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Abstract

MicroRNAs are 20-24 nt long, single-stranded RNAs that repress gene expression. Dysregulation 

of miRNA expression is associated with many human diseases. Modulating the level of 

endogenous miRNA alters gene profiling and can achieve therapeutic benefits. Here, we reviewed 

currently used methods of altering miRNA activity in vivo. We focus on the delivery of miRNAs 

and miRNA inhibitors using recombinant adeno-associated virus (rAAV). In general, rAAV-

mediated miRNA inhibition or overexpression provides a simple, efficient and informative way to 

study miRNA function in mammals. This method also provides the opportunity to explore 

potential miRNA therapeutics for many diseases.
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MicroRNAs (miRNAs) are small 20–24 nt RNAs that repress the expression of mRNAs by 

binding to the 3’UTR of the targeted mRNA. As a whole, miRNAs are predicted to regulate 

more than half of all mammalian protein-coding genes1. Based on their location in the 

genome, the genes that code for miRNA can be categorized into three groups: exonic 

miRNAs, intronic miRNAs and miRNAs embedded into protein-coding transcripts2.Most 

miRNAs are transcribed as primary miRNA (pri-miRNAs) by RNA polymerase II3, though 

some are transcribed by RNA polyIII4. A pri-miRNA contains a 7-methylguanosine cap at 

its 5′ end and a poly (A) tail at its 3′ end. It is cleaved by an intranuclear ribonuclease III 

(RNase III) enzyme, referred to as Drosha, to generate a precursor miRNA (pre-miRNA), 

which is a stem-loop molecule approximately 70 nt in length. Subsequently, Exportin-5 

binds to the pre-miRNA and transports it into the cytoplasm. It is here that another RNase 
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III, Dicer, processes the pre-miRNA into a mature miRNA. This miRNA is loaded into an 

RNA-induced silencing complex (RISC). Upon amalgamation this fully active protein-RNA 

aggregate is capable of repressing gene expression through the cleavage and/or degradation 

of mRNAs.

miRNA dysregulation in human diseases and miRNA therapeutics

In 1993, Ambros and his colleagues discovered the first miRNA, Lin-4, in Caenorhabditis 

elegans. Since this event, thousands of miRNA have been found and submitted to the 

miRNA database (http://www.mirbase.org). These miRNAs have been isolated from 

mammals and non-mammals; more than 2500 of which have been isolated from human5. 

The correlation between miRNA dysregulation and human disease was first reported by 

Calin et al. This pioneering study revealed that the loci for miR-15 and miR-16 were deleted 

in the majority of patients suffering from B cell chronic lymphocytic leukemia6. 

Accumulated data have demonstrated that miRNAs play important roles in almost all classes 

of human disease; including cancer, cardiovascular disease, diabetes, etc. For example, more 

than 50% of human miRNA-encoding genes are located in chromosomal locations 

associated with cancer or fragile sites on a genome-wide base 7. Let-7 is the first miRNA 

that was found to regulate the oncogene RAS expression by directly targeting its 3’UTR8. 

Further studies have shown that in non-small-cell lung cancer (NSCLC) mouse models, 

intratumoral injection of synthetically produced let-7 molecular mimics significantly reduces 

tumor burden9. In a cohort of 241 patients with hepatocellular carcinoma (HCC), it was 

shown that tumor tissues have reduced expression of miR-26 compared with noncancerous 

liver tissue from the same patient. Furthermore, in patients whose tumors have decreased 

miR-26 expression, lower levels of miR-26 correlate with shorter overall survival10. 

