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Abstract
This article develops the decomposition of the dynamic Luenberger productivity growth indi-

cator into dynamic technical change, dynamic technical inefficiency change and dynamic

scale inefficiency change in the dynamic directional distance function context using Data

Envelopment Analysis. These results are used to investigate for the Spanish food process-

ing industry the extent to which dynamic productivity growth and its components are affect-

ed by the introduction of the General Food Law in 2002 (Regulation (EC) No 178/2002).

The empirical application uses panel data of Spanish meat, dairy, and oils and fats indus-

tries over the period 1996-2011. The results suggest that in the oils and fats industry the im-

pact of food regulation on dynamic productivity growth is negative initially and then positive

over the long run. In contrast, the opposite pattern is observed for the meat and dairy pro-

cessing industries. The results further imply that firms in the meat processing and oils and

fats industries face similar impacts of food safety regulation on dynamic technical change,

dynamic inefficiency change and dynamic scale inefficiency change.

Introduction
In the past decade a series of food crises such as Bovine spongiform encephalopathy, Dioxin
and foot-and-mouth disease challenged the suitability of current food industry safety schemes.
In response, the European Union (EU) regulation coined the General Food Law (Regulation
(EC) No 178/2002) was announced in January 2002, whose overall intent was to ensure food
quality and safety for food stuff intended for human and animal consumption with the aims to
protect a) consumers against fraudulent or deceptive commercial practices and b) the health
and well-being of animals, plants and the environment [1]. The responsibility for implement-
ing the General Food Law falls on the food operators and activities at the Member State level.
Food operators bear responsibility for ensuring traceability of products at all stages of food
production, processing and distribution and are required to remove harmful food stuffs
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immediately and inform authorities. Each Member State manages the liaison activities for the
Rapid Alert System, Crisis Management Plan and liaison with the European Food Safety
Authority.

With the regulation placing the main responsibility to food business operators in imple-
menting food law requirements, changes in processes and/or equipment are needed to meet
the regulatory requirements. These changes can necessitate increase in the cost of production
and investment in new equipment. The economic performance of the European food manufac-
turers can be seriously altered in terms of the resulting productivity changes and extracting the
maximum potential (i.e., the efficiency of production) of new processes and technologies now
put into place.

Over the past decade, the performance of Spanish food manufacturing sector was chal-
lenged by the introduction of aforementioned EU regulation. Coping with this more stringent
regulatory climate, Spanish food manufacturing firms had to undertake additional investments
and deal with more administrative compliance [2], [3]. The implementation of this regulation
is associated with increasing production costs, which can reduce the productivity of the food
industry. With productivity growth often viewed as a longer term measure of economic perfor-
mance, the substantial regulatory changes over the first decade of 2000 bring into question the
appropriateness of using a long-run equilibrium framework to measuring performance.

The food industry is an important sector for the Spanish economy as it represents 16% of
the net sales of industry, 17% of industrial employment and 8% of Spanish GDP in 2010. Its
importance is further emphasized by the fact that it is one of the main exporting sectors of
Spain. Meat processing is the main subsector within the food industry as measured by annual
net turnover, followed by dairy products, and oils and fats products. The food industry in
Spain is characterized by a predominance of small- and medium-sized enterprises [3], [4],
which makes it vulnerable to external competition and potentially cost-increasing regulatory
policies. This exposure to external competition is expected to increase following the ongoing
globalization and the liberalization of food markets.

Research on the impact of regulation on productivity and productivity growth has a long
tradition in the economic literature. Much of the existing research within this line analyses en-
vironmental regulation and focuses on examining the Porter hypothesis which suggests that
environmental regulation may have a positive impact on firms’ performance as it can induce
innovation [5], [6]. The earliest empirical attempt to analyse the effect of environmental regu-
lations on productivity is [7] finding that abatement requirements impede the average capital
and labour productivity in the U.S. paper, chemicals and primary metals industries. Subsequent
studies at both the aggregate and industry levels find environmental regulations to be produc-
tivity reducing [8], productivity enhancing impacts of environmental regulation [9], [10], and
even providing evidence of the positive impact of firms’ exposure to competition in inducing
the productivity gains [11]. For the food manufacturing industry, [12] finds that the productiv-
ity of the Mexican food processing industry was increasing with the pressure of regulation, and
the study of [13] confirms the productivity decline and technical regress in French food pro-
cessing industry following this EU regulation. The literature on assessing the impact of regula-
tion on productivity growth to date has focused on static measures of productivity. The
shortcoming of the static approach is that it does not account for the disequilibrium of capital
factors and may not appropriately reflect productivity growth and its components when sub-
stantial investments are undertaken.

