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Abstract

Tractography based on Diffusion tensor imaging (DTI) data has been used as a tool by a large 

number of recent studies to investigate structural connectome. Despite its great success in offering 

unique 3D neuroanatomy information, DTI is an indirect observation with limited resolution and 

accuracy and its reliability is still unclear. Thus, it is essential to answer this fundamental question: 

how reliable is DTI tractography in constructing large-scale connectome? To answer this question, 

we employed neuron tracing data of 1772 experiments in the mouse brain released by the Allen 

Mouse Brain Connectivity Atlas (AMCA) as the ground-truth to assess the performance of DTI 

tractography in inferring white matter fiber pathways and inter-regional connections. For the first 

time in the neuroimaging field, the performance of whole brain DTI tractography in constructing 

large-scale connectome has been evaluated by comparison with tracing data. Our results suggested 

that only with the optimized tractography parameters and the appropriate scale of brain 

parcellation scheme, DTI can produce relatively reliable fiber pathways and large-scale 

connectome. Meanwhile, a considerable amount of errors were also identified in optimized DTI 

tractography results, which we believe could be potentially alleviated by effort in developing 

better DTI tractography approaches. In this scenario, our framework could serve as a reliable and 

quantitative test bed to identify errors in tractography results which will facilitate the development 

of such novel tractography algorithms and the selection of optimal parameters.
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1 Introduction

Mapping brain activity patterns and deciphering neural codes are the fundamental goals of 

the BRAIN project (http://www.nih.gov/science/brain/) (NIH, 2014; Tsien et al., 2013). The 

achievement of the goal requires a comprehensive view of the structural connectivity 

patterns from which neural activity patterns are generated. Since the early development of 

diffusion tensor imaging (DTI) (Basser et al., 1994) and tractography algorithms (Mori et 

al., 1999) in 1990s, the technique has been widely applied to investigate white matter 

pathways of mammalian brains. As a magnetic resonance imaging (MRI) technique, DTI is 

able to infer axonal fiber orientations of living brains in 3D space by measuring restricted 

water diffusion in tissue. Based on the DTI tractography, many macro-scale fiber pathways 

of mammalian brains such as human (Assaf and Pasternak, 2008; Bassett and Bullmore, 

2009; Mori et al., 2008), macaque (Chen et al., 2013; Li et al., 2013; Rilling et al., 2008), or 

mouse (Calamante et al., 2012; Moldrich et al., 2010; Zhang et al., 2002) were reconstructed 

and analyzed. Later, it has been pointed out that in order to fully understand how the brain 

works, a comprehensive map of brain inter-regional wiring diagram on a large scale, namely 

connectome, is required (Bullmore and Sporns, 2009; Sporns et al., 2005; Van Essen, 2013). 

Moreover, several more advanced diffusion MRI approaches such as high angular resolution 

diffusion imaging (HARDI) (Tuch et al., 2002) or diffusion spectrum imaging (DSI) 

(Wedeen et al., 2005) were developed to overcome the limitation of DTI in reconstructing 

crossing fibers. As the only feasible neuroimaging approach to investigate structural 

connectome in living brain, DTI tractography as well as its advanced form has been used as 

a presumably reliable tool by a large number of large-scale studies. For example, the Human 

Connectome Project (Sotiropoulos et al., 2013; Van Essen et al., 2012) (http://

www.humanconnectome.org/) is acquiring HARDI data of 1200 healthy subjects to build a 

connection map of brain; the CONNECT project (Assaf et al., 2013) has been developing 

tools to analyze the brain’s macro- and micro-structure tissues and connectivities by 

combining tractography and micro-structural measurement in diffusion MRI data; the 

Brainnetome Project (Jiang, 2014, 2013) (http://www.brainnetome.org) is comparing DTI 

data of thousands of patients and the healthy controls to explore the brain’s network-based 

biomarkers for brain diseases such as schizophrenia and Alzheimer’s disease; the Brain 

Decoding Project (http://braindecodingproject.org/) is analyzing mouse brain data on 
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different scales with different imaging modalities including DTI to unveil the myth of 

memory.

In spite of the growing exciting findings brought by DTI, the reliability of DTI-based 

tractography is still in question. DTI showed a variety of limitations, especially when it is 

applied to infer inter-regional connections. In the review article by Jbabdi and Johansen-

Berg, DTI tractography is regarded as an “indirect, inaccurate, and difficult to quantify” 

observation approach (Jbabdi and Johansen-Berg, 2011). Different from the traditional 

histology approach which directly observes neurons and axons under microscope, DTI infers 

microanatomy indirectly from properties of restricted water diffusion in tissue, resulting in 

the loss of information on the microscale structures. For example, as reviewed in (Jbabdi 

and Johansen-Berg, 2011), it is difficult to determine where a fiber tract should start or 

terminate. Long association tracts constructed by DTI tractography could be a long direct 

connection between remote cortical regions, or, alternatively, a succession of short fibers. 

