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Abstract

It is well recognized that hypoxia-inducible factor 1 alpha (HIF-1a) is involved in cancer me-
tastasis, chemotherapy and poor prognosis. We previously found that deferoxamine, a hyp-
oxia-mimetic agent, induces epithelial-mesenchymal transition (EMT) in colorectal cancer.
Therefore, here we explored a new molecular mechanism for HIF-1a contributing to EMT
and cancer metastasis through binding to ZEB1. In this study, we showed that overexpres-
sion of HIF-1a with adenovirus infection promoted EMT, cell invasion and migration in vitro
and in vivo. On a molecular level, HIF-1a directly binding to the proximal promoter of ZEB1
via hypoxia response element (HRE) sites thus increasing the transactivity and expression
of ZEB1. In addition, inhibition of ZEB1 was able to abrogate the HIF-1a-induced EMT and
cell invasion. HIF-1a expression was highly correlated with the expression of ZEB1 in nor-
mal colorectal epithelium, primary and metastatic CRC tissues. Interestingly, both HIF-1a
and ZEB1 were positively associated with Vimentin, an important mesenchymal marker of
EMT, whereas negatively associated with E-cadherin expression. These findings suggest
that HIF-1a enhances EMT and cancer metastasis by binding to ZEB1 promoter in CRC.
HIF-1a and ZEB1 are both widely considered as tumor-initiating factors, but our results
demonstrate that ZEB1 is a direct downstream of HIF-1a, suggesting a novel molecular
mechanism for HIF-1a-inducing EMT and cancer metastasis.

Introduction

Epithelial-mesenchymal transition (EMT) is a crucial event in cancer metastasis, during which
polarized epithelial cells are inclined to obtain certain characters of mesenchymal cells, as well
as more migration and invasive properties [1]. The molecular hallmarkers during EMT include
down-regulated epithelial markers (e.g., E-cadherin, plakoglobin and desmoplakin), up-regu-
lated mesenchymal markers (e.g., Vimentin, N-cadherin and o-smooth muscle actin) and in-
creased expression of transcription factors such as Snail, Slug, Twist, zinc finger E-box binding
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homeobox 1 (ZEB1), ZEB2, and/or E47, which can bind to E-cadherin promoter and inhibit its
transcription activity and expression [2]. Notably, the loss or downregulation of E-cadherin is
considered to be the primary and most important step of EMT. E-cadherin can be silenced by
different mechanisms including aberrant methylation and transcriptional suppression. Among
them, its transcription regulation is widely studied in various of malignant tumors [3].

Hypoxia-inducible factor 1 alpha (HIF-1a:) has been reported to promote EMT in several
types of tumors through modulating one or more EMT-associated genes [4]. As a transcription
factor, HIF-1o regulates the activities of its downstream genes through binding the hypoxia re-
sponse element (HRE) in their promoter regions. For example, HIF-1o. is able to transactivate
matrix metallopeptidase 9 (MMP9) in breast cancer [5]. In hepatocellular carcinoma, it acti-
vates Snail thus repressing E-cadherin expression [6]. Moreover, HIF-1o competes with tran-
scription factor 4 (T'CF4) for direct binding to B-catenin thereby enhancing EMT in colorectal
cancer [7]. Hence, there exists a close link between EMT and HIF-1o expression in cancer with
the mechanisms unknown.

ZEBL is a crucial transcriptional factor of EMT [8-10]. However, the association between
HIF-10 and ZEBI is little known. In this study, we showed that HIF-1o overexpression in-
duced EMT and metastatic phenotypes in CRC. HIF-1a: directly regulated ZEB1 expression
through the hypoxia response element 3 (HRE-3) which is located in the ZEB1 proximal pro-
moter. Suppression of ZEB1 reversed these effects induced by HIF-10a. overexpresssion. The ex-
pression profiles of HIF-1a, ZEB1 and Vimentin were much similar in CRC patients, which
was opposite to E-cadherin expression. These results indicate that CRC progression and metas-
tasis, induced by HIF-10, is mediated by the direct regulation of ZEBI.