The objective of this article is to assess the impact of the introduction of the General Food
Law (Regulation (EC) No 178/2002) in 2002 on dynamic productivity growth and its compo-
nents in the Spanish meat, dairy, and oils and fats industries. This article contributes to the lit-
erature by using a dynamic production framework to analyse the effects of regulation using the
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dynamic Luenberger productivity indicator [14]. The second contribution of this article is de-
veloping a decomposition of the dynamic Luenberger into the contributions of dynamic tech-
nical inefficiency change, dynamic scale inefficiency change and dynamic technical change in
the nonparametric framework and assessing the impact of regulation to these components.
When accounting for dynamic productivity growth at the firm level, the adaptation to the regu-
lation can be elicited through the impact of various components of productivity growth. Regu-
lation adopted today will affect firms’ productivity and its components into the future. This
study measures the impact of regulation on dynamic productivity growth, dynamic technical
change, dynamic technical inefficiency change and dynamic scale inefficiency change in each
year following the introduction of the regulation. For this purpose, we apply the OLS bootstrap
regression.

The next section develops the measures of dynamic productivity growth and its decomposi-
tion and then briefly presents the method to analyse the impact of regulation. This is followed
by a description of the data of Spanish meat processing, dairy processing and oils and fats
firms. The section to follow presents the results of dynamic productivity and its decomposition
and the findings on the impact of regulation. The final section offers concluding comments.

Methods

The Luenberger Indicator of Dynamic Productivity Growth
The setting for a dynamic production decision making framework involves current decisions
can impact future production possibilities. The dynamic framework of productivity growth is
based on the production technology that relates at time t the vectors of variable inputs, xt, gross
investments, It (which is the change in quasi fixed factors), and quasi-fixed factors, kt, to the
production of vector of output, yt. In a dynamic approach the source of the intertemporal link
of production decisions is adjustment costs connected with changes in the level of quasi-fixed
factors. The adjustment costs can be defined as transaction or reorganization costs that may be
either internally or externally driven [15], [16]. The theory of adjustment costs is developed in
[17], [18], [19].

The production input requirement set is defined by [20] as Vt(yt:kt) = {(xt,It) can produce
yt, given kt}, and it is assumed to have the following properties: Vt(yt:kt) is a closed and non-
empty set, has a lower bound, is positive monotonic in variable inputs xt, negative monotonic
in gross investments It, is a strictly convex set, output levels yt increase with quasi-fixed inputs
kt and are freely disposable. [20] demonstrate these properties can support the technology be
represented as a series of linearly inequality constraints. The property related to gross invest-
ments implies that there is a positive cost when investment in quasi-fixed inputs occurs; hence,
it explicitly incorporates the adjustment costs.

The construction of economic performance measures in a dynamic context is built on the
production technology that allows for adjustment costs. The Luenberger indicator of dynamic
productivity growth is based on the dynamic directional distance function, which is an exten-
sion of the static directional distance function [21]. Directional distance function is a version of
the Luenberger’s benefit function [22] from consumer theory that is applied in production the-
ory. The input-oriented dynamic directional distance function with directional vectors for in-

puts (gx) and investments (gI), ~Di
t ðyt;kt;xt; It;gx; gIÞ, measuring dynamic technical

inefficiency for each firm, is defined as follows:

~Di
t ðyt;kt;xt; It;gx;gIÞ ¼ maxfb 2 < : ðxt � bgx; It þ bgIÞ 2 Vtðyt : ktÞg;

gx 2 <N
þþ; gI 2 <F

þþ; ðgx;gIÞ 6¼ ð0N ; 0FÞ
ð1Þ
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if (xt – βgx,I+βgI) 2 Vt(yt:kt) for some β, ~Di
t ðyt;kt;xt; It;gx;gIÞ ¼ �1, otherwise. The sub-

script i refers to the index for inputs. This distance function measures the maximal translation
of (xt,It) in the direction defined by the vector (gx,gI), that keeps the translated input combina-
tion interior to the set Vt(yt:kt). Because βgx is subtracted from xt and βgI is added to It, the dy-
namic directional distance function is defined by simultaneously contracting variable inputs
and expanding gross investments. Silva and Oude Lansink (2013) proves that
~Di

t ðyt;kt;xt; It;gx;gIÞ � 0 fully characterizes the input requirement set, Vt(yt:kt), therefore it
is an alternative primal representation of the adjustment cost production technology. More de-
tails with regard to the dynamic directional distance function can be found in [23], [24], [25].

Extending the static Luenberger indicator of productivity growth defined by [21] to the dy-
namic setting assuming constant returns to scale (CRS) leads to the dynamic Luenberger pro-
ductivity change indicator:

Lð�Þ ¼ 1

2

½~Di
tþ1ðyt;kt;xt; It;gx;gIÞ � ~Di

tþ1ðytþ1;ktþ1;xtþ1; Itþ1;gx;gIÞ�
þ½~Di

t ðyt;kt;xt; It; gx;gIÞ � ~Di
t ðytþ1;ktþ1;xtþ1; Itþ1;gx; gIÞ�

)
ð2Þ

(

This indicator provides the arithmetic average of productivity change measured by the tech-
nology at time t+1 (i.e., the first two terms in (2)) and the productivity change measured by the
technology at time t (i.e., the last two terms in (2)). The positive (negative) value of dynamic
Luenberger indicates growth (decline) in productivity between t and t+1.