Subsequently, systemic delivery of miR-26a via adeno-associated virus vector 8 (AAV8)11, 

a vector known for its high liver tropism, dramatically suppresses the tumor progression in a 

murine liver cancer model12. In addition to the miRNA studies in cancer, Olson and his 

colleagues reported that they had found a signature pattern of miRNAs in cardiac 

hypertrophy and heart failure which initiated a wave of research focused on miRNA 

function in heart disease13. In a failing heart, miR-21 level is specifically increased in 

fibroblasts through the suppression of ERK-MAP kinase signaling pathway which triggers 

fibroblast motility and initiates the process of cardiac scarring. Scarring, or fibrosis, of the 

heart is an inappropriate physiological response that oftentimes is severely deleterious to the 

individual. In vivo silencing of miR-21 by antisense oligonucleotide inhibits interstitial 

fibrosis and corrects cardiac dysfunction in a TAC (Transverse aortic constriction) mouse 

model14. Genetic knockout (KO) of the cardiac-specific miRNA, miR-208a, can prevent 

pathological cardiac remodeling. Similarly, the anti-miR-208a oligonucleotide improved 

cardiac function and survival in a rat hypertension-induced heart failure model15,16. Another 

study found that mice who received anti-miR-208a oligonucleotide therapy confer resistance 

to diet-induced obesity and improved insulin responsiveness17. MiRNAs are also associated 

with metabolic diseases. MiR-375 is highly expressed in pancreatic islets and miR-375 KO 

mice are hyperglycemic18. MiR-33, an intronic miRNA located in the intron of SREBF-2 

gene, cooperates with its SREBF-2 host gene to control cholesterol homeostasis19. 

Moreover, administration of anti-miR-33 oligonucleotide raises the plasma HDL level and 
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represses the atherosclerosis in a hypercholesterolemia mouse model20. Using a similar 

approach, inhibition of the miR-33 family in non-human primates also raised plasma HDL 

and lower VLDL triglyceride levels21. MiR-122 antagomiR could be the first miRNA-target 

drug to treat human disease. MiR-122 is liver specific and highly expressed, constituting 

70% of the total liver miRNA population22. The binding between miR-122 and the 

conserved 5’ untranslated region of the hepatitis C virus (HCV) genome protects the HCV 

from nucleolytic degradation and host innate immune response23,24. HCV load was 

dramatically reduced with the therapeutic use of miR-122 antagomiR to competitively bind 

endogenous miR-122. The clinical trial using miR-122 antagomiR to treat HCV patients has 

completed the Phase 2a stage, showing prolonged dose-dependent reductions in HCV RNA 

levels without evidence of viral resistance 25. All of these researches prove that modulation 

of miRNA is providing a new route of treatment against human diseases.

Strategies to investigate miRNA function in vivo

Though thousands of miRNAs have been discovered, few miRNA-target interactions have 

been experimentally validated, especially in vivo. To understand the complete spectrum of 

miRNA function, we need approaches to modulate miRNA activities in order to perform 

gain-and-loss of function studies. Genetic disruption of a miRNA gene provides a powerful 

strategy to study miRNA function, but many miRNAs share the same seed sequence, the 6–

8 nt miRNA region that defines the target repertoire of a miRNA. Consequently, one 

member of a miRNA family may compensate for loss of another. Creating an animal model 

in which all members of a miRNA family are deleted is time consuming and expensive. In 

some cases, miRNA genetic ablation in mice are embryologically lethal, such as miR-17-19 

cluster KO leads to 100% postnatal death with cardiac and lung defects26 and miR-126 KO 

results in around 50% embryonic death due to vascular ruptures and subsequent 

hemorrhage27.

Chemically modified miRNA mimics or anti-miRNA oligonucleotides (AMOs) 

complementary to mature miRNAs can be used to increase or decrease the activities of 

miRNAs respectively, in vitro and in vivo. Though effective, these oligonucleotides 

therapies are typically expensive and/or require proprietary modifications such as 2′-O-

methyl, 2′-O-methoxyethyl, or 2′, 4′-methylene (LNA)28-30. Unfortunately, due to their 

transient lifespan of miRNA mimics and AMOs, treatment requires repeated administration 

to effectively express or suppress the cognate miRNAs. Current chemistries and 

formulations are limited in their success by the delivery of oligonucleotides to many tissues 

or organs, such as pancreas, muscle and brain.

