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Purpose: Refined analysis of frequency doubling perimetric data was performed to
assess binocular visual field conservation in patients with comparable degrees of
bilateral glaucomatous damage, to determine whether unilateral visual field loss is
random, anatomically symmetric, or non-random in relation to the fellow eye.

Methods: Case control study of 41 consecutive patients with bilaterally mild to severe
glaucoma; each right eye visual field locus was paired with randomly-selected co-
isopteric left eye loci, performing 690,000 (10,000 complete sets of 69 loci) such
iterations per subject. The potential role of anatomic symmetry in bilateral visual field
conservation was also assessed by pairing mirror-image loci of the right- and left-eye
fields. The mean values of the random co-isopteric and the symmetric mirror pairings
were compared with natural point-for-point pairings of the two eyes by paired t-test.

Results: Mean unilateral Matrix threshold across the entire 30-degree visual field were
17.0 dB left and 18.4 dB right (average 17.7). The better of the naturally paired
concomitant loci yielded binocular equivalent mean bilateral Matrix threshold of 20.9
dB, 1.6 dB higher than the population mean of the 690,000 coisopteric pairings (t ¼
�10.4; P , 10�12). Thus, a remarkable natural tendency for conservation of the
binocular Matrix visual field was confirmed, far stronger than explicable by random
chance. Symmetric pairings of precise mirror-image loci also produced values higher
than random co-isopteric pairings (D 1.1 dB; t ¼ �4.0; P ¼ 0.0004).

Conclusions: Refined data analysis of paired Matrix visual fields confirms the
existence of a natural optimization of binocular visual function in severe bilateral
glaucoma via interlocking fields that could only be created by CNS involvement. The
disparity of paired Matrix threshold values at mirror-image loci was also highly
nonrandom and quantitatively inverse from the expected if anatomic symmetry
factors were merely passively contributing systematically to the compensatory
binocular Matrix effect.

Translational Relevance: The paired eyes and brain are reaffirmed to function as a
unified system in the progressive age-related neurodegenerative condition chronic
open angle glaucoma, maximizing the binocular visual field. Given the extensive
homology of this disorder with other age-related neurodegenerations, it is reasonable
to assume that the brain will similarly resist simultaneous bilateral loss of paired
functional zones in both hemispheres in diseases like Alzheimer’s and Parkinson’s
disease. Glaucomatous eyes at all stages of the disease appear to provide a highly
accessible paired-organ study model for developing therapeutics to optimize
conservation of function in neurodegenerative disorders.
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Introduction

In chronic glaucoma diffuse damage occurs in about
55% of fields.1 This may be attributable to global
mechanisms like oxidative damage.2,3 About 34% of
glaucomatous fields display nasal steps, and 57%
arcuate scotomas.1 These are primarily the result of
damage around the margin of the optic disc. We have
recently reported that the fields obtained in late stage
glaucoma appear to be strongly determined by a
centrally driven binocular process.4 The process ap-
pears to maintain binocular patency of late stage fields.

Other studies support the possibility that glau-
comatous neurodegeneration may be partially under
central nervous system (CNS) control. Studies of the
DBA/2 mouse model of glaucoma report dieback of
retinal ganglion cell (RGC) axons from the superior
colliculus (SC),5,6 following reduction in axoplasmic
transport. Evidence of dieback from the lateral
geniculate nucleus (LGN) is less clear in primate
experimental glaucoma, but both LGN and striate
cortical cell death7,8 and shrinkage7,9 have been
reported. Excellent reviews of the dieback mecha-
nisms have been published.10,11 Both the SC and
cortex show binocular interaction and so both provide
potential substrates for mechanisms that govern
binocular visual field (VF) patency in late glaucoma.
Although there might be an active process trying to
maintain binocular patency in late stage disease, it is
also possible that there is some form of passive
winner-take-all competition for resources between
dichoptic afferents leading to one eye dominating
within a patch of the CNS, and so too, a patch of the
VFs. Interestingly if the striate cortex is also involved,
then this brings in the prospect that the range of
interactions of the (active or passive) process might be
expected to minimally involve a left (L) and right (R)
eye dominance columns, or perhaps a LRL or RLR
sandwich of adjacent columns. Figure 1 shows the
projection of human ocular dominance columns into
visual space.12 The width of patches seen by LRL/
RLR sandwiches is about the smallest size of field
regions showing binocular patency.4 Note that from
about 10 degrees eccentricity and beyond the columns
tend to extend along arcs of polar angle; thus
binocular cortical influences could also contribute to
arcuate scotomas characteristic of chronic glaucoma.