Materials and Methods
Cells and clinical specimens

CRC cell lines HT29 and HCT116 were maintained in our laboratory, under the condition
with RPMI 1640 (GIBCO) supplemented with 10% fetal bovine serum (FBS) as described pre-
viously [26]. Human CRC and the according adjacent normal tissues were obtained from ten
patients with CRC who underwent colonoscopy; human CRC and the matched metastatic
lymph node tissues were obtained from thirty-two CRC patients who underwent hemicolect-
omy in Nanfang Hospital (Guangzhou, China). These individuals gave us their written in-
formed consent (as outlined in the PLOS consent form) to participate in this study and publish
these case details. The studies using human tissue were reviewed and approved by the Commit-
tees for Ethical Review of Research involving Human Subjects in Nanfang Hospital, Southern
Medical University (Permit Number: NFYY-2012-75).

Construction and production of recombinant adenovirus

HIF-1a-expressing plasmid, pDC316-HIF-1a-EGFP, was constructed by inserting the full-
length HIF-10 cDNA into the restriction sites between Nhel and Notl endonucleases of the
pDC316 expression vector which contained EGFP (pDC316-EGFP). For stable knockdown of
ZEBI, the following sequences were cloned into pDC316-HIF-10.-EGFP. shZEB1 forward:
5'-GATCCCCAGATGATGAATGCGAGTCGttcaagagaTGACTCGCATTCATCATCTTTTTT
GGAAA-3" and shZEBI1 reverse: 5' ~AGCTTTTCCAAAAAAGATGATGAATGCGAGTCAtctC
ttgaaCGACTCGCATTCATCATCTGGG-3" as described previously [8]. Both plasmids were
verified by DNA sequencing.

All adenoviruses, including adenovirus 5 expressing HIF-1a (Ad5-HIF-1a), HIF-10: overex-
pression and ZEB1 knockdown (Ad5-HIF-1o-shZEB1) and the control, Ad5-EGFP, were gen-
erated using AdMax adenovirus packaging system (Microbix Biosystems Inc., Ontario,
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Canada) according to the manufacturer’s instructions. Large-scale amplification of the above
adenoviral vectors were conducted in HEK293T cells by homologous recombination between a
shuttle plasmid (pDC316) and a backbone plasmid (pBHGlox_E1, 3Cre). Titres of the purified
viruses were determined by standard plaque-forming assay according to the manufacturer’s in-
structions (Virapur, San Diego, CA).

Adenovirus infections in vitro

HT29 and HCT116 cells were grown to 80% confluency. After washing with phosphate buff-
ered saline (PBS), cells were incubated with Ad5-EGFP and Ad5-HIF-1a at the MOI of 0.1, 1,
10, 100 and 1000, respectively. Ninety minutes post-infection, viruses were replaced by regular
growth medium. 24 or 48 hours post-infection, the efficiency of transduction of EGFP express-
ing constructs was observed under immunofluorescence microscopy and HIF-1a expression
was analyzed by PCR or western blot.

Reverse transcription polymerase chain reaction (RT-PCR), Quantative
real-time PCR (qPCR) and Western Blotting Analysis

These assays were done essentially as described previously [27-29]. Primers used for RT-PCR
were as follows: HIF-1a sense: 5/ ~-TCCATGTGACCATGAGGAAA-3’ and antisense: 5’ — CC
AAGCAGGTCATAGGTGGT-3' ; primers used for gPCR were as follows: HIF-1a: 5'~ TTTTTC
AAGCAGTAGGAATTGGA -3’ (sense) and 5 -GTGATGTAGTAGCTGCATGATCG -3’ (anti-
sense); ZEB1: 5'~CCTGTCCATATTGTGATAGAGGC-3’ (sense) and 5'-~ACCCAGACTGCGTC
ACATGT-3’ (antisense); glyceraldehyde-3-phosphate dehydrogenase (GAPDH): 5'-GTCAAC
GGATTTGGTCGTATTG-3’ (sense) and 5'- CTCCTGGAAGATGGTGATGGG-3' (antisense).
The primary antibodies, HIF-1o (Novus Biologicals, Littleton, CO), ZEB1 (Santa cruz), E-cad-
herin (Santa cruz), Vimentin (prediluted, abcam), Plakoglobin (abcam), N-cadherin (Santa
cruz) and GAPDH (abcam) were all commercial products.

Migration, invasion and wound healing assays

Uncoated Costar transwells (Corning Costar Co., Corning, NY) were used for migration assays
and Matrigel-coated transwells (BD Biosciences, Franklin Lakes, NJ) used for invasion assays.
Cells were serum starved overnight and then seeded into the upper chamber with serum-free
RPMI 1640 medium. RPMI 1640 supplemented with 10% FBS was added into the lower cham-
ber. Cells that had migrated across the transwell membrane were stained and quantified. For
wound healing assay, the scratch was made across the cell monolayer using a sterile tip. The
ability of cells to migrate was monitored at different time points using a light microscopy.