[14] use the dynamic directional distance function to decompose the Luenberger indicator
of dynamic productivity growth into the contributions of dynamic technical inefficiency
change (ΔTEI) and dynamic technical change (ΔT):

Lð�Þ ¼ DTEI þ DT ð3Þ

In this article we summarize the decomposition. The Appendix (S1 Appendix) provides
more details on how to generate the Luenberger productivity measure and its decomposition.

Dynamic technical inefficiency change is defined as the difference between the value of the
dynamic directional distance function at time t and time t+1:

DTEI ¼ ~Di
t ðyt;kt;xt; It;gx;gIÞ � ~Di

tþ1ðytþ1;ktþ1;xtþ1; Itþ1;gx;gIÞ ð4Þ

Dynamic technical change is computed as the arithmetic average of the difference between
the technology (represented by the frontier) at time t and time t+1, evaluated using quantities
at time t and time t+1:

DT ¼ 1

2

½~Di
tþ1ðyt;kt;xt; It;gx;gIÞ � ~Di

t ðyt;kt;xt; It;gx; gIÞ�
þ½~Di

tþ1ðytþ1;ktþ1;xtþ1; Itþ1; gx; gIÞ � ~Di
t ðytþ1;ktþ1;xtþ1; Itþ1;gx;gIÞ�

)
ð5Þ

(

Building on [14], the dynamic Luenberger measure can be further decomposed to allow for
scale inefficiency change (ΔSEI) which requires relaxing the technology assumptions of con-
stant returns to scale to permit variable returns to scale (VRS).
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From a primal perspective, the dynamic technical inefficiency change component in Eq (3)
can be decomposed as follows:

DTEI ¼ DPEI þ DSEI

DPEI ¼ ~Di
t ðyt;kt;xt; It;gx;gI j VRSÞ � ~Di

tþ1ðytþ1;ktþ1;xtþ1; Itþ1; gx; gIj VRSÞ

DSEI ¼ ~Di
t ðyt;kt;xt; It;gx;gI j CRSÞ � ~Di

t ðyt;kt;xt; It;gx;gIj VRSÞ
�½~Di

tþ1ðytþ1;ktþ1;xtþ1; Itþ1;gx;gI j CRSÞ � ~Di
tþ1ðytþ1;ktþ1;xtþ1; Itþ1;gx;gIj VRSÞ�

ð6Þ

where ΔPEI is dynamic technical inefficiency change under variable returns to scale and ΔSEI
is dynamic scale inefficiency change. Dynamic scale inefficiency change measures the differ-
ence between period t and period t+1 regarding the comparison of the dynamic directional dis-
tance functions gauged relative to CRS technology with that relative to the VRS technology.
Summarizing, the final decomposition of dynamic Luenberger indicator of productivity growth
is obtained as follows:

Lð�Þ ¼ DT þ DPEI þ DSEI ð7Þ

The positive (negative) values of components of dynamic Luenberger indicate the positive
(negative) contributions of these components to dynamic productivity growth. For example, a
positive value of dynamic technical inefficiency change implies a positive contribution of dy-
namic technical inefficiency change to dynamic productivity growth i.e., inefficiency decreased
between t and t+1.

The empirical implementation of the dynamic directional distance functions which form
the dynamic Luenberger indicator and its components is done using the nonparametric meth-
od of Data Envelopment Analysis (DEA) [26], [27]. Building on the results in [20], the follow-
ing DEA model can be estimated to compute the dynamic directional distance function for
time t in CRS technology:

~Di
t ðyt;kt;xt; It;gx; gIjCRSÞ ¼ maxb;g b

s:t:

yt m �
XJ

j¼1

gjyj
t m; m ¼ 1; . . .;M;

XJ

j¼1

gjxj
t n � xt n � bgxn

; n ¼ 1; . . .;N;

It f þ bgIf
� dfkt f �

XJ

j¼1

gjðIjt f � dfk
j
t f Þ; f ¼ 1; . . .; F;

gj � 0; j ¼ 1; . . .; J:

ð8Þ

where γ is an intensity vector, and δ is the rate of capital depreciation which is specific to each
firm. The directional distance function in (8) is dynamic as it is a function of the change in the
capital stock rather than the actual level of the capital stock.

Note that the dynamic directional distance function for time t+1
~Di

tþ1ðytþ1;ktþ1;xtþ1; Itþ1; gx; gI jCRSÞ is obtained using the analogous linear program to (8).
The mixed period dynamic directional distance function which projects the quantities at time
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t+1 on the CRS technology at time t is given by:

~Di
t ðytþ1;ktþ1;xtþ1; Itþ1;gx;gI jCRSÞ ¼ maxb;g b

s:t:

yt m �
XJ

j¼1

gjyj
tþ1 m; m ¼ 1; . . .;M;

XJ

j¼1

gjxj
tþ1 n � xt n � bgxn

; n ¼ 1; . . .;N;

It f þ bgIf
� dfkt f �

XJ

j¼1

gjðIjtþ1 f � dfk
j
tþ1 f Þ; f ¼ 1; . . .; F;

gj � 0; j ¼ 1; . . .; J:

ð9Þ

The mixed period dynamic distance function ~Di
tþ1ðyt;kt;xt; It; gx; gI jCRSÞ, which projects

quantities in period t on the CRS technology in period t+1, is obtained analogously to (9). Fi-
nally, note that to estimate the dynamic directional distance functions for VRS technology, the

constraint
XJ

j¼1

gj ¼ 1 needs to be added to programs (8) and (9) and their variations.