An additional strategy to lower miRNA activities is to use transcribed miRNA inhibitors 

referred to as miRNA “sponges”31 and “tough decoy RNAs (TuD RNAs)”32. The first 

alternative to AMOs are “sponges,” which are miRNA inhibitors that can be expressed in 

cells (Fig. 1a). They oftentimes contain multiple binding sites for a specific miRNA of 

interest and soak up endogenous miRNA like “sponges”31. To further improve the miRNA 

inhibition efficacy, Hideo IBA and his colleagues invented a more potent miRNA inhibitor 

known as TuD RNA (Fig. 1b). They did this by replacing the Pol II promoter in the 

“sponge” with the more robust Pol III promoter. Additionally, they optimized the secondary 
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structures and the sequence of the miRNA-binding site32. Depletion of miR-223 using a 

sponge-expressing lentiviral vector to stably modify hematopoietic stem cells ex vivo, 

followed by bone marrow reconstitution in mice, produced a phenotype similar to that 

observed in a genetic miRNA knockout mouse33. This work successfully demonstrated that 

viral-vector delivered miRNA inhibitors can functionally knock down miRNAs in mice. 

However, the use of lentiviral vector-based miRNA inhibition for functional genomic 

studies and human therapy is limited due to the risk of insertional mutagenesis and the 

requirement for ex vivo manipulation. To create an efficient and simple way to study 

miRNA function in mice, Gao and his colleagues combined rAAV9 vector, which exhibits 

high tropism for mouse liver and heart11 with miRNA TuDs to inhibit specific miRNAs. 

One single dose of rAAV9 expressing anti-miR-122 or anti-let-7 TuD depleted the 

corresponding miRNA and thereby increased the expression of its mRNA targets in the liver 

and heart of adult mice. This miRNA inhibition lasted through the 25 weeks of monitoring 

without adverse side effects or any drop in efficacy overtime. High throughput sequencing 

of liver miRNAs from the treated mice demonstrated that the targeted miRNAs, but no other 

miRNAs, were depleted 34, indicating the specificity of target miRNA inhibition. Thus 

rAAV-mediated miRNA modulation is holding great promise on miRNA function study in 

vivo and potential therapeutics.

RAAV vector: a powerful in vivo gene delivery platform

The first human AAV (i.e. AAV serotype 2) was found as a contaminant of adenovirus 

preparation. Although 80-90% of the human population is AAV seropositive, infection has 

not been associated with any human disease. The wild-type AAV (wtAAV) contains a small 

non-enveloped capsid with a diameter of 26 nm and a 4.7 kb single-stranded (ss) genome. 

This genome contains two 145-nt inverted terminal repeats (ITRs) at each end and two open 

reading frames (ORF; Rep and Cap). The ITRs form two T-shaped structures at each end of 

the genome and contribute to AAV genome replication, packaging, integration and rescue 

from host genome 35,36. The Rep gene is involved in viral genome replication and 

encapsidation during AAV replication 37,38in the presence of a helper virus, such as 

adenovirus39 and herpes simplex virus40. The cap ORF provides structural proteins for the 

viral capsid which determine the tissue tropism and immune biology in viral infection41.

AAV can transduce dividing and non-dividing cells without causing known pathogenic 

consequence, which has made it a popular in vivo gene delivery tool. Long-term transgene 

expression is the major advantage of AAV vectors42. So far there are 12 AAV serotypes and 

more than 100 variants available to transfer foreign genes into the liver, pancreas, heart, 

lung, skeletal muscle and CNS efficiently43. The major barrier of translating AAV into 

human clinical trials is the host immune response which is relatively low however persistent 

though out preclinical models and clinical trials44, even though the immune responses to 

AAV vectors in mice is minimal.

A modified AAV, referred to as recombinant AAV (rAAV), which is made by taking the 

most useful aspects that wtAAV has to offer and removing the rest, has become the standard 

AAV vector. RAAV is designed using wtAAV as a template, but it is crafted brilliantly so 

that it is castrated, less risky and more predictable to work with. Though the two ITRs from 
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the wild-type AAV remain in place, the original Rep and Cap genes of wtAAV are 

completely removed and are replaced with genes of interest45. WtAAV can integrate into the 

chromosome 19q13 in cultured human cell lines 46,47, but unlike wtAAV, rAAV genomes, 

due to their incapability to produce rep, do not integrate into this specific chromosomal site 

in cultured cells or infected mammals. Most rAAV genomes persist as episomes in cells48. 

