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The impact of maternal high-fat diet consumption on neural
development and behavior of offspring
EL Sullivan1,2, EK Nousen1, KA Chamlou1 and KL Grove2

Maternal diet and metabolic state are important factors in determining the environment experienced during perinatal
development. Epidemiological studies and evidence from animal models provide evidence that a mother’s diet and metabolic
condition are important in programming the neural circuitry that regulates behavior, resulting in a persistent impact on the
offspring’s behavior. Potential mechanisms by which maternal diet and metabolic profile influence the perinatal environment
include placental dysfunction and increases in circulating factors such as inflammatory cytokines, nutrients (glucose and fatty
acids) and hormones (insulin and leptin). Maternal obesity and high-fat diet (HFD) consumption exposure during development
have been observed to increase the risk of developing serious mental health and behavioral disorders including anxiety,
depression, attention deficit hyperactivity disorder and autism spectrum disorder. The increased risk of developing these
behavioral disorders is postulated to be due to perturbations in the development of neural pathways that regulate behavior,
including the serotonergic, dopaminergic and melanocortinergic systems. It is critical to examine the influence that a mother’s
nutrition and metabolic profile have on the developing offspring considering the current and alarmingly high prevalence of
obesity and HFD consumption in pregnant women.
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INTRODUCTION
Obesity has a significant and deleterious effect on numerous
aspects of human health. Being obese increases the risk of many
serious diseases including cardiovascular disease, hypertension,
diabetes and several forms of cancers.1--3 Mounting evidence sug-
gests that obesity is also associated with mental health disorders
such as anxiety,4 depression4 and attention deficit hyperactivity
disorder (ADHD).5 As obesity increases the risk of many serious
metabolic diseases and behavioral disorders, it has a significant
impact on the quality of life and decreases life expectancy.
According to the latest statistics from the National Health and
Nutrition Examination Survey, a third of adult Americans are
currently obese.6 The prevalence of obesity in both adults and
children has markedly increased in the United States over the past
three decades;7 childhood obesity has more than tripled in
children aged 6--11 years since 1980.8 The recent dramatic rise in
the prevalence of obesity has led to a staggering increase in
national health-care costs. This surge in obesity rates is likely due
in part to increased accessibility to calorically dense and highly
palatable foods.9 In addition, modern technologies have de-
creased the amount of energy needed to complete daily tasks,
and adults and children are increasingly able to choose sedentary
activities such as watching television and playing video games in
place of more physically active leisure activities.9 Of dire concern,
recent reports and news in the popular press have suggested that
the current new generation will be the first to have a decreased
life expectancy compared with their parents.10,11 Importantly,
there is increasing evidence from animal models that progra-

mming during the perinatal period contributes to the striking rise
in obesity rates.12--15

Although there are many aspects by which maternal obesity,
insulin resistance and/or diet affect fetal and adolescent develop-
ment, this review will focus on the critical impact on brain
development that has consequences for offspring behavior. It is
our belief that negative impacts on behavior and increased risks of
psychiatric disorders may have a consequence on quality of life as
serious as the potential metabolic outcomes that affect life
expectancy.

MATERNAL OBESITY INCREASES OFFSPRING’S RISK OF
OBESITY AND METABOLIC DISEASES
A third of pregnant American women are currently obese,8

and the majority consumes excess calories because of consump-
tion of a diet high in fat.16 Children who are exposed to
maternal obesity during gestation have an increased risk of
obesity and metabolic syndrome in adulthood.17,18 Furthermore,
gestational diabetes, which can significantly affect prenatal
development, has also been well documented to increase
offspring risk of adult obesity.19 The effect of maternal
obesity on the susceptibility to obesity in offspring is thought to
be independent of gestational diabetes because obese mothers
with euglycemia still have babies with increased adiposity.20

Maternal obesity also increases the risk of the child developing
fatty liver disease, cardiovascular disease and diabetes.8,21 Given
the high prevalence of obesity in pregnant women, it is critical to
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examine the full impact of maternal obesity on the developing
offspring.

However, it should be noted that one of the limiting factors of
the human studies is the inability to segregate the possible effects
of the maternal metabolic phenotype versus the diet that may be
causing the obesity and insulin resistance. To truly understand the
relative contributions of the different aspects of metabolic compli-
cations associated with maternal obesity, we need to have better
characterization of the metabolic phenotype and diet in these
clinical and epidemiological studies. Much can also be learned
from well-controlled animal models.