The dynamic Luenberger indicator as compared to the static Luenberger indicator has the
advantage of accounting for dynamic linkages of production decisions over time and the pres-
ence of adjustment costs associated with investments in quasi-fixed factors of production. In
contrast to other productivity change measures such as the Malmquist index which are built on
the Shephard distance function, the Luenberger indicator is based on the directional distance
function which generalizes Shephard distance functions. Directional distance function is based
on the translation representation of the technology and thus Luenberger indicator is specified
in difference form, on the contrary to Shephard distance function that is based on the radial
technology (i.e., relative to the origin) and resulting Malmquist indexes being specified as ra-
tios. The Luenberger indicators offer the special case of being interpreted also as radial mea-
sures of technology, offering the flexibility in choosing the directional vector in which input
vectors are scaled. In addition, the ratio-based measures are very frequently not well defined in
the neighbourhood of origin (i.e., using zero observations) which the difference based measures
of Luenberger indicators overcome [28]. [29] present an analysis of the exact relations and spe-
cific conditions under which different productivity change measures are equal. Similar to al-
most all well-known productivity change measures, our dynamic Luenberger indicator suffers
from the problem of infeasibility of mixed period distance functions which might occur when
an observation from one period is beyond the production possibility set of the subsequent
time period.

Assessing the Impact of Regulation
Regulation may involve measures taking several years to be realized fully, and they may affect
firms’ productivity for several years afterwards. In our analysis, we account for this by using
dummy variables that capture the impact in each year after the implementation of the regula-
tion. A similar approach is applied in regulation impact studies found in [30], [11]. As we also
include two control variables of firms’ size and age, the estimated reduced form equation has
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the following form:

yit ¼ ai þ b0 � R0 þ b1 � R1 þ b2 � R2 þ b3 � R3 þ b4 � R4 þ b5 � R5 þ b6 � R6 þ b7 � R7þ
g1 � SIZEit þ g2 � AGEit þ εit

ð10Þ

where yit indicates the dynamic productivity growth (or its components) for a firm i in year t,
αi is a firm-specific constant, R0—R7 are dummy variables indicating the number of years
passed since the regulation was implemented; SIZEit and AGEit represent control factors of size
and age for firm i in year t; β0 – β7 and γ1 − γ2 are coefficients to be estimated; and εit is an
error term.

The equation is estimated using the OLS bootstrap regression with heteroskedasticity and
autocorrelation robust standard errors. The use of robust standard errors accounts for possible
problems with heteroskedasticity or clustered errors. The bootstrap approach is a method of es-
timating the distribution of the estimator through resampling. In the context of DEA efficiency
scores, it is used to address the well-known problem of serial correlation among DEA scores
[31]. Since efficiency scores are truncated, a truncated bootstrap regression approach is needed
there. However, productivity indicators are not truncated, so in our context the OLS bootstrap
regression is an appropriate approach. The current literature has already developed the boot-
strap approach for directional distance function [32]. However, a bootstrap approach for dy-
namic directional distance function which forms the basis of dynamic Luenberger productivity
indicators is non-existent in the literature. No bootstrap approach is available for static as well
as dynamic Luenberger indicators, which could account for possible time dependence structure
of the data as productivity change is measured between two time periods. Consequently, we do
not apply bootstrap in the first stage when estimating the dynamic Luenberger indicator.

The robust Hausmann-Wooldridge test [33], [34] is used to discriminate between the ran-
dom versus fixed effects models in the OLS bootstrap regression. The standard Hausman test
[35] cannot be used because we apply heteroskedasticity and autocorrelation robust standard
errors and bootstrap which violate the test’s requirements [36]. Eq (10) is estimated separately
for dynamic productivity growth and each of its components as well as for meat processing,
dairy processing and oils and fats firms.

Data
Firm-level data are obtained from the SABI database, managed by Bureau van Dijk, which con-
tains the financial accounts of Spanish firms classified according to the European industry clas-
sification system NACE. The study sample represents three activities of firms: meat processing
(NACE Rev. 2 code 10.1), dairy processing (NACE Rev. 2 code 10.5) and oils and fats (NACE
Rev. 2 code 10.4). Upon filtering out firms with missing observations and outliers, we are left
with an unbalanced panel of 17,364 observations of meat processing firms, 4,141 observations
of dairy processing firms and 3,250 observations of oils and fats firms for 1996–2011 period.
Outliers were determined using ratios of output to input. An observation was defined as an
outlier if the ratio of output over any of the three inputs was outside the interval of the median
plus and minus two standard deviations.