The issue then arises: is the striate cortex involved
or is everything determined in the SC as in mice? Our
previous study used fields of 47 late stage glaucoma
patients measured using standard automated perim-

etry (SAP). Here we have reproduced that study but
used the Matrix perimeter, which employs spatial
frequency doubling (FD) stimuli. These stimuli have
very low spatial frequencies. This brings in another
aspect of cortical processing, binocular symmetry.
Binocular symmetry is sensed within a part of the
central VF that grows much larger as the spatial
frequency content of the stimuli gets lower.13,14 There
is an anatomical substrate for this in the form of
trans-collosal reciprocal connections between the
parts of V2 representing the central VF.15 Thus, if
the cortex were involved, one might expect something
different in terms of the binocular interactions within
the central VFs when low spatial frequency stimuli are
employed, since the fates of cells sensitive to low
spatial frequencies might be different. Sensitivity to
binocular symmetry for small stimuli like those used
in SAP is only expressed in the central few degrees of
the field, and so would not be captured by SAP fields.
Thus we might expect some differences between our
earlier SAP results and those obtained with FD
stimuli.

This study mimics our previous study that used
SAP stimuli in a larger set of glaucoma patients with
predominantly severe disease, but the present FD
cohort includes individuals with mild and moderate
bilateral glaucoma as well. The first objective was to
evaluate whether binocular patency is again preserved.
The secondary objective was to identify potential
differences between SAP and Matrix fields that might
suggest the influence of the striate cortex rather than
the SC, particularly within the central field.

Methods

Institutional review board (IRB)/ethics committee
approval was obtained for this Health Insurance
Portability and Accountability Act (HIPAA)-compli-
ant cross-sectional study, which was fully adherent to
the tenets of the Declaration of Helsinki. All available
records for patients with bilateral chronic progressive
glaucoma in the IRB-sanctioned San Antonio, Texas,
glaucoma subspecialty clinic were assessed, and all
patients meeting the inclusion criteria are included in
this analysis. Inclusion criteria were: (1) perimetric
experience (two or more prior VFs) and reliability
(false-positive and false-negative rates both ,25%)
with comparable degrees of mild, moderate, or severe
VF loss in both eyes using Matrix (Carl Zeiss
Meditec; Dublin, CA) Frequency Doubling Technol-
ogy (FDT) perimetry. The FDT Matrix pattern
employs 69 (17 loci per quadrant and one central
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locus) 58 358 square targets across a 30-degree central
VF reversing sinusoidal contrast gratings of spatial
frequency of 0.5 cycles/degree at a counterphase
flicker temporal frequency of 18 Hz. These produce
the FD percept across the field.16 A Bayesian
threshold estimation strategy is applied to provide
thresholds with normal attenuation values numerical-
ly comparable to those attained using standard forms
of static perimetry.17 VF loss is typically seen at an
earlier clinical stage with Matrix than with more
traditional automated static perimetry that utilize
focal light stimuli flashed for 0.2 seconds in an
illuminated bowl (as used in our prior study).
Included in this study were all patients meeting
reliability criteria exhibiting comparable degrees of

VF loss in both eyes (using previously published full-
threshold scoring criteria; see below),18–20 (2) visual
acuity � 20/80 in both eyes, (3) with moderate to
severe excavatory optic neuropathy (cup/disc ratio
�0.5 in both eyes), and (4) bilaterally stable intraoc-
ular pressure in both eyes in the range 6 to 16 mmHg.