ANIMAL MODELS OF MATERNAL OBESITY
Maternal obesity is commonly simulated in animal models by
feeding adult females a palatable diet that is high in fat. However,
the duration of diet exposure and the composition of the
diet are variable between studies. The diets most often used to
induce obesity are either a refined high-fat diet (HFD) with fat in
place of carbohydrates as an energy source or a cafeteria diet in
which animals are provided with a selection of calorie-dense
palatable food items that have a high fat and carbohydrate
content along with their regular diet. The cafeteria diet is most
effective in promoting obesity possibly because of the greater
caloric load and/or increased consumption of carbohydrates.
Differences between studies may be partly due to the carbohy-
drate content of the diet, as high perinatal carbohydrate
consumption has been shown to have a lasting impact on neural
development in rodent22 and sheep23 models. Rats fed a HFD
through pregnancy and lactation have pups with increased
body weight and adiposity, as well as higher rates of hypergly-
cemia compared to pups from control diet-fed mothers.24 Murine
models of chronic maternal overnutrition also find that offspring
show increased adiposity due to hyperphagia and reduced
locomotor activity.25 In addition, exposure to a highly palatable
junk-food diet during perinatal development results in offspring
with increased preference for fatty, sugary and salty foods.26

Our group has further confirmed these findings using a nonhu-
man primate (NHP) model of HFD-induced maternal obesity.
Juvenile offspring from HFD-fed mothers display increased
body weight and fat mass, hyperleptinemia, and the early stages
of fatty liver disease.27 Importantly, we demonstrated that the
effects of maternal HFD on the offspring are independent of
maternal obesity.27 These studies confirm that in animal models,
maternal overnutrition predisposes offspring to early-onset
obesity and metabolic disorders. As these maternal HFD effects
are independent of obesity,27 it may be critical to provide
nutritional advice to all pregnant women and not just those who
are visibly obese.

MATERNAL OBESITY INCREASES OFFSPRING’S RISK OF
MENTAL HEALTH DISORDERS
In recent years, maternal obesity has also been linked to an
increased risk of behavioral disorders in human offspring, such as
ADHD28,29 and autism spectrum disorders (ASD).30 Maternal
obesity and diabetes are also linked with an increased prevalence
of ASD and developmental delays in children aged 2--5 years
old.30 Mothers of children with ADHD are almost twice as likely to
be obese than mothers of unafflicted children.28 Similarly, pre-
pregnancy obesity is associated with a twofold risk in ADHD
symptom score in offspring, compared with the children of
women who were of normal weight during pregnancy.29 Children
of mothers with maternal diabetes also showed significant deficits
in expressive language.30 These human studies indicate a
potential link between having an obese mother and developing
behavioral disorders, but it is unclear whether this relationship is
due to genetic factors, a common postnatal environment, or the

prenatal environment that offspring from obese mothers experi-
ence due to diet. Animal studies have begun to shed some light
on the contribution of each of these important factors.

ANIMAL MODELS OF MATERNAL OBESITY SHOW
PERSISTENT BEHAVIORAL CHANGES
Animal studies provide clear evidence that offspring behavior is
affected by maternal HFD consumption. Recent studies in NHP31

and rodent32 models indicate that maternal HFD consumption is
associated with increased anxiety. Adult male rat offspring exposed
to a diet high in either saturated or trans fat during gestation and
lactation displayed increased anxiety.32 However, other studies in
rodents suggest that HFD feeding decreases anxiety. It appears
that this may be dependent on the composition of the diet and
on the timing of consumption33 by the mother. Offspring from
mothers fed a purified HFD throughout the perinatal period dis-
played increased anxiety, whereas offspring exposed to a cafeteria
diet during lactation displayed evidence of decreased anxiety.33

Moreover, cafeteria diet consumption during the early postnatal
period has been observed to reduce anxiety and depression-like
behaviors in rodent offspring exposed to stress during gestation.34

By using a NHP model, our group demonstrated that maternal
HFD consumption suppresses serotonergic system signaling, which
predisposes female offspring to increased anxiety.31 The finding
that female NHP offspring exposed to maternal HFD consumption
are more sensitive to developing anxiety than male offspring is
consistent with findings in humans that indicate that females are
more susceptible to anxiety than males and that the association
between obesity and anxiety is stronger in women than in men.35

However, the studies in the animal models would suggest that
there could be an earlier programming event that causes a
neurochemical imbalance that makes these individuals especially
sensitive to social stresses later in life.