The first step of our empirical strategy involves estimating the dynamic Luenberger produc-
tivity indicator and its components separately for meat processing, dairy processing and oils
and fats firms. We consider one output, two variable inputs and one quasi-fixed input. Output
is defined as total sales plus the change in the value of the stock and is deflated using the indus-
trial price index for output in the meat processing industry, dairy processing industry and oils
and fats, respectively. The two variable inputs are material and labour costs, which are taken di-
rectly from the SABI database and are deflated using the industrial price index for consumer
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non-durables and labour cost index in manufacturing, respectively. Fixed assets are considered
a quasi-fixed input, measured as the beginning value of fixed assets from the balance sheet (i.e.,
the end value of the previous year) and are deflated using the industrial price index for capital
goods. The Spanish Statistical Office is the source of all price indices used to deflate output and
inputs. Gross investments in fixed assets in year t are computed as the beginning value of fixed
assets in year t+1minus the beginning value of fixed assets in year t plus the beginning value of
depreciation in year t+1. Table 1 reports the descriptive statistics of the input-output data used
in this study, for the whole period 1996/1997-2010/2011 and indicates that the dairy processing
firms and the oils and fats firms have an annual output that is, on average, more than twice the
turnover of the meat processing firms. The standard deviations relative to their respective
means are relatively high indicating that the firms in our sample differ considerably in size.
Also, firms in the oils and fats industry have relatively low labour costs.

The descriptive statistics of the variables used to analyse the relation between regulation and
dynamic productivity growth and its components are presented in Table 2.

Table 1. Descriptive Statistics of the Data of the Spanish Meat Processing, Dairy Processing and Oils and Fats Industries, 1996–2011 (1000 Euro
of 1995).

Variable Meat processing industry Dairy processing industry Oils and fats industry

Fixed assets 1972.842 (14727.150) 4965.781 (23071.320) 4625.102 (40507.550)

Labour cost 603.352 (2997.394) 1286.860 (6280.649) 507.044 (2371.052)

Material cost 4897.449 (21934.990) 9022.490 (37032.050) 10553.360 (57681.250)

Investments 352.716 (4229.906) 683.734 (4127.369) 783.314 (11912.980)

Output 6655.046 (30287.400) 14933.120 (69203.200) 13173.090 (69233.320)

Note: Standard deviations are in parentheses.

doi:10.1371/journal.pone.0128217.t001

Table 2. Descriptive Statistics of Data Used in the Regression, 1996–2011.

Variable Description Meat processing
industry

Dairy processing
industry

Oils and fats
industry

Regulation
age

Dummies representing time since the beginning of regulation
(since 2002)

R0 Dummy = 1 for year 2002 0.076 (0.264) 0.073 (0.260) 0.072 (0.259)

R1 Dummy = 1 for year 2003 0.080 (0.272) 0.081 (0.274) 0.082 (0.274)

R2 Dummy = 1 for year 2004 0.083 (0.276) 0.083 (0.277) 0.085 (0.279)

R3 Dummy = 1 for year 2005 0.085 (0.279) 0.086 (0.280) 0.087 (0.282)

R4 Dummy = 1 for year 2006 0.087 (0.282) 0.082 (0.275) 0.090 (0.286)

R5 Dummy = 1 for year 2007 0.080 (0.271) 0.083 (0.276) 0.079 (0.269)

R6 Dummy = 1 for year 2008 0.077 (0.267) 0.089 (0.284) 0.077 (0.267)

R7 Dummy = 1 for years 2009–2011 0.160 (0.366) 0.192 (0.394) 0.182 (0.386)

Size Dummies representing the firm’s size based on the number of
employees and operating revenues

Micro Dummy = 1 for micro firms 0.401 (0.490) 0.518 (0.500) 0.463 (0.499)

Small Dummy = 1 for small firms 0.449 (0.497) 0.317 (0.465) 0.389 (0.488)

Medium Dummy = 1 for medium firms 0.119 (0.323) 0.102 (0.303) 0.109 (0.312)

Large Dummy = 1 for large firms 0.031 (0.174) 0.064 (0.244) 0.039 (0.193)

Age Number of years since the firm’s establishment 16.025 (9.535) 15.531 (11.276) 18.818 (15.089)

Note: Standard deviations are in parentheses.

doi:10.1371/journal.pone.0128217.t002
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In the absence of data on firm’s investment related with the implementation of the General
Food Law, the impact of this regulation is captured through a set of variables (R0-R7) reflecting
regulation age, measuring the number of years elapsed since the occurrence of regulation; i.e.,
since the 2002. The regulation age dummies range from 0 to 7-or-greater years old, where regu-
lation age equal to 0 (dummy R0) takes the value 1 for the year 2002, while the dummy R7 takes
the value 1 if the regulation took place 7 or more years ago. Regulation age equal to 7-or-greater
years old serves as the reference category. The data in Table 2 indicate that the largest group of
observations is captured by the 7-or-greater regulation age category.

