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The availability of dense SNP panels allows assessing similarity between distantly related 

individuals, including those with different genetic background. This has renewed the interest 

in the analysis of data from heterogeneous populations. Examples include the genomic 

analysis of data from multiple breeds (Hayes et al. 2009, Gen. Sel. Evol. 41, 51), or from 

structured populations (e.g. de los Campos et al. 2009, Genetics 182, 375–385; Daetwyler et 

al. 2012, J. Anim. Sci. 90, 3375–3384).

Whole genome regression (WGR) methods (Meuwissen, Hayes, and Goddard, 2001, 

Genetics 157, 1819– 1829), where allele substitution effects are assumed to be 

homogeneous across subjects, have been used for the analysis of data from structured 

populations (e.g. Hayes et al. 2009, Gen. Sel. Evol. 41, 51; de los Campos et al. 2009, 

Genetics 182, 375–385). This approach allows borrowing information across groups and, 

under some circumstances, can increase prediction accuracy. For example, in a combined 

analysis of Holstein and Jersey data, Hayes et al. (2009, Gen. Sel. Evol. 41, 51) showed that 

prediction accuracy of estimated breeding values could be increased, relative to a within-

breed analysis, in Jerseys but not in Holsteins. However, assuming that marker effects are 

constant across groups ignores the fact that dominance, epistasis or differences in the 

marker–QTL LD (linkage disequilibrium) patterns can lead to group-specific marker effects.

Principal Components (PCs) methods are commonly used in genome-wide association 

studies to account for population structure (e.g. Price et al. 2006, Nat. Gen. 38, 34–41; 

Marchini et al. 2004, Nat. Gen. 36, 512–517). Drawing on these ideas, some authors 

suggested expanding WGRs such as the G-BLUP (genomic best linear unbiased predictor) 

by adding marker-derived PCs as fixed effect covariates. This approach has been used to 

account for stratification in the estimation of variance components (e.g. Yang et al., 2010, 

Nat. Genet. 42, 565–569) and in the prediction of breeding values (e.g. Daetwyler et al., 

2012, J. Anim. Sci. 90, 3375–3384). However, Janss et al. (2012, Genetics 192, 693–704) 

demonstrated that adding eigenvectors as fixed effects in G-BLUP can create important 

inferential problems. Indeed, Gaussian processes, including the G-BLUP, are equivalent to a 

random regression on all marker-derived PCs (e.g. de los Campos et al., 2010, Genetics 

Research 92, 295–308). Therefore, the PCs that are added as fixed effects in the G-BLUP, 

typically those with the largest eigenvalue, enter twice in the model, and this can have 
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adverse effects on inferences on variance components. The problem is aggravated by the 

fact that in G-BLUP, despite the random nature, the effects of eigenvectors with large 

eigenvalues are effectively estimated as fixed effects. In their article, Janss et al. showed 

how the standard G-BLUP, parameterized using PCs, can be used to draw inferences and 

predictions based on all or some PCs in a coherent statistical framework. This approach 

should be preferred over the one using PCs as fixed effects in a G-BLUP model. However, 

regardless of how PCs are dealt with, when only a subset of PCs is used for inferences, the 

connection with the original model is lost and parameters have no genetic interpretation.

Back to basics

Allele substitution effects are defined as the regressions of genetic values on allele content 

(e.g. Falconer and Mackay, 1996). It is well established that such effects, and functions 

thereof, are allele frequency dependent. Moreover, even if allele substitution effects of QTL 

are constant across groups, differences in the marker–QTL LD patterns can translate into 

group-specific marker effects. In short, there are important reasons that support the idea that 

in heterogeneous populations, marker effects should be allowed to vary between groups. 

Neither the standard G-BLUP nor PC methods address this fundamental problem. We argue 

that alternative approaches are needed for the analysis of data from structured populations.

Interactions can be used to model heterogeneity

Schulz-Streeck et al. (2012, Crop Sci 52, 2465–2461) used this approach in G-BLUP for the 

analysis of multiple breeding populations, assuming, however, homogeneous genetic 

variance across groups. A more general approach models marker effects in subpopulation g 

as the sum of an effect common to all groups, bj0, plus a term, bjg, of group-specific 

deviations; that is, for marker j: βjg = bj0 + bjg. The term common to all groups allows using 

information from all groups, and the group-specific deviations allow for marker effects and 

functions thereof (genomic values and variances) to vary between groups. The 

hyperparameters of the distribution of bj0 and of bjg control the trade-offs between 

borrowing of information between groups and allowing effects to vary between groups. 

These can be estimated from data using standard Bayesian methods. With this approach, the 

covariance between marker effects across any two groups is the variance of the common 

group effect, , and each group has its own variance. Whenever the number of 

groups is greater than two, this treatment imposes restrictions on the variance–covariance 

matrix of marker effects.

A more general approach regards the vectors of effects of markers across the Ng groups βj = 

(βj1, …, βjNg)′ (for marker j) as IID draws from a multivariate distribution. For instance, βj 

may be a draw from a multivariate normal density (e.g. Olson et al. 2012, J Dairy Sci., 95: 

5378–83.). However, in principle, the multivariate approach is not restricted to Gaussian 

models and could be applied with any of the priors commonly used in WGR models. Within 

group g, the variance–covariance matrix of marker effects is  and between groups g and 

g′, Iσβgβg′ (subscripts here are labels for groups, and the dimension of the identity matrix I is 

equal to the number of markers). In a G-BLUP context, identifiability of the covariance 
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terms requires that the genomic relationship matrix describing relationships between 

members of different groups is different from zero.

The interaction and the multivariate models lead to group-specific genomic variances and 

heritabilities. Perhaps more importantly, the approach leads to group-specific breeding 

values. For the ith subject, with genotype xi, and regardless of the group to which it belongs, 

one can define customized breeding values that predict the expected performance of its 

progeny when bred with a randomly selected mate of the gth group, using 

. In this set-up, the ranking of individuals can change from group to 

group, opening new opportunities for mate group allocation and intergroup breeding.

The interaction and multivariate approaches are statistically similar in spirit to early work on 

multienvironment models by Falconer (1952, Am. Naturalist, LXXVI, 83: 293–298) and to 

work on the joint analysis of pure-bred and cross-bred data (e.g. Wei and van der Werf, 

1994, Anim. Prod. 59, 401–413; Cecchinato et al., 2010, J. Anim. Sci. 88, 481–490), 

recently extended to genomic prediction (Christensen et al. 2014, Gen. Sel. Evol. 46, 23). 

However, the approaches discussed here are not restricted to the combined analysis of pure- 

and cross-bred individuals and can be used, in principle, with any genetic grouping scheme 

such as breeds, breeding programmes or clusters derived from genomic data.
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