to facilitate comparisons between samples.

We considered 5,516 16S samples and 880WMS samples derived from the 242
individuals enrolled in the HMP, including 106 metagenomes sequenced sub-
sequent to initial publication. Before downstream sample selection and analysis,
16S and WMS samples were evaluated based on median genus-level Bray–Curtis
dissimilarity score relative to other samples collected from the same body site. If
a sample’s median dissimilarity score exceeded the upper inner fence for all
median scores from its body site, then the sample was treated as an outlier and
discarded (the upper inner fence is a point 1.5 times the interquartile range
above the third quartile). This process removed 222 (4.0%) candidate 16S sam-
ples and 49 (5.6%) candidate whole metagenome shotgun samples that were
highly atypical for their respective body sites. Following this quality control step,
we averaged values derived from pairs of technical replicates (independent sets
of measurements for the same subject, body site, and time point).

After performing the quality control steps outlined above, we isolated pairs
of samples derived from the same subject and body site at two sampling visits
(Table 1). Subjects sampled only once at a particular body site were used as
independent validation groups (SI Appendix, Table S4). Paired samples form
the basis for all analyses of temporal stability described in the text. Although
we refer to subjects’ first and second sampling visits as time 1 and time 2,
respectively, for convenience, sampling events were not synchronized across
subjects. In addition, we note that subsets of the 242 total HMP subjects with
both first- and second-visit samples differed from one body site to another
and between the two sequencing methods (16S vs. WMS). For example, a
subject could have both first- and second-visit 16S stool samples, but only a
first-visit anterior nares WMS sample: this subject would then contribute to
analyses of OTU stability in stool but not to analyses of marker gene stability in
the nares. Processed paired sample data containing HMP-issued subject iden-
tifiers are available for download from huttenhower.sph.harvard.edu/idability.

WMS reads were additionally mapped to a database of 649 microbial ref-
erence genomes using the Burrows-Wheeler aligner (33), as described pre-
viously (34). The goal of this analysis was to identify strain-level variation in
microbial genomic elements outside of the predefined MetaPhlAn marker
genes. All genomes were divided into nonoverlapping kilobase-long windows,
starting from the 5′ end of each scaffold within the genome. If a genome
recruited reads from a WMS sample at >4× depth over >50% of its length,
then the genome was considered to have been detected in the sample. In this
case, individual abundance values of the genome’s kilobase windows (in RPKM
units) were then added to a table of “kbwindows” features for the sample. For
some WMS samples, no genomes met the criteria for detection outlined
above, and so these samples were excluded from downstream analysis in-
volving kbwindows features. For this reason, sample counts in some kbwindows-
based analyses are smaller than those reported in the corresponding species-
and marker gene-based analyses of WMS data (Fig. 3).

Numerical Details of Coincidental Match Analysis. We used two approaches to
study loss of code uniqueness (FPs) in comparisons with previously unseen
validation subjects. First, we considered all possible pairings between N codes

andM validation subjects. Any match between a code and a validation subject
was counted as a hit (using the relaxed feature detection thresholds); the total
number of such hits was H. Based on this, we estimated the probability p of a
match between a code and a random individual to be H/MN; for cases where
H = 0 (no FP events were observed), we estimated p as (H + 1)/(MN + 1) using
Witten–Bell smoothing (35). 1/p estimates of the size of a previously unseen
population in which we would have expected to see one FP; codes would be
expected to remain unique in populations below that size. The results of this
analysis are reported in SI Appendix, Table S4.

As an alternative approach, wemodeled the probability of a code spuriously
matching any member of a previously unseen population of size N [FP rate
(FPR)] as an exponential function of N

FPRðNÞ= 1−e−kN .

This model assumes that FPR approaches 1 asymptotically as population size (N)
goes to infinity. We sampled (with replacement) populations of increasing N
from M independent validation subjects and computed an average FPR for
each N (for n ≤M). Fitting the above model to these data yielded estimates of
the parameter k (which describes the rate of increase in FPR for increasing N)
for each body site + feature type combination. Finally, for each combination
we solved

0.5= 1− e−kN ,

for N. The solution, which we called N50, estimates of the number of pre-
viously unseen individuals with whom we could compare a code of a par-
ticular type before having a 50% chance of seeing at least one spurious
match. Codes have a strong probability of remaining unique in comparisons
with new populations of size <N50. Values of k and N50 are reported in SI
Appendix, Table S5.

Analysis of Technical Variation. Although technical replicates were averaged in
themain analyses of thiswork,weperformed twoanalyses on isolated replicate
pairs to estimate the effects of technical variation on robust redetection of
metagenomic features and codes. We considered 325 replicate pairs for 16S-
based metagenomes and 26 replicate pairs for shotgun-based metagenomes;
for eachpair, both sampleswere required topass thequality control procedures
outlined above. In the first analysis, we then calculated the probability of a
featurebeingdetected inone replicate given that itwas confidently detected in
the other (SI Appendix, Fig. S2A). In the second analysis, we evaluated the
consistency of technical replicates in the construction and evaluation of met-
agenomic codes (SI Appendix, Fig. S2B). Specifically, for technical replicates A
and B corresponding to (body site X, subject Y, and time 1), we separately
constructed codes for all site X samples including only replicate A and again
including only replicate B. We then compared the code derived for replicate A
and the code derived for replicate B to all time 2 samples. If the results were
precisely the same (e.g., both the A code and the B code only matched subject
Y at time 2), then we scored the replicates as consistent; if there was any
deviation, then we scored the replicates as inconsistent. An analogous pro-
cedure was repeated for technical replicates of time 2 samples.
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