Age and Size are two control factors used in the regression. Size is approximated by a set of
dummy variables indicating four size categories of firms: micro, small, medium and large firms
that are distinguished based on the EU definition of size. The EU size definition is based on the
enterprises’ annual turnover and number of employees. In the regression, the category of large
firms is taken as a reference. The data in Table 2 indicates that the majority of firms in meat
processing, dairy processing and oils and fats firms represent the categories of micro and small
firms. Age is measured as the number of years since firms’ establishment to the date of observa-
tion. The data in Table 2 indicate that, on average, firms in the oils and fats industry are the
oldest, with the average firms’ age being nearly 19 years.

Results and Discussion
The dynamic Luenberger productivity indicator and its decomposition are determined for each
firm for a pair of consecutive years. The value of directional vector used in this article is (gx,gI) =
(x,δK), i.e. gx is the actual quantity of variable inputs and gI is the depreciated quantity of capital
(20% of capital stock).

As indicated before, the mixed period directional distance functions used to compute dy-
namic Luenberger indicator may yield infeasibilities. The most common method for the treat-
ment of infeasibilities in the context of static Luenberger, which can be adapted to the dynamic
context, is to exclude such observations in the computation of averages. We follow this strategy
in this article. The infeasibilities we encounter in our computations account for 2% of meat
processing industry observations, 5.6% for dairy processing industry observations and 10% for
oils and fats industry observations.

Dynamic Productivity Growth and its Decomposition
Table 3 presents the quartile specific and overall means of the dynamic Luenberger productivi-
ty indicator (ΔL) and its components of dynamic technical change (ΔT), dynamic technical in-
efficiency change (ΔPEI) and dynamic scale inefficiency change (ΔSEI) across industries. After
computing Luenberger productivity growth, the firms are ranked according to magnitudes of
their productivity growth and then they are grouped by quartiles ranging from the lowest (I) to
the highest (IV). Then for each quartile the mean productivity growth is calculated. Note that
the quartiles’means for dynamic technical change, technical inefficiency change and scale inef-
ficiency change are computed for Luenberger values of quartiles. The statistical test proposed
by [37] is applied to assess the differences in Luenberger indicators and their components,
which is based on the nonparametric test of the equality of two densities developed by [38].

The overall average dynamic Luenberger is very close to zero, from -0.3% per year for the
meat processing industry to 0% for the dairy processing industry and 0.7% for the oils and fats
industry. However, classifying firms based on their dynamic productivity change quartiles re-
veals considerable variation in dynamic productivity growth. For example, the meat processing
firms in the lowest quartile have an average growth of -8.9%, while the highest quartile firms
exhibit 8.0% dynamic productivity growth. The difference between the lowest and the highest
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quartiles show that dynamic Luenberger productivity growth is more dispersed across firms in
the oils and fats industry than in the other two industries. The average dynamic Luenberger
productivity indicators for the lowest and highest quartiles are approximately the same for the
meat and dairy products sector, while the oils and fats sector presents dynamic productivity in-
dictors for these same quartiles being approximately double those for meat and dairy products.
The overall mean dynamic Luenberger productivity growth is significantly different between
the sectors at the critical 5% level as shown by Li test results.

On average, the analysis of the components of dynamic productivity finds that dynamic tech-
nical change has a negative contribution to productivity growth, where dynamic technical ineffi-
ciency change and dynamic scale inefficiency change offer positive contributions. Technical
regress is particularly high in the meat processing sector (-3.6% per year) and lower in the dairy
processing (-1.1%) and oils and fats sector (-1.4%). Technical regress is also reported in other
studies on the food processing industry. For the period 1996–2006, [13] found technical regress
for the French cheese and poultry industry that can be attributed to the introduction of EU food
regulation. Also, [39] found a negative technical change for Indian food industry over the period
1988–2005. Overall dynamic technical inefficiency change is positive suggesting that firms in each
of the three sectors, on average use the existing production technology potential more efficiently
over time. Overall average dynamic scale inefficiency change is positive, which suggests that firms
have succeeded, on average, in moving the scale of the firm towards constant returns to scale.

A closer look at the distribution of the dynamic productivity growth components reveals a
more subtle story. All quartiles of dynamic Luenberger productivity change across all sectors,
on average, have a negative dynamic technical change contribution, which is the highest for the
lowest quartile. The lowest quartile for the meat processing industry and the bottom two quar-
tiles for both the dairy and oils and fats industries of dynamic Luenberger productivity change,

Table 3. Dynamic Luenberger Productivity Change and its Components by Industry and Quartile Group (Mean Values Reported).