Briefly outlined, the study design is as follows:

1. Objective scoring of bilaterally reliable stable
glaucoma patient VFs into mild, moderate, and
severe Humphrey Visual Field Analyser (HVFA)
II VF chart data screening confirmed reliable for
paired eyes with bilateral defects within the same
grading category or within one step thereof;

2. Criteria met: Document bilateral VF data mean

Figure 1. Projection of human ocular dominance columns onto the VF. Top: The retinotopic map superimposed on the pattern of ocular
dominance columns for a right visual cortex. Bottom left: The projection of the column pattern onto the visual hemifield. Bottom right:
The central 16 degrees. Note that the amount of VF represented by the columns changes with eccentricity. Reproduced with permission
from Adams, Sincich, and Horton, 2007.12
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deviation (MD) and pattern standard deviation
(PSD) oculus uterque (both eyes; OU) and
calculate maximal concomitant threshold values
OU;

3. Perform refined data analysis with 10,000 itera-
tions of optionally equivalent bilateral co-isopteric
outcomes for each subject;

4. Perform bilateral absolute symmetry analysis for
each of the 69 points on the FDT analyses OU;
and

5. Calculate the paired t-test P values for all
comparisons (i.e., mean right and left eye versus
computed and actual bilateral binocular VF
values).

Details of each step are described further below.
A majority of participants had both FDT and

Humphrey VFA II VFs, and when both were
available glaucoma severity was defined using the
latter. In those with only FDT fields an adapted
version of a previously published algorithm19 intend-
ed to produce concordance between HVFA II and
Matrix FDT pathologic categories was applied.
Severe VF loss was defined as Humphrey MD worse
than �12 dB, and/or 37 or more points depressed at
or below 5%, and or 20 or more below 1%, and/or a
glaucomatous scotoma with one or more pericentral
loci at 0 dB or two such loci at or below 15 dB.
Moderate VF loss was defined as having a MD
between �12 and �6 dB, and/or 18 to 36 points
depressed at or below 5%, and/or 10 to 19 points
depressed at or below 1%, and no points in the central
5 degrees at 0 dB, and no pericentral hemifield pairs
at or below 15 dB. Mild VF loss was defined as having
MD .�6 dB and between 7 and 17 points depressed
below 5%, and 10 or fewer points depressed at or
below 1%, and no points in the central 5 degrees at 0
dB, and no hemifield pairs in the central 5 degrees at
or below 15 dB.

All eyes were tested with best refractive lens
correction in place during a single perimetric session.
All patients with evidence of ptosis underwent
perimetric testing with the upper lid taped to the
brow to avoid lid artifact. Prior work demonstrated
the predictability of the binocular VF via pairing of
directly corresponding (concomitant) loci of the
individual right and left eye VFs.21 For the present
statistical analysis, to assess the randomness of the
contribution of each eye to binocular visual function,
each left eye Matrix 30-2 VF locus was paired with (a)
its actual corresponding (concomitant) right eye
locus, or (b) multiple random co-isopteric right eye

loci having equal eccentricity from fixation (Fig. 2).
This was performed in a sequential manner choosing
one random co-isopteric left eye locus for each right
eye locus until all 69 were paired, repeating this
process 10,000 times for all 41 paired VFs. The per-
locus maximum light-sensitivity threshold values for
all 69 loci within the central 30 degrees for all subjects
were then generated, for measured contralateral
concomitant pairings and for physiologically bal-
anced alternative pairings, using combinations a and
b, above. As an additional exercise to estimate the
optimal field pairing that could be obtained from the
two eyes, the maximum field mean of all 10,000
randomized binocular fields was also determined for
each of the 41 subjects. Mean and maximum light
attenuation threshold results were then compiled for
each subject to provide means of each for all 41
subjects. The results for each patient were fitted with
an extreme value probability density function. Com-
posite means for the study population were then
compared by paired t-test.4

Additional comparisons were made pairing each
left eye VF locus with its horizontal mirror-image
locus from the right eye (v) to determine the potential
contribution of anatomic symmetry. To identify the
extent of any such passive anatomic compensation,
probability distribution comparisons were performed
to determine to what extent passive bilateral symme-
try might account for any observed optimization of
binocular visual function. Heat maps of the higher
paired threshold value projected binocular VF were
created for all subjects for combinations a, b, and v,
to compare with one another and with their associ-
ated individual right and left eye 3-D projections. All
computations were carried out using MATLAB
version 7.13 (The Mathworks, Inc.; Natick, MA) in
the University of Texas at San Antonio Department
of Biomedical Engineering. It should be emphasized
that all probability values presented are the result of
comparisons of the final refined data compilations of
each of the 41 individuals in the study, and there is no
statistical retreatment of any nonindependent vari-
ables in this analysis.