Histological and immunohistochemical analysis

Hematoxylin and eosin (H&E) and immunohistochemistry (IHC) were performed as previous-
ly described [28]. In brief, specimens were fixed in 4% paraformaldehyde in PBS overnight and
subsequently embedded in paraffin wax. Sections were cut a thickness of 5 um and stained with
H&E for histological analysis. IHC analysis was performed for the expression of HIF-1a, ZEBI,
E-cadherin and Vimentin. The tissue in which >10% of cancer cells being positively stained
was considered as positive. For quantitative analysis, the ratio of positively stained cells to all
tumor cells in five random areas at 200-fold magnification was calculated. All histological eval-
uations including the percentage of positive cells were carried out in a double-blind manner by
two pathologists to minimize observational bias.
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Electrophoretic Mobility Shift Assay (EMSA)

EMSA was performed using a double-stranded oligonucleotide containing a consensus binding
sequence for HIF-1o as previously described [27, 28]. The following sequences of sense strands
were used for the binding and competition assays: sequences containing wildtype HRE (P1:

5’ = GAGGCGTGGGACTGATGGTAGCC -3’ ,-521 ~ -517 nt; P2: 5’ — GGGGGCGGACACGCG
AGG -3" -529 ~ -525nt; P3: 5’ ~CCGGTCGCCGCGTGTCCTCGCC -3 ,-634 ~ -630 nt; P4:

5" ~ATACTCCGGTCACGTTTCAGITTTCTC -3, -1347 ~ -1342 nt) and the according mu-
tant HRE sequences (P1-mut: 5/ - GAGGCACAGGACTGATGGTAGCC -3’ ; P2-mut: 5 -GGG
GGCGGATGTGCGAGG -3’ ; P3-mut: 5’ = CCGGTCGCCGCACATCCTCGCC -3’ and P4-mut:
5’ — ATACTCCGGTTGTGTTTCAGTTTTCTC -3’ ). The nucleotides were end-labeled with [y-
32P] ATP (PerkinElmer Life and Analytical Sciences, Fremont, CA) and T4 polynucleotide ki-
nase (Promega). Nuclear extracts from cells infected with Ad5-HIF-10-EGFP and the control
were prepared and used in EMTS as we described previously [28]. And were incubated in 1x
binding buffer containing 2.5% glycerol, 50 ng/pl poly (dI-dC), 5 mm MgCI2, 0.05% Nonidet
P-40, and 4 pmol of biotin-labeled oligonucleotide in a total volume of 20 ul at room tempera-
ture for 20 min. The bound mixtures were size-fractionated on a nondenaturing 6% polyacryl-
amide gel at 180 V in 0.5x TBE buffer. The gel was subsequently dried and autoradiographed.

Generation of report plasmids, Transient transfection and Luciferase
assay

Production of wildtype and mutant reporter constructs was performed as we previously de-
scribed [29]. A 567 bp of ZEB1 promoter fragment containing the HRE-3 element was cloned
into pGL3 vector to generate the wildtype reporter construct, named as pluc-567. Mutation at
the HRE-3 motifs (pluc-567-mut) was introduced into pluc-567 luciferase construct with the
QuikChange Site-Directed Mutagenesis Kit (Stratagene, La Jalla, CA, USA). Both of the con-
structs were verified by sequencing. Cells were infected with Ad5-EGFP or Ad5-HIF-1a for 48
h followed by transfection with pluc-567 or pluc-567-mut and pRL-cmv (Renilla luciferase).
The transactivation potential was tested with the Dual-Glo Luciferase Assay System (Promega,
Madison, W1, USA) by measuring luciferase activity after 48h.