Less than 0.1 to 0.5% of the genome randomly integrates into the host genome of mice and 

humans49-51. Currently rAAVs are used in many human gene therapy clinical trials, such as 

cystic fibrosis, muscular dystrophy, Parkinson’s, hemophilia B, and Leber’s congenital 

amaurosis44. The first rAAV-based commercial drug, Glybera, has been approved to treat 

lipoprotein lipase deficiency in Europe 52. RAAV vectors are regarded as the most efficient, 

long-lasting and safe somatic gene transfer vehicle in vivo.

RAAV-based in vivo toolkits for miRNA functional genomics and miRNA 

therapeutics

Though rAAV vectors have many advantages in in vivo gene delivery comparing with other 

viral vectors, the small size of AAV genome (< 4.7 kb) limits its applications on large gene 

replacement. Furthermore, to improve the in vivo efficacy of rAAVs transduction, the 

capability of rAAV genome is shortened even more to create what is known as self-

complimentary rAAV vectors (scAAV). These vectors are essentially constructed by 

mutating one ITR. The mutated ITR is lack of the terminal resolution site for Rep 

endonuclease nicking during virus genome replication and enable continuing the synthesis 

of second strand. The failure of Rep nicking the mutated ITR generated two complimentary 

single stranded AAV genome and folds upon itself upon uncoating, creating a double 

stranded genome which is transcriptionally active in cells. When the virus genome released 

from scAAV vector in host cells, it bypasses the conversion of single-stranded genome to 

double-stranded genome to make the transgene expression more rapidly and efficiently. This 

optimization greatly enhanced the transduction efficacy of AAV in vivo 53,54. This mutation 

further reduces the AAV package capability to 2.5 kb. However, the small size of 

transcribed miRNA inhibitors (sponges < 0.2 kb; TuD RNAs including Pol III promoter< 

0.5 kb) is well suited to scAAV delivery.

Based on the scAAV vectors, we can generate a library of rAAV vectors expressing miRNA 

inhibitors as well as companion vectors, over-expressing the corresponding miRNA. This 

toolkit will enable researchers to test the phenotypic effects of gain-or-loss of function in 

vivo. Before murine model study, these constructs can be validated in HEK 293 cells. Each 

miRNA toolkit contains 3 components: miRNA sensor plasmid, miRNA over-expression 

plasmid and miRNA inhibitor plasmid. The miRNA sensor plasmid is used to monitor the 

miRNA activity in cells. It contains two reporter genes. One reporter gene carries multiple 

sites complementary to miRNA, which allows the binding of cognate miRNA to abolish the 

reporter gene expression. The more miRNA in the target cells, the lower the expression of 

the reporter gene can be detected. The other reporter gene is served as a transfection control 

(Fig. 2a).

In the standard practice of production of mature miRNAs, researchers integrate the pri-

miRNA fragments into the 3’UTR of transgene or into the intron before the transgene (Fig. 
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2b).Basically, pri-miRNA fragments are isolated by polymerase chain reaction (PCR) from 

genomic DNA. The amplicons include the pre-miRNA and ~ 100 bp flanking sequence at 

both ends (Fig. 2b). We do not recommend embedding pri-miRNA fragments into the 

3’UTR because the co-transcribed pri-miRNA will be processed by Drosha, resulting in the 

loss of reporter gene poly (A) and the consequent loss of its expression (Xie, et al., 

unpublished data).

In addition, the pri-miRNA fragments with the same design can be harbored by lentiviral 

vectors to suppress the development of non-small cell lung tumor by expressing the let-7 

family 55or used to reduce hyperlipidemia and atherosclerosis by expressing miR-30c56.