An additional analysis was applied to the central
VF to identify cortical effects in preserving the central
binocular field. Loci located within a central,
vertically oriented ellipse with major radius 158 and
minor radius 108 from fixation were compared using
the same tests for randomization and mirror-like
anatomical symmetry as above. This analysis was also
repeated for points outside this central ellipse.
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Results

This study evaluated all 41 adult patients meeting
the inclusion criteria. Their mean age was 68 6 2
[SEM] years. Thirty were female, and 11 were male.
Their mean cup/disc ratio values were 0.72 6 0.03 in
the right eye and 0.73 6 0.03 in the left. Their mean
FDT Matrix 30-2 MD and PSD values were �11.16
and 5.79, respectively, for left eyes and�10.89 and 6.2
for right eyes (see Table 1). The age, gender, and all
right and left eye MD and PSD values for the 41
subjects are provided in Table 2. Twelve subjects had
severe VF loss in both eyes, seven had moderate loss

in both eyes, seven had mild loss in both eyes, eight
had severe loss in one eye and moderate loss in the
other, and six had moderate loss in one eye and mild
loss in the other. Many patients had undergone
successful glaucoma surgery in either or both eyes to
stabilize intraocular pressure bilaterally.22

The mean intraocular pressure among participants
in the present study was 14.98 6 0.9 mm Hg in the
right eye and 13.95 6 0.8 mm Hg in the left. Only
17% of subjects were receiving any topical ocular
hypotensive therapy in either eye with the clinical
intent of enhancing intraocular pressure (IOP) reduc-
tion. No oral ocular hypotensive agent was in use by

Table 1. Mean Right and Left Eye FDT 30-2 MD and PSD Global Index Values (MD and PSD from the Perimetry
Printouts) With Associated SEs for All Right and Left Eyes of Consecutive Patients With Clinically Stabilized
Bilateral Moderate to Severe VF Loss (n¼ 41)

Full Data Set Right Eye Left Eye

(n ¼ 41) Mean of FDT MD values (SEM) �10.89 (0.8) �11.16 (0.84)
Mean FDT PSD value (SEM) 6.2 (0.28) 5.24 (0.24)

Figure 2. Specimen VF pairs and analytical algorithm. Gray scale (above) and pairing algorithm (below) representations of FDT 30-2 VF
plots. The four gray-scale VF plots show the paired right and left eye VFs of 4 of the 41 study subjects with clinically stable bilaterally
advanced chronic glaucoma. Note the complementarity of the patterns of the focal areas of visual loss and visual conservation between
the paired eyes, providing compensation when both eyes are used together to view the binocular VF. The pairing algorithm used
matched each of the 69 loci in the left VF (lower left) with (a) the corresponding locus of the right VF (red), (b) any one randomly selected
point from among those equidistant from central fixation (teal), and (v) the precise mirror-image locus (orange).

TVST j 2015 j Vol. 4 j No. 3 j Article 75

Reilly et al.



any subject. Twelve percent of subjects were only

prescribed topical carbonic anhydrase inhibitor (CAI)

eye drops with the intent of augmenting ocular

vascular perfusion.23 Twenty-seven percent of the

subjects were receiving a combination of topical CAI

with a topical ocular hypotensive agent.

Figure 2 shows examples of paired VFs with

inverse tendency for focal field loss. Note the

Table 2. Age, Gender, and Right and Left Eye MD and PSD Values for the 41 Subjects, Confirming the Bilateral
Severity of the FDT 30-2 VF Loss Among the Study Population