Nude mice and metastasis assay

This animal experiment was carried out in strict accordance with the recommendations in the
Guide for the IACUC (Institutional Animal Care and Use Committee), and the protocol was
approved by the Committee on the Ethics of Animal Experiments of Nanfang Hospital (Permit
Number: NFYY-2013-56). All surgeries were performed under sodium pentobarbital anesthe-
sia, and all efforts were made to minimize suffering. After the surgery, all nude mice were eu-
thanized by sodium pentobarbital anesthesia. Six-week old female BALB/c nude mice were
purchased from Guangdong Provincial Experimental Animal Center (Guangzhou, China) and
randomly divided into four groups (Ad5-EGFP: N = 8; Ad5-HIF-1o: N = 12; Ad5-HIF-1a-
shRNA: N = 5; Ad5-HIF-1a-shZEB1: N = 5) before injection. Animals were subjected into
intraperitoneal anaesthesia with 40 mg/kg amobarbital sodium solution. After the mice were
deeply anaesthetized, a small longitudinal left upper flank incision was made and spleen was
gently exposed. Single suspended cells (1.5 x 106 cells/mouse) were injected in 70 pl of PBS
under the spleen capsule. After removal of the needle, the injection site was pressed with an
aseptic cotton sponge to prevent leakage. After that, the spleen was returned into abdominal
cavity and the periotneium and abdominal wall were sutured with silk [30-32]. Mice were
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sacrificed after 5 weeks, the possibility of metastasis analyzed and the metastatic sites were col-
lected for H&E staining and qPCR assay.

Statistical analysis

Analysis was done using GraphPad Prism 6 software. All values were expressed as mean + SD.
The statistical significance of differences was determined by Student’s t-test. All analyses were
two-sided, paired (for IHC results in clinical specimens) or unpaired and a P value of < 0.05
was considered statistically significant.

Results

HIF-1a overexpression induced EMT in vitro

To get a better infection efficacy of adenoviruses in CRC cancer cell lines, HT29 and HCT116
cells were first transduced with adenovirus 5 expressing enhanced green fluorescent protein
(Ad5-EGFP) or Ad5-HIF-1a-EGFP at the multiplicity of infection (MOI) of 10, 100 and 1000,
respectively, with the effects recorded by microscopy on 48 hours (Fig 1A). Nearly 100% of the
cells expressed EGFP with a MOI of 100, which was much similar to a MOI of 1000. RT-PCR
(Fig 1B left) and western blot (Fig 1B right) results confirmed the dramatic increase of HIF-1o
expression. Same effect was found in HCT116 cells (data not shown). Therefore, the MOI of
100 was adopted in all of the following experiments.

Interestingly, when observing adenovirus-infected cells, we found HT29-Ad5-HIF-1a cells
were much more spindle-shaped, like fibrobalsts, compared with wildtype HT29 cells which
were round with well cell-cell adhesion (Fig 1C). The above transition of cell morphology actu-
ally was as the same as the change in EMT process. Hence, we next detected the expressions of
EMT markers and found that E-cadherin and Plakoglobin, two important epithelial markers of
EMT, were significantly downregulated in Ad5-HIF-1a-infected HT29 and HCT116 cells com-
pared to their control cells. On the contrary, the mesenchymal molecules, Vimentin and N-
cadherin were sharply increased after Ad5-HIF-1a-EGFP infection (Fig 1D). Furthermore, an
increase in invasion and migration (crucial traits of EMT phenotype) of both cell lines with
HIF-1o overexpression was also detected (Fig 1E). Consistently, the wound healing assay dem-
onstrated that the width in HT29-Ad5-HIF-1a cells were much narrower than that in
HT29-Ad5-EGFP cells at the indicated time plots, respectively (Fig 1F). The above findings
suggest that HIF-1o. overexpression induces EMT and promotes invasion and migration in
CRC cell lines.