We prefer the TuD RNAs in the miRNA inhibitor constructs because of their supremacy in 

potency among currently available plasmid-based miRNA inhibitors (Fig. 2c)34,57. In brief, 

miRNA over-expression constructs will be co-transfected with the corresponding miRNA 

sensor plasmid into HEK293 cells. The reduction of reporter gene will reflect the level of 

functional miRNA produced by both 293 cells endogenously and the miRNA over-

expression construct. In the presence of miRNA inhibitor in the transfected HEK293 cells, 

the reemergence of reporter gene activity indicates the repression of miRNA activity. This is 

a result illustrating the repression of reporter gene from construct expressing miRNA (Fig. 

2d top) and de-repression of reporter gene from miRNA inhibitor in the presence of ectopic 

miRNA (Fig. 2d bottom). Theoretically this strategy is able to cross-validate all the miRNA 

expression and inhibition constructs in HEK293 cells. For in vivo studies, in vitro validated 

miRNA expression and inhibition constructs can be packaged into different serotypes of 

AAV vectors by the conventional “ triple-transfection” method58. In brief, validated rAAV 

plasmid (Fig, 2 b and c), packaging plasmid which contains Rep and Cap genes, and 

adenovirus helper plasmid were co-transfected into HEK293 cells. After 2-3 days, cells were 

harvested for vector purification by ultracentrifugation on CsCl or iodixanol gradient and 

column chromatography59,60. In the packaging process, the vector genome flanked with 2 

ITRs will be excised from the rAAV vector plasmid, replicated and packaged into AAV 

virions. Rep and Cap proteins expressed from the packaging plasmid and the adenovirus 

helper plasmid provides helper functions essential for rAAV rescue, replication and 

packaging. The serotype of AAV capsid determines tissue tropism, efficiency of 

transduction and immune biology of a rAAV vector.

In vivo delivery of ectopic miRNAs or their inhibitors is essential for the study of miRNA 

functional genomics and therapeutics. As we reviewed above, the advantages of tissue 

specific tropism, long-term expression and high transduction efficacy make AAV vectors 

ideal in vivo gene delivery tools. Even the TuD RNA expression driven by Pol III promoter 

cannot be regulated. By choosing different AAV serotype and by modifying the route of 

vector administration, manipulation of miRNA levels in target tissues can be achieved 

(Table 1).

Overall the combination of rAAV, a highly efficient in vivo gene delivery vehicle with 

optimized miRNA expression cassettes or inhibitors, will be valuable tools for miRNA 

functional genomic study and potential therapeutics.
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RAAV-mediated miRNA Delivery and miRNA Therapeutics: case studies

The first remarkable breakthrough in miRNA-based therapy is using AAV vector delivered 

miR-26a to suppress liver cancer in an inducible-cMYC mouse model12. In the study, Kota 

et al found that miR-26a was the most down-regulated miRNA in the liver tumor resulting 

from the specific activation of cMYC oncogene in hepatocytes. They then built a scAAV 

construct carrying the pri-miR-26a fragment and packaged it into AAV8 vector, an AAV 

serotype so efficient in hepatic transfection that it can transduce nearly every hepatocyte in 

an individual mouse. After a single tail vein injection, there was a dramatic decrease of 

tumor burden, induced by a massive tumor-cell specific apoptosis. By putting back one 

miRNA into tumor cells, Kota et al achieved noticeable therapeutic benefit, leading the way 

in a novel and exciting therapeutic strategy for the treatment of liver cancer and the other 

diseases.

Another successful example of rAAV delivered miRNA therapy was accomplished through 

the use of rAAV9, which can cross blood brain barrier 61-63 . RAAV9 was used to deliver 

miR-196a to treat spinal-bulbar muscular atrophy (SBMA) 64. In this study, the authors 

compared the miRNA expression profile in the spinal cords of the diseased mice with those 

of wild type mice and found that miR-196a, along with 4 other miRNAs, were up-regulated 

more than two-fold during the advanced stage of this mouse model disease. The researchers 

found evidence that miR-196a was up-regulated in the diseased mice as a protective 

mechanism against the progression of the disease and decided that they would attempt to 

treat the disease by aiding the natural up-regulation of miR-196a by bolstering the amount of 

this miRNA with a delivery of exogenous miR-196a. After miR-196a was successfully 

delivered via rAAV9, they found the disease related gene expression was down-regulated, 

resulting in the improvement of not only mouse behavior but of body weight and mouse 

survival. The benefit from miR-196a over-expression also indicates endogenous miRNAs 

can be protective factors in the disease progress.