Quartile group Meat processing industry Dairy processing industry Oils and fats industry

ΔL Lowest (I) -0.089 -0.110 -0.182

Lower middle (II) -0.014 -0.017 -0.033

Upper middle (III) 0.011 0.021 0.045

Highest (IV) 0.080 0.106 0.199

All -0.003a 0.000b 0.007c

ΔT Lowest (I) -0.042 -0.014 -0.021

Lower middle (II) -0.040 -0.009 -0.016

Upper middle (III) -0.030 -0.012 -0.010

Highest (IV) -0.029 -0.010 -0.010

All -0.036a -0.011b -0.014c

ΔPEI Lowest (I) -0.061 -0.086 -0.156

Lower middle (II) 0.010 -0.015 -0.009

Upper middle (III) 0.033 0.025 0.043

Highest (IV) 0.108 0.112 0.184

All 0.022a 0.009b 0.015c

ΔSEI Lowest (I) 0.014 -0.010 -0.005

Lower middle (II) 0.016 0.006 -0.008

Upper middle (III) 0.008 0.008 0.011

Highest (IV) 0.001 0.004 0.026

All 0.010a 0.002b 0.006c

Note: a,b,c denote significant differences between sectors at the critical 5% level.

doi:10.1371/journal.pone.0128217.t003
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on average, have a negative dynamic technical inefficiency change. Moreover, dynamic techni-
cal inefficiency change is widely dispersed across firms with dairy and oils and fats sectors pre-
senting strong positive growth for the upper 50% of the distribution, and meat processing
industry for the upper 75% of distribution. In particular, the oils and fats industry presents the
most extreme increases and decreases of dynamic technical inefficiency over time. All quartiles
of dynamic Luenberger productivity change have a positive dynamic scale inefficiency change
for meat processing industry, all quartiles except of the lowest for dairy processing industry,
and upper middle and the highest quartiles for oils and fats industry. Also, scale effect changes
present the tightest distribution of all the dynamic Luenberger productivity components.
Across all three industries, the positive dynamic productivity growth arises from the upper
50% of the distribution of dynamic technical inefficiency change and dynamic scale inefficiency
change. Overall, the best productivity performers present technical regress, a strong positive
technical inefficiency change, and a positive scale inefficiency change.

Identifying the Impact of Regulatory Regime
Table 4 presents the results of regression for the impact of the introduction of the General
Food Law in 2002 (Regulation (EC) No 178/2002) for dynamic Luenberger productivity indica-
tor and its components for meat processing, dairy processing and oils and fats industry. The re-
sults reported here are those of the fixed effects model for all cases supported by the robust
Hausman-Wooldridge test results.

Dynamic productivity growth in the meat processing industry and dairy processing industry
is only slightly affected by the introduction of the 2002 food regulation of the General Food
Law: only two and four of the regulation age dummies are significant in meat and dairy, respec-
tively. In the meat processing industry dynamic productivity growth is positively affected by
the regulation in the fourth year and this is followed by a small negative effect in the year there-
after. Therefore, the effects are observed in the longer run. Similarly, for dairy processing firms
the dynamic productivity growth first increases and then drops; however, it increases again in
the final year. In the oils and fats industry regulation has a more pronounced impact on dy-
namic productivity growth. The coefficients of regulation ages 0, 2 and 3 years are significant
and negative, while regulation ages that are 4 and 6 years old are significant and positive.
Therefore, the 2002 General Food Law first reduces dynamic productivity growth and then in-
creases dynamic productivity growth. These results for oils and fats industry are in line with
the findings of [11]. It should be noted though that previous studies were conducted in a static
context, so our results are not directly comparable.

Table 4 shows mixed evidence for each of the industries regarding the impact of regulation
on technical change. In the meat processing and oils and fats industry the sign of the impact of
regulation oscillates with the pattern observed as follows: dynamic technical change first de-
creases, then increases, then decreases again to increase in the final year. This result suggests
that the regulation initially had a negative impact on dynamic technical change in these indus-
tries. Technical regress may result from the food safety regulation by increasing production
costs, such as costs for additional hygiene measures and costs for implementing tracing sys-
tems, leading to organizational disruptions in implementing technologies. Such measures do
not directly increase output, but merely increase production costs. The reverse pattern is ob-
served for the dairy processing sector: dynamic technical change first increases, then trails off,
then increases again, trails off again to finally increase in the 6th year. Therefore, this result can
imply that the increased stringency of food regulation initially improves dynamic technical
change; i.e., spurs increased innovative activity by firms. Similar findings are reported in the
study of [30] suggesting that environmental regulation enhances innovation.
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Dynamic technical inefficiency change, in general, presents the reversed patterns compared
to dynamic technical change in each of the industries. For meat processing and oils and fats
firms, the contemporaneous impact of regulation (0 years old regulation) is positive, then dy-
namic technical inefficiency change decreases, then increases again, trails off again to finally in-
crease in the 6th year following the introduction of regulation (the final increase is not observed
for oils and fats industry). The initial increase in dynamic technical inefficiency change may
imply that the introduction of the food safety regulation may have induced meat processing
and oils and fats firms to use the existing production potential more efficiently, as they were
facing increasing production costs related to food safety measures. Hence, firms in these two
industries have reacted to the regulation in a similar way exhibiting initially technical regress
and firms dealing with economic stress from regulation to focus on improving technical effi-
ciency, on average. For the dairy processing firms, the coefficient signs of regulation age dum-
mies vary. However, only the negative coefficients are significant at the 1% critical level,
suggesting an overall negative impact. Therefore, dynamic technical inefficiency change de-
creased in the initial years following the introduction of regulation and also in the longer run.
In the actual year of implementation of the food regulation, the dairy processing industry is
characterised by technological advances (increase in dynamic technical change contribution)
along with a growth of the gap between efficient and inefficient firms (decrease in dynamic in-
efficiency change contribution). This may suggest that the initial decrease in dynamic technical
inefficiency change is due to the failure of dairy firms to catch up with the technological im-
provements made by some of their competitors.