HIF-1a overexpression promoted metastasis in vivo

To evaluate the effect of HIF-1o overexpression on cancer metastasis in vivo, HT29 cells were
transduced with Ad5-HIF-10-EGFP or Ad5-EGEFP, respectively, at MOI of 100. Forty-eight
hours later, single cell suspensions were harvested and injected into BALB/c nude mice via a
subsplenic method. As shown in fig 2A, multiple intrahepatic tumor nodules were easily in-
spected grossly in the Ad5-HIF-10-EGFP-injected group, whereas less or even no nodules
were found in control mice. To confirm the above difference, we examined H&E staining and
found much more developed basophilic tumor regions in livers from mice injected with
HT29-Ad5-HIF-1a cells compared with control group, as shown in fig 2B. Quantity analysis
showed that a significant increase (5.3-fold) of liver metastasis was noted in the Ad5-HIF-1a-
injected group, compared with control group (Fig 2C). Real-time PCR results confirmed that
the level of HIF-1ot in liver lesions of mice injected with HT29-Ad5-HIF-1o was much higher
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Fig 1. Overexpression of HIF-1a induced EMT and metastasis in CRC cell lines. (A) HT29 cells were transduced with Ad5-HIF-1a at the indicated MOI
values for 48 hours. Fluorescence intensity and bright field at the same area were observed at the original magnification as 100X. (B) mRNA (left) and protein
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(right) expressions of HIF-1a were detected using RT-PCR and western blot, respectively. GAPDH was used as the loading control. (C) Cell morphology of
wildtype HT29 or HT29 cells transduced with the indicated adenoviruses (Original magnification = 400X). (D) Western blot analysis of HIF-1a, E-cadherin,
Plakoglobin, Vimentin and N-cadherin in adenovirus-infected HT29 and HCT116 cells. GAPDH was used as the internal control. (E) Fold change of invasion
and migration in the indicated cells. Quantification of the results was shown in the bar graph with means + SD. *P < 0.05. (F) Wound healing assay. Cell
monolayers were scratched with a pipette tip and images were taken 0, 24 and 48 hours after wound formation. *P < 0.05.

doi:10.1371/journal.pone.0129603.g001

than that injected with HT29-Ad5-EGFP (Fig 2D). These results suggest that overexpression of
HIF-1o promotes liver metastasis of CRC in animal model.

HIF-1a regulated ZEB1 expression

Both HIF-1a and ZEB1 have been implicated in cancer metastasis and EMT [4, 9, 11]. Next,
we investigated whether HIF-1o overexpression had an effect on the expression of ZEB1. In-
deed, upregulation of mRNA and protein levels of ZEB1 was found accompanied with the
overexpression of HIF-1oin HT29 cells as shown in Fig 3A&3B. Moreover, the trends of HIF-
lo.and ZEB1 expression in CRC cell lines (SW480, HCT116, HT29, LoVo and DLD1) were
pretty similar (Fig 3C). Consistently, this finding was also presented in paired CRC specimens
and adjacent normal colon epithelium tissues which were detected by western blot and IHC
staining (Fig 3D&3E). We also found that the levels of both proteins were much higher in
tumor than that in adjacent normal tissues. In cellular level, both HIF-1ce and ZEB1 were main-
ly expressed in nucleus and cytoplasm, especially in nucleus, which were theoretically consis-
tent with the location site of transcription factor. And also, the observations of their co-
localization reveal that HIF-1o might interact with ZEB1 physically.

Regulation of ZEB1 by HIF-1a through HRE-3

To evaluate whether ZEB1 is regulated directly by HIF-1a, the promoter sequences of ZEB1
were analyzed with bioinformatics methods. We found that there were four potential HRE sites
in the proximal promoter (~ 3500 nt upstream; the start codon ATG defined as 0) of ZEB1
gene (Fig 4A). There were HRE-1 at -517 ~ -521 nt; HRE-2 at -525 ~ -529 nt; HRE-3 at -630 ~
-634 nt and HRE-4 at -1342 ~ -1347 nt. Based on these, probes P1, P2, P3 and P4 with wildtype
and mutant HRE sites were designed, respectively, as described in methods and materials. The
results of EMSA assay revealed that HIF-1a-binding was significantly increased after incuba-
tion of nuclear extracts from HT29-Ad5-HIF-1o. cells with the HRE-3-containing oligonucleo-
tide from ZEB1 promoter (Fig 4B). However, there were only very week bands or even no band
presented in HT29-Ad5-HIF-1a cells or other control cells with the HRE-1, 2 or 4-containing
oligonucleotide (data not shown). Moreover, competition for HIF-1o.-binding by unlabelled ol-
igonucleotides containing HRE-3 and probes containing mutated HRE-3 did not show any
HIF-1o-binding bands (Fig 4B). These results suggested that HIF-1o. was able to bind ZEB1
promoter via HRE-3 site.