Indeed, maternal diet during the perinatal period also affects
the offspring’s social behavior. Rat offspring exposed to a maternal
diet high in polyunsaturated fatty acids displayed increased aggression
to intruders.36 Changes in reward-based feeding have also been
observed in several models of maternal HFD consumption.26,37,38

For example, rat offspring exposed to junk food during either
gestation or lactation displayed increased preference for fatty,
sugary and salty foods as adults.26,37,38 This finding is confirmed
by preliminary studies using our NHP model of HFD-induced
maternal obesity, which find that HFD offspring display increased
preference for diets with a high sugar and fat content (Sullivan
and Grove, unpublished observation). Maternal HFD consumption
has also been associated with decreased behavioral sensitization
to amphetamine in the offspring by altering dopamine transmis-
sion through the nucleus accumbens.39 These studies provide
compelling evidence that perinatal nutrition may have a long-
term influence on reward-based behaviors such as consumption
of palatable food and response to drugs of abuse.

POTENTIAL MECHANISMS FOR MATERNAL OBESITY
PROGRAMMING BEHAVIOR
Several mechanisms are postulated to be contributors to the
impact that maternal obesity and HFD consumption have on the
development of the complex neural circuitry involved in behavioral
regulation. HFD exposure has been observed to affect the
development of neurotransmitter signaling pathways such as
the serotonergic,31 dopaminergic,39,40 melanocortinergic,41 and
galaninergic systems.42 Maternal obesity and HFD consumption
are further associated with a number of potential factors that can
affect brain development: placental dysfunction, increased ex-
posure to inflammatory factors, increased circulating levels of
metabolic hormones and increased levels of nutrients.

The impact of maternal high-fat diet consumption
EL Sullivan et al

S8

International Journal of Obesity Supplements (2012) S7 -- S13 & 2012 Macmillan Publishers Limited



MATERNAL OBESITY CAUSES PLACENTAL DYSFUNCTION
The increased rate of maternal obesity in humans corresponds
with an increase in pregnancy complications.18 These complications
are thought to be due to placental dysfunction, as placental
dysfunction has been observed in NHP43 and ovine models44 of
maternal obesity and HFD consumption. Studies with large animal
models indicate that there is a strong association between
maternal diet and disruption of normal placental function.
Our group has demonstrated that NHP mothers who consumed
a HFD before and during pregnancy showed a 35--50% decrease
in uterine artery blood flow, which was independent of maternal
metabolic phenotype.43 However, there were further complica-
tions with fetal blood flow and a higher frequency of placental
infarctions and stillbirths if the mothers were obese and insulin
resistant.43 Ovine studies similarly found that overnourished ewes
exhibited decreased uterine blood flow, a reduction in placental
mass by one third and reduced placental capillary density.44

Rodent models of maternal HFD consumption have also shown
reduced placental mass.45 These findings emphasize that there is a
consistent relationship between HFD consumption and reduced
uterine blood flow, leading to placental dysfunction.

MATERNAL OBESITY IS ASSOCIATED WITH INFLAMMATION
Obesity can be thought of as a state of chronic inflammation
because it results in increased levels of circulating inflammatory
cytokines in many organs, including the brain46 and the
placenta.47,48 In human studies, the amount of adipose tissue
mass is positively correlated with elevations in markers of inflam-
mation such as C-reactive protein, interleukin (IL)-6 and
IL-1b in the plasma.46,49 These inflammatory markers are
associated with an increased risk for a number of metabolic
diseases: cardiovascular disease, heart disease, insulin resistance,
type 2 diabetes mellitus and hypertension.46 In patients with type
1 diabetes, who suffer from a compromised immune system,
metabolic disease is associated with increased serum levels of the
endotoxin lipopolysaccharide (LPS) originating from bacterial
colonization of the gastrointestinal tract.50 LPS upregulates inflam-
matory responses through pathways modulated by receptors such
as toll-like receptor-4.51 During pregnancy, increased levels of
inflammatory cytokines secreted from adipocytes in obese women
contribute to endothelial52 and placental dysfunction.53 As
maternal obesity is associated with endotoxemia and elevated
inflammatory cytokines, it increases the amount of inflammatory
factors that the developing fetus comes into contact with and that
affects neural development.