Table 4 shows mixed results between industries with regard to the impact of regulation on
dynamic scale inefficiency change. The initial impact of regulation is negative for both meat
processing and oils and fats firms. This result suggests that right after the introduction of the
regulation firms had more difficulties in finding the optimal scale of operation. For oils and
fats firms, this negative effect is maintained with an exception of one year. This indicates that
the scale of operation has become less beneficial for the oils and fats industry even many years
after the regulation was introduced. For meat processing firms, the decrease in dynamic scale
inefficiency change recovers 3, 4 and 5 years post-food regulation introduction. On the other
hand, dynamic scale inefficiency change in the dairy processing industry is impacted positively
by regulation at first, suggesting that firms succeeded in moving to a firm scale consistent with
constant returns to scale. However, in the 3rd, 5th and 6th year the impact of dynamic scale inef-
ficiency change becomes negative in this industry.

As for the effects of control variables, the results in Table 4 show that in the dairy processing
industry, size is generally not important for dynamic productivity growth nor for any of its
components. An exception is a positive impact on dynamic productivity growth for small diary
processing firms. However, size does matter in the meat processing industry and the results
suggest that dynamic productivity growth, technical change and technical inefficiency change
decrease with size. The opposite impact is observed for dynamic scale inefficiency change
which is, ceteris paribus, higher on large firms. In the oils and fats industry, size proves to be
important for dynamic technical change. In contrast to the meat processing firms, larger oils
and fats firms exhibit a higher dynamic technical change, which may reflect that firms investing
in a new technology grow and survive over the long run. The results for Age suggest that older
meat processing firms, ceteris paribus, have higher dynamic technical change, and lower dy-
namic technical inefficiency change and dynamic scale inefficiency change. This result suggests
that technical change is positively affected by the learning effect through age and experience. In
the other two industries, dynamic technical change and technical inefficiency changes are nega-
tively and positively affected by firm age, respectively. Hence, the learning effect has opposite
impacts in the meat processing industry vis-a-vis the oils and fats, and dairy processing
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industries. However, in the oils and fats industry, scale inefficiency change decreases with age
which is in line with the findings for meat processing industry.

Conclusions
This article estimates dynamic Luenberger productivity growth of Spanish food processing firms
over the period 1996–2011 and decomposes this growth into the contributions of dynamic tech-
nical inefficiency change, dynamic scale inefficiency change and dynamic technical change using
Data Envelopment Analysis. A second stage econometric analysis applying the OLS regression
with bootstrap is used to identify the impact of the introduction of the General Food Law in 2002
(Regulation (EC) No 178/2002) on dynamic productivity growth and its components.

The results show that while the dynamic Luenberger productivity growth was overall close
to zero in the period 1996–2011, the components of productivity growth reveal the story. Dy-
namic technical change contributed negatively to productivity growth, on average, ranging be-
tween -1.1% for the dairy processing sector to -3.6% for the meat processing sector. Dynamic
technical inefficiency change and scale inefficiency change made positive contributions, sug-
gesting that firms used the production potential more efficiently and succeeded in moving clos-
er to a scale of operation that is associated with constant returns to scale. However, we find that
the distribution of the productivity growth components is quite broad. The highest quartile
performers of dynamic technical inefficiency change and scale inefficiency change contribute
positively. Dynamic technical change contributes negatively for all Luenberger quartile groups.

Firm level econometric estimates accounting for the long term impact of regulation confirm
that in the meat processing industry the impact of General Food Law regulation on dynamic
productivity growth is observed only in the longer run. However, the dairy processing and oils
and fats firms present both short-term and long-term impacts of the 2002 food regulation.
Overall, the results suggest that the impact of regulation on productivity growth could become
less damaging and even positive. The results also suggest that the food regulation hampers dy-
namic technical change and dynamic scale inefficiency change in the short-term for meat pro-
cessing and oils and fats firms. For dairy processing firms dynamic technical change and scale
inefficiency change are impacted positively.

An interesting avenue for future research is to explore in more detail the effect of the food
regulation on firms’ productivity. Our study uses time dummies to measure the impact of the
regulation being introduced. However, time dummy variables may also pick up other coinci-
dent events. Hence, to analyse the effect of regulation more precisely, it would be useful to have
data on the value of investments that were specifically undertaken by firms due to the regula-
tion. Such data are difficult to acquire in databases available currently.
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