Next, we determined the effect of HIF-1o overexpression on the transcription activity of
ZEB1. Based on the results of EMSA, a promoter plasmid containing HRE1-3 (pluc567) and
the site-directed mutagenesis of HRE-3 plasmid (pluc567-mut) were generated and transiently
transfected into HT29 cells which were pre-incubated with Ad5-HIF-1o or Ad5-EGFP for 24
h, Dual-luciferase assay showed that the activity of pluc567 in HT29-Ad5-HIF-1a cells in-
creased more than 5 fold compared with control cells, whereas the magnification was signifi-
cantly degraded with pluc567-mut transfection (Fig 4C&4D). These results demonstrated that
HIF-1o activated ZEB1 directly by binding to the HRE-3 site in the ZEB1 proximal promoter.
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Fig 2. HIF-1a overexpression promoted liver metastasis in vivo. Representative photographic pictures (A) and H&E staining (B) of liver of BALB/c mice
five weeks after subsplenic injection of HT29 cells transduced with Ad5-HIF-1a or control viruses. White arrows indicated metastatic nodules. (C) The
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doi:10.1371/journal.pone.0129603.9002
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following by qPCR and western blot to detect the expression of HIF-1a and ZEB1. GAPDH was used as the internal control. (D) HIF-1a and ZEB1 protein
levels in matched nonneoplastic/cancerous colorectal tissues. N: normal; T: tumor. The level of each protein was normalized against GAPDH. (E)
Representative pictures of IHC staining on human CRC formalin-fixed paraffin-embedded samples for HIF-1a and ZEB1. Left panel showed the adjacent
normal colorectal tissues. Right panel showed CRC specimens. Original magnification, 200X.

doi:10.1371/journal.pone.0129603.9003

ZEB1 is critical for HIF-1a-induced EMT and metastasis

To detect whether ZEBI is required for HIF-1a-induced EMT and metastatic phenotype, we
generated a plasmid with HIF-1o expressing and ZEB1 knockdown, and then packaged into
adenovirus (Ad5-HIF-1o-shZEB1). Because the endogenous level of ZEB1 in HT29 cells was
much lower than that in HCT116 cells (Fig 3C, right), which was consistent with their protein
levels in our previous data [12]. Therefore, HCT116 cells were appointed to perform all of the
ZEB1 knockdown experiments.

In vitro, HCT116 cells were transduced with Ad5-HIF-1a-shZEB1 and Ad5-HIF-1o, re-
spectively. Western blot, invasion and migration assays were carried out after 48 hours. As
shown in Fig 5A, E-cadherin expression was upregualted and Vimentin expression was down-
regulated accompanied with the knockdown of ZEB1. Consistently, the invasion and migration
capacities were decreased by 34% and 45%, respectively. In vivo, we observed multiple tumor
nodules on the surface of livers and H&E staining showed basophilic tumor regions in livers of
mice injected with HCT116-Ad5-HIF-1a cells. In contrast, animals injected with
HCT116-Ad5-HIF-1o0-shZEB1 cells had dramatically decreased tumor burdens with a reduc-
tion in the number and size of residual tumor nests, accompanied with more massive necrosis
with inflammation region (Fig 5D&5E).

Expression of HIF-1a, ZEB1, E-cadherin and Vimentin in primary and
metastatic CRC specimens

To evaluate the relationship among HIF-1c, ZEB1 and EMT key markers in clinical tissues,
IHC staining was performed in 32 pairs of primary CRC specimens and metastatic lymph
node (Fig 6A). The average percentage of positively stained cells to all tumor cells in each tis-
sue was evaluated independently by two investigators as described in material and method.
We found that the percentages of both HIF-1a- and ZEB1-positive CRC cells were more than
65%, while the percentage in metastatic lymph node was increased approximately to 86% for
HIF-1o and 78% for ZEB1 (Fig 6B). At the same time, the level of Vimentin was also pretty
high in both primary and metastatic tissues; although there was no significant difference
between these two groups. For E-cadherin, the percentage of E-cadherin-positive tumor

cells in primary CRC tissue was about 29%, whereas significantly decreased to 12.7% in meta-
static group (Fig 6B). These results support our observations with the CRC cell lines that
HIF-1o expression was positively associated with ZEB1 and Vimentin, and negatively associ-
ated with E-cadherin, and HIF-1o and ZEB1 may contribute differentially to EMT and
metastasis.