Age Sex Right Eye MD Right Eye PSD Left Eye MD Left Eye PSD

1 19 Female �8.74 4.88 �8.63 6.28
2 36 Female �16.6 5.89 �20.03 4.88
3 43 Female �5.01 3.59 �3.26 3.46
4 50 Female �4.04 4.69 �5.58 5.38
5 58 Male �11.35 6.36 �15.92 5.92
6 59 Female �5.53 4.72 �8.24 4.51
7 59 Female �4.47 4.04 �7.04 3.6
8 60 Female �8.22 6.02 �6.38 5.74
9 60 Male �13.87 8.85 �16.79 7.38
10 62 Female �12.94 6.14 �7.3 4.73
11 62 Female �16.86 5.35 �13.44 6
12 64 Male �4.99 5.73 �8.5 6.52
13 67 Male �3.36 4.55 �8.68 6.4
14 67 Male �9.12 5.29 �11.29 7.45
15 68 Female �6.17 6.31 �7.7 7.21
16 68 Female �18.18 10.27 �15.28 7.02
17 69 Female �9.39 5.28 �10.14 5.19
18 69 Male �11.27 4.41 �15.78 4.62
19 70 Female �10.9 7 �14.79 8.63
20 71 Female �3.03 3.79 �8.96 5.09
21 71 Female �14.08 6.91 �12.5 7.8
22 71 Female �17.93 8.07 �16.21 7
23 72 Female �6.15 3.5 �3.09 3.73
24 72 Male �20.41 5.08 �19.91 5.85
25 72 Female �12.79 8.35 �21.21 6.76
26 73 Male �19.45 8.93 �21.24 7.48
27 73 Female �9.55 6.22 �4.87 4.11
28 75 Female �2.12 3.58 �3.22 4.25
29 75 Female �20.18 7.86 �9.76 7.41
30 78 Female �14.04 10.91 �9.39 8.22
31 79 Female �8.7 8.8 �13.39 6.07
32 79 Female �18.49 7.82 �22.26 4.32
33 79 Female �9.33 7.32 �11.61 9.75
34 79 Male �18.12 5.42 �17.85 4.97
35 81 Female �6.6 7.75 �7.57 5.34
36 83 Female �10.42 6.34 �9.9 6.91
37 84 Male �10.44 5.74 �7.6 4.38
38 84 Male �8.04 5.58 �11.64 4.79
39 85 Female �11.39 7.08 �4.17 4.19
40 89 Female �10.78 5.21 �5.31 2.97
41 93 Female �13.27 4.55 �11.01 4.97
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alternating positive and negative complementarity
between the right and left VFs results in a much more
normal binocular field than would be predicted by
chance. Other individuals in the study had significant
loss in the same quadrant or hemifield in both eyes,
making bilateral compensatory effects far less obvious
on cursory inspection of the fields; however, in all but
one subject the natural pairing used to estimate the
binocular field was better than could be explained by
a random ordering of concomitant loci. All patients
were included in the statistical analysis.

Figure 3 provides a 3-D projection heat map set
for one specimen VF pair with results obtained by the
actual natural focal pairings of all 69 FDT Matrix VF
loci (a) and the mean of 10,000 randomized isopteri-
cally equivalent pairings using the same left eye VF
data (b). The physiologically balanced pairings would
render an improved but still severely defective
binocular VF, while the natural pairings yielding an
approximately normal binocular field.

Statistical analysis reaffirms the general strength of

this tendency in the entire study population. Figure 4

and Table 3 illustrate and summarize the statistical

findings from the full study group (n ¼ 41; 82 eyes).

Among these eyes, the mean threshold value across the

entire VF (69 loci) was 17.0 dB for left eyes and 18.4

dB for right eyes (average 17.7), 4 dB lower than the

binocular field formed by pairing concomitant loci (a)
at 20.9 dB (P , 10�12). This mean threshold value (a)
for concomitant direct pairings was significantly higher

than could be explained by randomization of co-

isopterically equivalent loci (b), which yielded 19.5 dB

(P , 10�9). The natural bilateral overlay pairings (a)
provided function levels within 0.4 dB of the mean of

the very highest of the 41 individual results among the

690,000 randomized pairings used to calculate b values.

Thus, the binocular Matrix VF was conserved much

better than could be explained by random chance.