HFD-INDUCED INFLAMMATION RESULTS IN PLACENTAL
DYSFUNCTION IN ANIMAL MODELS
As described above, maternal obesity and HFD consumption are
associated with both decreased placental blood flow and an
increase in circulating inflammatory cytokines. In addition,
evidence from animal models indicates that consumption of a
HFD increases inflammation in the placenta. The placentae of
obese sheep displayed elevated levels of activated inflammatory
signaling pathways and inflammatory cytokine activity compared
with those of nonobese ewes.54 Furthermore, in our NHP model,
we have shown that consumption of a HFD, regardless of the
metabolic state of the mother, increases the expression of
placental inflammatory cytokines and that these cytokines are
selectively secreted into the fetal compartment.43 This is of grave
concern, as rodent models have shown that placentally generated
cytokines initiated further cytokine synthesis in the fetus,
perpetuating the inflammatory environment.55,56 Elevation of
such cytokines also led to changes in growth factors that are
essential for fetal development and for changes in behavior.57

INFLAMMATION-INDUCED NEURAL PROGRAMMING
There is strong evidence that exposure to increased circulating
cytokines during fetal development affects brain development
and thus is a potential mechanism by which maternal HFD con-
sumption affects behavioral regulation. Rodent offspring from
mothers consuming a HFD exhibit neural inflammation as
evidenced by increased microglial activation in the hippocampus,
which persists into adulthood57 and is associated with decreased
neurogenesis in the corresponding region.58 NHP offspring from
mothers consuming a HFD show an increase in circulating and
hypothalamic cytokines during the early third trimester.41 The
development of neurotransmitter systems critical for regulating
behavior are affected by such circulating cytokines.46 This
exposure to increased inflammatory cytokines may lead to the
perturbations in the melanocortinergic41 and serotonergic system
observed in fetal offspring.31 Maternal HFD consumption down-
regulates dopamine release in the nucleus accumbens of rodent
offspring, leading to increased motivation to consume fatty
food.40 Rats that had decreased accumbens dopamine were more
likely to be obese,59 indicating that they may be increasing
consumption to combat their lower levels of dopamine. Palatable
food may therefore be overconsumed in an attempt to elevate
dopamine levels. One study suggests that increasing consumption
of fatty foods causes a positive feedback loop in the nucleus
accumbens and hippocampus, meaning that increases in pala-
table food intake would increase the desire of an individual to eat
fatty food.60

Neural inflammation has also been observed as a result of
bacterial or viral infection, and this evidence demonstrates how
influential inflammation is for brain development. It is well
documented that when infections or illness occur during pre-
gnancy, there is a subsequent increase in inflammatory cytokines
delivered to the developing fetus, which in turn causes an
inflammatory response in the fetal brain during critical periods of
development.61 For example, women who were infected with
influenza during pregnancy had offspring who were at an
increased risk of developing schizophrenia.62 NHP studies show
that a mid-gestational influenza infection results in atypical brain
development similar to what is seen in cases of schizophrenia,
such as reduced cortical gray matter and enlarged lateral
ventricles.63,64 These structural abnormalities are persistent and
are likely to manifest into behavioral dysfunction, but this study
was not long enough to observe the full extent of behavioral
effects.64 Offspring of NHP mothers affected by influenza during
pregnancy demonstrated trouble with attention and orientation
tasks from an early age.64 Recent evidence indicates that gesta-
tional obesity may have an effect similar to gestation infection or
illness, as it also elevates the levels of inflammatory cytokines that
a fetus is exposed to.43 Therefore, maternal obesity may similarly
affect neural development, increasing the risk for behavioral
disorders and metabolic diseases. These data demonstrate that
the disruptions caused by inflammatory cytokines after infection
may be similar to what is seen after maternal HFD consumption,
extending beyond placental compromise into fetal brain devel-
opment and offspring behavior.