To understand the function of nearly 300 conserved miRNAs between humans and mice, we 

can continue to develop the field by producing hundreds of miRNA-KO mouse strains for 

future research or we can produce mouse miRNA toolkits as described above, applicable 

and adaptive for use in many animal and cell models. To accelerate analysis of miRNA 

function in mammals, Xie, et al., achieved similar phenotypes as miR-122 KO mice 65,66 by 

combining the advantages of rAAV vectors and TuD RNAs 34. Using the same approach, 

AAV delivered anti-miR-26a TuD delays the differentiation from myoblasts to myotubes67. 

It is likely that the desired results from the development of miRNA somatic KO mice can be 

obtained more quickly and easily by means of scAAV-delivered TuDs. There is also much 

to be learned from the up-regulation of miRNA; a goal that is difficult to be addressed by the 

creation of transgenic overexpression mouse libraries, but can be quite robustly 

accomplished with the construction of scAAV-delivered pri-miRNAs with a single bonus of 

rAAV injection.
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Prospects and challenges

Over the past few years, miRNA-based therapeutics have achieved great success in many 

preclinical animal models, such as HCV29, HCC12, metabolic disorders21,56, and 

cardiovascular disease68. The first miRNA-targeted drug, miravirsen (miR-122 antisense 

oligonucleotide), completed its Phase 2a study recently25. The clinical data showed the 

patients were well tolerated, 2 to 3 logs reduction of HCV RNA and no signs of viral 

resistance. Miravirsen provides an additional option for the patients who are not responding 

to interferon therapy and avoids virus mutation because it targets the host gene miR-122 on 

which the virus relies, not on the virus itself. The clinical results are very attractive, but there 

are still concerns about the long term safety of miR-122 inhibition in patients. Every single 

miRNA regulates hundreds of target genes involved in multiple pathways. Modulation of 

miRNA may easily lead to unwanted outcomes. Indeed, miR-122 inhibition by AMOs or 

scAAV-delivered TuDs lowered high-density lipoprotein (HDL) and low-density lipoprotein 

(LDL) simultaneously28-30,34. However HDL is regarded as good cholesterol. The most 

severe concern is the correlation between low miR-122 level and HCC development in 

patients, although no direct causal link has been established 69-71. Furthermore, aged 

miR-122 KO mice developed HCC 65,66. This germ line depletion of miR-122 may not 

accurately reflect the real risk of liver cancer in adult HCV patients who only lose miR-122 

during the miR-122 antisense oligonucleotide treatment, but it does warn of potential 

threats. AAV vector expression is stable for years in mice and humans. AAV delivered anti-

miR-122 TuD may be used to evaluate the HCC risk of long-term miR-122 inhibition and 

other side effects.

MiR-26a based liver cancer therapy also confronts the same concern. AAV8 delivered 

miR-26a can result in tumor suppression in the mouse liver cancer model driven by cMYC 

gene12, but miR-26a also promotes cholangiocarcinoma growth by activating β-catenin72. 

The activation of Wnt/β-catenin is one of the major pathways involved in HCC73. In glioma, 

miR-26 was also reported as an oncomiR (miRNA associated with cancer) by directly 

repressing a well-known tumor suppressor74, PTEN. It is a legitimate concern that bolstering 

levels of miR-26a may worsen the pathogenesis in certain populations of HCC patients.