Mirrored symmetric pairings of contralateral concom-

Figure 3. Example of pairing algorithm outcomes and associated 3-D heat maps. Left and right FDT 30-2 VF pair for one subject (gray-
scale 2-D, above) and associated set of heat maps (colored 3-D, below). Note that the lower left composite applying the better of each of
the 69 loci (a) arising naturally for the two eyes has a much less pathologic binocular VF loss than the composite derived from
isopterically equivalent randomly selected points (b) at the lower right. The probability that the mean logarithmic global light sensitivity
threshold was the same for pairings (a) and (b) among all 41 subjects was , 10�9. The mean global threshold for (a) was 20.9 and for (b)
19.5 decibels.
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Figure 4. Mean thresholds for monocular and paired VF outcomes. Histogram showing global mean FDT Matrix threshold values (n¼
41) with associated SEMs for left (a) and right eye (b) FDT 30-2 VFs, and for both eyes overlying the higher of the 69 concomitant right
and left eye using: (c) the pairings of each left eye locus with any alternate randomly selected co-isopteric right eye values (repeated for
all 69 loci 3 10,000 iterations for each of the 41 eyes), (d) for each left eye locus with its precise mirror-image symmetric locus, and (e) the
natural concomitant right and left eye pairings. The actual observed fields provide the highest conjoint sensitivity.

Table 3. Comparative Mean Threshold Differences and Associated Paired t-Test P Values for Consecutive
Patients, Comparing Mean Threshold Compilations From Right and Left Eye FDT 30-2 Full Threshold VFs (N¼41)

Randomized
Bilateral Mean

Threshold (P Value)

Mirrored Bilateral
Threshold
(P Value)

Overlayed
Bilateral Mean

Threshold (P Value)

Best of 10,000
Random Pairings

(P Value)

Left eye mean
threshold �7.46 dB* (,10�8) �9.96 dB* (,10�11) �10.68 dB* (,10�12) �9.33 dB* (,10�10)

Right eye mean
threshold �2.84 dB* (0.007) �6.96 dB* (,10�7) �7.96 dB* (,10�9) �4.91 dB* (,10�4)

Randomized bilateral
mean threshold �6.62 dB* (,10�7) �8.58 dB* (,10�9) �11.88 dB* (,10�13)

Mirrored bilateral
threshold �3.91 dB* (0.0003) 0.77 dB (0.446)

Overlayed bilateral
mean threshold 2.9 dB* (0.006)

* Indicates significant values P , 0.05.
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itant loci also produced values higher than random co-
isopteric pairings (D 1 dB; t¼�6.6; P , 10�7).

Evaluation of the central loci within a vertically
oriented ellipse indicated the strong influence of
symmetry: the mirrored fields were on average 1 dB
better than could be expected by chance (P , 0.0001).
The true field was only better than this mirrored field
by 0.3 dB (P ¼ 0.009). These findings were very
different from the same comparison performed on loci
falling outside this ellipse: the binocular field found
using the mirrored left eye was not significantly better
than could be expected by chance (P¼ 0.08), but the
true binocular field was 0.6 dB better than the
mirrored binocular field (P , 0.0001). This finding
indicates that some symmetric process may play a role
in preserving the central portion of the binocular
field, but that it is not active in the peripheral field.

If there were a simple anatomic ocular symmetry
compensation, the mirror-image pairings would
actually be expected to be significantly worse than
random, quantitatively opposite to the highly signif-
icant positive transcortical relationship we observed.
This appears to reflect the þ/� concentric intra-
hemispheric and trans-hemispheric complementarity
that exist for right and left eye spatial projections to
the striate cortex (see Figure 1).

Discussion

Analysis of these Matrix fields confirms our
previous finding of a strong tendency to conserve
the binocular field in late-stage glaucoma.4 This
conservation cannot be explained by chance or
symmetry, thereby apparently implicating a symme-
try-breaking process by which contralateral fields are
found to be complementary.

Some data suggest interaction between the cortex
and SC in governing binocular vision in primates24,25

and humans.26,27 Dieback appears early on in the
SC5,6 and interconnectivity between SCs may coordi-
nate patency of the binocular VF across the vertical
meridian.28,29