HUMAN INFLAMMATION AND BEHAVIORAL ABNORMALITIES
Exposure to elevated maternal inflammatory cytokines has been
indicated to have a role in human fetal brain development and
consequently have a persistent impact on behavior. A number of
psychopathologies, including Alzheimer’s disease,65 anxiety,66--68

depression,69--71 ASD72--74 and ADHD,75 have been linked with
exposure to inflammatory cytokines. When proinflammatory cyto-
kines cross the placenta and enter the fetal bloodstream, the fetal
brain undergoes excessive neuronal growth and plasticity, termed
a ‘cytokine storm.’76 Buehler76 proposes that the inundation of
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cytokines and the subsequent neuronal growth can in turn assist
the development of a state of chronic inflammation in the fetal
environment and that this may explain many of the symptoms
observed in individuals with ASD. Symptoms of ASD including
hypersensitivity to external stimuli, repetition of heard sounds and
movements, and object fixation are postulated to be a result of
this mechanism.76 HFD consumption during pregnancy has been
shown to activate many of the same inflammatory cytokines that
have been reported to be elevated either during gestation in
mothers of children who developed ASD such as IL-4 and
IL-572 or in children with ASD including monocyte chemotactic
protein-1, RANTES and granulocyte--macrophage colony-stimulat-
ing factor.73,74 In addition, in utero exposure to high levels of IL-8
results in fetal brain alterations that are consistent with the
neurological structure of schizophrenia patients,77 and thus the
elevation of this cytokine in response to maternal obesity could
increase the risk of schizophrenia in offspring from obese mothers.
Studies that focused on obesity instead of on its consequent
inflammatory response also show a link between obesity and
behavioral disorders. These mechanisms propose that inflamma-
tory cytokines and obesity affect human brain development in a
way that leads to the development of behavioral abnormalities.

PSYCHOPATHOLOGIES AS PROINFLAMMATORY RESPONSES
The increased cytokine reactivity stimulated by intrauterine infection
or maternal HFD consumption can be induced by administration of
proinflammatory factors, further corroborating that inflammation is
a mechanism responsible for the consequent alterations in fetal
brain development.56,78,79 Injection of LPS elicits increased cytokine
reactivity in infant monkeys78 and caused systemic inflammation in
cats80 and horses.81 NHP infants from high LPS pregnancies
demonstrated behavior that contained disturbances similar to what
is seen in ASD and schizophrenia, such as the failure to exhibit a
normal startle response.78 These LPS infants displayed reduced gray
matter,78 which is similarly seen in NHP models of perinatal
influenza,64 and also had a significant 8.8% increase in white matter
volume across many cortical regions,78 which is similar to the
increased white matter growth seen in the early development
of individuals with ASD.82,83 Offspring of rats fed a HFD had heig-
htened response to LPS compared with controls, and these rats also
displayed alterations in anxiety and spatial learning.32 These studies
of endotoxemia indicate that elevated levels of inflammatory
cytokines, whether triggered by HFD consumption or infection,
create a pathway that affects the development of the neurocircuitry
in ways that are consistent to the neural abnormalities observed in
human psychopathologies.

As exposure to inflammation during development causes a
nonspecific response that affects many neurotransmitter systems, it
is important for future research to directly examine the influence of
maternal obesity and HFD consumption-induced inflammation on
each neural pathway important in behavioral regulation. Com-
pounds with anti-inflammatory properties, such as ursolic acid, have
been found to improve the behavioral performances of mice fed a
HFD.84 This cognitive improvement was credited to the inhibition of
inflammatory signaling and suggests that anti-inflammatory agents
may be helpful in combating obesity-induced cognitive impair-
ments.84

PROGRAMMING BY EXCESS HORMONES AND NUTRIENTS
Maternal obesity is associated with gestational diabetes
As maternal obesity is often associated with gestational diabetes,85

rates of gestational diabetes will continue to increase as the
obesity epidemic continues. Gestational diabetes is associated
with the initiation of inflammation in the placenta,47--49 and thus
the same mechanisms responsible for placental dysfunction in

intrauterine infection and HFD consumption are also activated by
gestational diabetes.86 Both human and rodent models point to
the placenta as one target of the negative effects of maternal
diabetes.87

Gestational diabetes is associated with hyperglycemia and
hyperinsulinemia.88 The fetus is only exposed to higher levels of
glucose because glucose, but not insulin, can permeate through
the blood--placenta barrier and be transferred to the fetus.89 The
fetal pancreas compensates for this hyperglycemia by increasing
insulin release. As insulin is an important neural growth factor,90 it
is proposed that early exposure to hyperinsulinemia alters the
development of brain circuitry regulating energy balance and
behavior. This theory is supported by studies that find that insulin
administration during the last term of gestation alters energy
balance and produces obese offspring91,92 and that administering
insulin to the hypothalamus of rat pups during the time that
projections from the arcuate nucleus to the paraventricular
nucleus are developing results in elevations in body weight and
insulin level, impaired glucose tolerance and increased vulner-
ability to diabetes in adulthood.93