High unregulated expression of shRNAs delivered by rAAV has been reported to saturate 

endogenous cellular miRNA machinery and cause fatal effects in mice75,76. A surplus of 

rAAV-delivered shRNAs diminishes two crucial RNAi machineries, Exportin-5 and 

Argonaut-2 protein 76,77. To improve the safety, shRNAs were engineered into the position 

where the mature miRNA duplex is and flanked with native sequence to direct correct 

processing. By producing less unprocessed precursors and by increasing the effectiveness of 

processing, this procedure optimization reduced shRNA-mediated toxicity delivered by 

AAV in the CNS 78,79. However, this strategy also raised another risk from possibly 

disturbing another important RNAi machinery factor, Drosha, which is required for the 

miRNA shuttle strategy. In rAAV mediated miRNA replacement or enforcement, the impact 

of ectopic miRNAs on RNAi machinery and homeostasis of endogenous miRNAs as well as 

the off-target effects in targeted tissue and unwanted tissues have not been addressed. On the 

other hand, AAV delivered TuD RNA has demonstrated efficacy, specificity and safety of 
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miRNA inhibition 34, but extensive studies particularly in large animal models are still 

required.

Overall miRNA therapeutics is an emerging field filled with lots of hope. Because of their 

roles as master regulators in many diseases, miRNAs can achieve previously unreachable 

medical benefit when compared with conventional mono-target therapeutics. Targeting of 

multiple genes is the strength of using miRNAs and miRNA inhibitors as therapeutics 

reagents, but the unique property is also its weakness. Without thoroughly understanding the 

miRNA functions, miRNA-based therapeutics will be double-edged swords in many cases.
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Abbreviations

AAV adeno-associated virus

miRNA microRNA

pri-miRNA primary miRNA

pre-miRNA precursor miRNA

NSCLC non-small-cell lung cancer

HCC hepatocellular carcinoma

TAC Transverse aortic constriction

HCV hepatitis C virus

AMOs anti-miRNA oligonucleotides

TuD RNAs tough decoy RNAs

ITR inverted terminal repeat

scAAV self-complimentary AAV

HDL high-density lipoprotein

LDL low-density lipoprotein

SBMA spinal and bulbar muscular atrophy

RISC RNA-induced silencing complexes
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Figure 1. 
(A) Sponge is tandem repeats of miRNA binding site after reporter gene driven by Pol II 

promoters. The imperfect paring between microRNA and sponge is diagrammed for 

miR-122. (B) Tough decoy RNAs (TuDs) contain two single-stranded miRNA binding sites, 

flanked by double-stranded stems that enhance stability and promote nuclear export. U6 

promoter is used for high level expression of the miRNA inhibitors.
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Figure 2. 
Validation of miRNA toolkit in HEK293 cells. (A) miRNA sensor plasmid to monitor the 

miRNA activity. The strategy for construction of AAV plasmids expressing functional pri-

miRNA fragments (B) and miRNA inhibitors, TuD RNAs (C). Cross validation of miRNA 

expression and inhibition plasmids (D). Top at (D) shows increasing amounts of a pri-

miRNA producing vector inhibits expression of a miRNA sensor plasmid in HEK293 cells. 

The bottom shows the de-repression from anti-miR TuDs in a dose response manner when 

we fix the amount of pri-miR plasmids. ITR, inverted terminal repeat; ΔITR, mutated ITR; 

CB, chicken β-actin promoter with CMV enhancer; U6, U6 promoter; PA, poly (A); pre-

miR, precursor miRNA; Fluc, Firefly luciferase; Rluc, Renilla luciferase; β-Gal, β-

galactosidase; 3 × miR-xT, 3 miRNA perfect target sites.
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Table 1

Summary of delivering miRNA or inhibitors to targeted tissues by the combinations of AAV serotypes and 

route of vector administration

Route of Vector Administration

Target Tissue AAV Serotype Neonates Adults

Liver AAV8 Not suitable because of
hepatocyte division

Intravenous

Pancreas AAV7, AAV8,
or AAV9

Not efficient Intravenous or retrograde
bile duct injection

Heart AAV9 Intravenous or
intrapericardial

Intravenous

Lung AAV5, AAV9,
or rh.10

Intravenous Intratracheal or intranasal

Skeletal Muscle AAV1, AAV7,
or AAV9

Intravenous of AAV9 only Intramuscular or isolated
limb perfusion (AAV9)

Brain AAV9, rh.8, or
rh.10

Intravenous or intracerebral
ventricular

Intravenous
 or intracranial
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