The thalamic lateral geniculate is a bilateral
structure that includes six layers: layers 2, 3, and 5
receive information from the ipsilateral eye while
layers 1, 4, and 6 from the contralateral eye. Close
proximity of bilaterally derived information in this
structure makes it a likely candidate for coordinating
VF preservation. Locations in adjacent layers corre-
spond to visually concomitant areas of each retina. It
has been shown that when there is damage to one
optic nerve, compensatorily higher light sensitivity is

developed to adjacent layer input in the lateral
geniculate from the fellow eye.30 Focal axonal injury
in one eye appears to be accompanied by increased
activity in the contralateral retinal glia and geniculate
layers receiving concomitant visual information from
the fellow noninjured eye.30–32 One factor could be
that adjacent geniculate layers share the same
vascular supply, so loss of axons from one eye may
be accompanied by increased availability of nutrients
to, and more rapid clearance of catabolites from, the
immediately adjacent contralateral eye synapses.
Focally coordinated bilateral compensation of this
kind may play a role in the conservation of the
binocular VF in patients with chronic progressive
glaucoma. Whether some neuroprotective or neuro-
plastic regenerative feature is involved remains to be
determined. Identification of regulatory mechanisms
might suggest new treatment options.

The finding of the opposite symmetry in the central
field may be a side effect of trans-collosal connections
that reinforce bilateral symmetry.15 The portion of the
field involved in computation of bilateral symmetry
grows in inverse proportion to the stimuli used.13,14

This different wiring of the central field for low spatial
frequency stimuli might mean different fates in
glaucoma for cells sensitive to low spatial frequencies.
We did not observe this reversed jigsaw effect
centrally in SAP fields.4 However, the very small
(high spatial frequency) SAP stimuli would not be
expected to stimulate symmetry pathways outside the
central 6 degrees. Tests with 10-2 test patterns, or
smaller, might reveal a similar reverse-jigsaw effect
centrally. In any case, the possibility of connectivity
between V2 regions determining the fate of glau-
comatous VFs perhaps boosts the case for more
cortical involvement than SC in primate glaucoma.

The size of complementary scotomata may be
related to the width of the ocular dominance column
projected into visual space (Fig. 1). This may limit
binocular interaction for any mechanism based on
cortical plasticity.

It is important to re-emphasize that many inves-
tigations on apparent anterograde CNS associations
with optic neuropathy33–42 preceded the landmark
Vanderbilt laboratory studies showing the progres-
sion of chronic glaucoma proceeds in a retrograde
fashion from brain to eye.5 We previously demon-
strated a tendency of late-stage glaucoma patients’
paired fields to maintain binocular complementarity
at a level far exceeding what might be explained by
chance.4 The present study comprises additional
clinical evidence of brain involvement in coordinating
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binocular ganglion cell function and viability to
maximize the binocular VF in patients with advanced
chronic glaucoma.

As mentioned in our previous article, this data may
offer new insights into Alzheimer’s disease, which,
like chronic glaucoma, is an age-related neurodegen-
erative disorder.43–46 Both are progressive diseases
involving symmetric bilateral structures within which
neurodegeneration proceeds in an asymmetric fash-
ion. It therefore seems possible that analogous
symmetry-breaking conservation mechanisms may
be involved. Paired eyes provide an ideal, statistically
powerful system for the evaluation of placebo-
controlled, intrasubject CNS studies without regard
for the confounding effects of intersubject variabili-
ty.47 Perhaps the additional information yielded in the
present study demonstrating the unexpected converse
compensatory effects associated with spatial symme-
try within the VF may further assist in the elucidation
of the brain’s integrated involvement in progressive
age-related neurodegenerations.

Our prior work with SAP in patients with
advanced glaucoma did not address the possibility
that CNS control might be in play in patients with
milder disease. The present study incorporates a high
proportion of eyes with mild and moderate VF loss,
and reaffirms that the jigsaw effect takes hold early on
in chronic glaucoma. Detection of such bilateral
compensation at a subclinical stage might facilitate
the early characterization and timely treatment of
chronic glaucoma before more severe permanent
neuronal damage can occur.

Our prior SAP study included simultaneous
bilateral testing of both eyes of an arbitrary subset
of patients, confirming that the higher of the two
attenuation threshold values for each paired locus in
the individual right and left Humphrey 30-2 VFs was
indeed the value obtained in the binocular field. The
FDT Matrix device is not designed in a manner that
would allow for simultaneous testing of both eyes.
However, a more advanced device that would readily
allow for such testing is in development, and extensive
testing on prototypes has been published.48,49 Once
available, such testing methods may help better define
actual functional visual disability and more accurately
reflect the functional efficacy of current ocular and
future CNS-oriented therapeutic approaches, even in
patients with relatively mild disease.
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