Maternal obesity is associated with hyperleptinemia
Leptin is a satiety factor secreted by adipocytes in proportion to
the amount of fat mass, and, consequently, offspring from obese
mothers are exposed to increased levels of leptin. The hyperlepti-
nemia that offspring from obese mothers experience during
development is implicated in metabolic imprinting. There is
substantial evidence in rodents that postnatal leptin is a critical
factor in the development of neural pathways in the hypothala-
mus.94--96 In addition, offspring from rodent mothers who
consumed a HFD and had increased circulating leptin levels
showed increased inflammation in the periphery and hypothala-
mus, even if they consumed a healthy diet after birth.32 Rodent
studies indicate that neonatal overnutrition increases postnatal
leptin resistance in the arcuate nucleus,97 leading to over-
consumption of palatable foods.96,97 Human studies report that
leptin is elevated in obese98 and diabetic mothers99,100 and is
lower in infants who experienced intrauterine growth restriction at
term.101 However, in human and NHP gestation, circulating leptin
levels do not increase until after hypothalamic development is well
advanced.102,103 Although critical for brain development in rodents,
there is limited evidence for leptin’s role in the development of
primate brains.97,104 Yet, hyperleptinemia is associated with
placental dysfunction,98,99 and thus elevated leptin may affect
brain development indirectly. Hyperleptinemia may also result
from the effect that maternal HFD has on the leptin signaling
pathway. Offspring from HFD mothers experienced reduced
phospho-signal transducer and activator of transcription-3 activa-
tion as compared with control pups.97 This suggests that leptin
resistance develops during the suckling period and persists
through life, increasing the susceptibility of HFD offspring to
obesity.97 To date, studies examining the role of leptin in influe-
ncing the development of neural pathways that regulate behavior
have focused on feeding behavior;105,106 however, with the
increasing evidence that maternal metabolic state influences
social and mental health behavior in offspring, future studies will
work to determine the role that leptin has in programming mental
health-related behavior.

Maternal HFD-induced suppression of the serotonin system
The serotonin (5-HT) system has an integral role in neural
development, influencing neurogenesis, neuronal migration and
synaptogenesis.107,108 Furthermore, the metabolism of tryptophan
(TRP), the precursor to 5-HT, through the kynurenine (KYN)
pathway has a crucial role in immune function during pregnancy.
During the first trimester, metabolism of TRP prevents the
rejection of the fetus by suppressing the maternal immune
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response,109 and it is involved in the regulation of blood flow
between the placenta and fetus during the second and third
trimesters of gestation.110 KYN metabolites have been reported to
be elevated in animal models of maternal inflammation.111 As the
KYN pathway competes with 5-HT for the substrate TRP, an
increase in the KYN pathway results in less TRP availability for 5-HT
synthesis. As mentioned previously, our group has demonstrated
that chronic consumption of a HFD during pregnancy reduces
placental blood flow, indicating the potential role of the elevated
KYN levels; however, this effect is further exacerbated if the
animals are obese and insulin resistant.43 Furthermore, in humans,
a suppression of brain 5-HT synthesis is associated with a number
of mental health and behavioral disorders including anxiety,112

depression,113 ADHD114 and ASD,115 and thus perturbations in the
5-HT system are postulated to underlie the increased risk of
offspring exposed to maternal overnutrition developing behavior-
al disorders.

CONCLUSION
In summary, there are several mechanisms by which maternal
obesity and HFD consumption may affect the developing fetal
brain and thus behavioral regulation. These mechanisms include
placental dysfunction, the increased exposure to inflammatory
cytokines and the higher levels of nutrients and metabolic hor-
mones that offspring receive from obese mothers. The serotoner-
gic system has been identified as a potential mediator of maternal
HFD-induced behavioral dysregulation, and suppression in the
5-HT system has been documented in several different animal
models. With the current prevalence of maternal HFD consump-
tion and obesity, future generations are at an increased risk for
behavioral and mental health disorders. Given the high rates of
maternal obesity, future studies need to identify therapeutic
strategies that are effective at preventing maternal HFD-induced
malprogramming of offspring behavior.
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