Discussion

One of the fundamental ways for cancer treatment is the understanding of molecular mecha-
nisms for tumorigenesis and cancer metastasis. In this study, we revealed that ZEB1 is a down-
stream target of HIF-1o and has a critical role in EMT and metastatic phenotypes induced by
overexpression of HIF-1o. We propose that HIF-1o directly binds to the promoter of ZEB1
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a consensus HRE-3. Nuclear extracts prepared from HT29-Ad5-HIF-1a (lane 3 and 5) or control cells (lane 2 and 4) were incubated with [y-32P] ATP-
labelled probe before electrophoresis. Negative control was performed with wildtype probe without nuclear extract (lane 1). (C) Schematic representation of
the promoter region of ZEB1 and the report constructs used in adenovirus-infected experiments. The constructs contained wildtype (pluc567-wt) or mutant
(pluc567-mut) HRE-3 located -634 ~ -630 nt upstream of the transcription start site of ZEB1. (D) Activation of plu567 or pluc567-mut in Ad5-HIF-1a- or
Ad5-EGFP-infected HT29 cells (N = 3 replicate experiments). *, # P < 0.05.

doi:10.1371/journal.pone.0129603.g004

and serves as its critical positive regulator, thereby promoting EMT and cancer metastasis. Our
findings uncover a novel mechanism by which HIF-1o regulates tumor progression and
invasion.

HIF-1o. expression is commonly upregulated in a lot of malignant tumors, and many publi-
cations have reported the close correlation between HIF-1a expression and increased aggres-
siveness and higher metastatic capacity in ovarian, breast, lung, prostate, colon and pancreas
carcinomas [11-14]. For molecular level, HIF-1o exerts its biological function through activat-
ing target genes such as Snail, Twist and TCF3, which are all associated with EMT and metasta-
sis [15-18]. However, it is important to identity more unknown targets and to reveal the link
between HIF-1a activation and other oncogene or tumor suppressors.

ZEB1, a pro-metastatic transcription factor, is involved in cancer progression and metastasis
[19, 20]. Mechanistically, ectopic expression of ZEB1 is sufficient to downregulate E-cadherin
and to induce EMT in breast cancer by binding to the conserved E-boxes in E-cadherin pro-
moter. The inhibition function of ZEB1 on E-cadherin thus promoting EMT is also observed
in xenograft models of CRC [8]. Furthermore, ZEB1 mediates claudin-1-regulated changes in
cell invasion and anoikis in CRC [21]. Similar to ZEB1, Snail and Twist are also important
EMT transcription factors by silencing E-cadherin through binding to the E-box element in E-
cadherin promoter [22]. Snail is identified as a HIF-1o. target gene in mouse [23]; Twist is di-
rectly regulated by HIF-1o. in head and neck squamous cell carcinoma (HNSCC) [18, 24]. In
other words, those also mean that the HIF-1o pathway can regulate E-cadherin repression, pre-
sumably via Snail or Twist. Hence, due to the similar abilities of HIF-10. and ZEB1 to induce
EMT and the overlapping phenotypes of HIF-1a: and ZEB1 in null mice, it is likely that these
two genes are located in the same pathway to regulate cancer metastasis. Therefore, we hypoth-
esized that there might be a strong interactive link between ZEB1 and HIF-1o. Indeed, we
found that HIF-1o was able to bind ZEB1 promoter through HRE-3 and positively regulated
ZEBL1 transactivity. These findings also suggest that Snail, Twist and ZEB1, the three major
EMT regulators may regulate EMT and metastasis with some very similar mechanisms. Inter-
estingly, Peinado et al reported that Snail, Slug, ZEB1 and ZEB2 recruit specific chromatin-re-
modeling complexes supports a dynamic link between transcription repression and epigenetic
genes silencing of E-cadherin during tumor progression and EMT [25].

In this study, we showed for the first time that HIF-1a expression directly regulated ZEB1,
and positively correlated with the expression of ZEB1 and Vimentin, and inversely correlated
with E-cadherin in primary and metastatic CRC tissue samples, which suggest co-expression of
HIF-10, ZEB1, Vimentin and decreased of E-cadherin may be used as a valuable marker to pre-
dict the metastastic potential of CRC patients. However, further investigations are also required
to understand better the roles of HIF-1a, ZEB1, Vimentin and E-cadherin in CRC progression
and malignancy and to determine how dysregulation of these proteins may alter response to
therapeutic intervention.

In summary, our data support a model in which HIF-1a: overexpression enhances ZEB1
transactivity and expression through directly binding to its promoter, leading to a dramatic
loss of E-cadherin and Plakoglobin expressions, gain of the expression of Vimentin and N-
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cadherin, and increased cell invasion and migration. These findings provide a molecular basis
for promotion of the invasive cancer phenotype by HIF-1o overexpression.
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