Moreover, DTI tractography is unable to identify the polarity of a given connection. An 

afferent axon cannot be distinguished from an efferent axon based on their water diffusion 

pattern. Though one could argue that the detailed information like synapse structure or 

polarity is not necessary for analysis on a macro-scale. The accuracy of the approach is still 

questionable for such kind of analysis due to the empirical models and parameters applied to 

axonal fiber tractography. The classic DTI tractography methodology assumes that axonal 

fiber bundles move in parallel in a single voxel and thus models each voxel with single 

diffusion model. However, the assumptions can only be met if the resolution is high enough 

to monitor a single bundle of axons. In reality, a voxel typically contains tens of thousands 

axons from different bundles. In addition to traveling in parallel, they could meet, merge, 

twist, bend, cross, etc. Therefore, a voxel cannot be modeled by a single diffusion model. 

Notably, some of the axon interactions such as crossing or diverging have been modeled by 

advanced tractography methods (Hess et al., 2006; Wedeen et al., 2008; Zhang et al., 2012). 

But due to a lack of the ground truth or alternative validation methods, the accuracy of the 

models remains untested, and the models and parameters applied by those approaches are 

highly empirical. Further, even with the most accurate model and optimal parameters have 

been applied, findings are still quite sensitive to the selection of brain parcellation scheme 

(Meskaldji et al., 2013; Zalesky et al., 2010). Given the limited resolution of DTI data, it is 

not clear on which scale (volume size of regions of interest) tractography gives the best 

performance. With all these limitations raised above and a large number of ongoing brain 

connectome-related studies based on DTI tractography, we believe that it is essential to 

reexamine the basic question: How reliable is large-scale connectome constructed by DTI?

So far, the most ideal approach to validate DTI tractography is neuron tracing study. The 

merit of this approach is that it allows accurate observations of inter-regional connections 

and white matter fiber pathways in the brain of the sacrificed animal. Different from the dye 

applied in traditional histology study that target on specific tissue/molecule, neuron tracers 

diffuse along axons and proliferate between neurons via synapses. Thus with the carried 

florescent protein, it could label the afferent/efferent projections to/from the injection site. In 

a group of recent works, comparisons between neuron tracing result and diffusion 

tractography result were compared in macaque brain (Dauguet et al., 2007; Jbabdi et al., 
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2013; Thomas and Frank, 2014), squirrel monkey brain (Gao et al., 2013), porcine brain 

(Dyrby et al., 2007), and human brain (Seehaus et al., 2013). These studies offered a new 

insight into approaches to validating DTI tractography on global scales. However, due to the 

high cost and the large number of the neuron tracing experiments that are required to cover 

the whole brain, limited injections were performed in these studies and only connections 

between a few brain regions were analyzed. Until now, few works have been done to 

validate DTI tractography’s performance in constructing large-scale connectome based on 

neuron tracing data.

Despite taking neuron tracing result as truth, other data were also applied to validate DTI 

tractography, but with limitations. Some recent studies validated the performance of DTI by 

comparing DTI findings with the stained histology data serving as the truth (Choe et al., 

2012; Hansen et al., 2011; Leergaard et al., 2010). The difficulty with the histology 

approach is to construct a full 3D morphology of fiber pathways based on the many 2D 

image slices. Thus, only local white matter properties such as fractional anisotropic (FA) or 

diffusion orientation were examined in these studies. Meanwhile, DTI tractography’s 

performance in identifying global connections was rarely examined in these studies. Instead 

of using real data, another approach is to use phantom model that allows researchers to 

quantitatively examine and compare tractography algorithms’ performances in constructing 

fiber pathways (Côté et al., 2013; Fillard et al., 2011). Notably, due to the absence of real 

data in such approach, possible problems in real scenarios might be overlooked. Moreover, 

none of these two types of data are proper to validate DTI tractography on constructing 

large-scale connectome.

In response, this work aims to fill in this knowledge gap via the recently released Allen 

Mouse Brain Connectivity Atlas (AMCA, http://connectivity.brain-map.org/). This dataset 

provides a map of neural connections in the mouse brain obtained by tracing axonal 

projections from defined regions via enhanced green fluorescent protein (EGFP)-expressing 

adeno-associated viral vectors and then by imaging the EGFP-labeled axons throughout the 

mouse brain via high-throughput serial two-photon tomography (STPT). By March 2014, 

the data of 1772 tracing experiments across the whole mouse brain has been released, 

covering nearly all brain anatomical regions and axonal pathways. Such dataset enables 

accurate observations of large-scale connectome of the mouse brain in meso-scale (Oh et al., 

2014). Moreover, after each tracing experiment, the imaged histology slices were 

preprocessed and assembled into a 3D image stack, a data type similar to DTI data, making 

the quantitative comparisons possible between these two types of data. Therefore, with the 

connectome constructed based on the AMCA as the benchmark, for the first time, we are 

able to validate DTI’s performance in inferring axonal wiring diagram and large-scale 

structural connectome.

2 Materials and Methods

2.1 Acquiring and Constructing Large-Scale Connectome

2.1.1 Reference atlas and parcellation schemes—To construct large-scale 

connectome, we toke anatomical brain regions across the whole brain as regions of interest 

(ROIs) and measured inter-regional structural connections between them. The annotation of 
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mouse brain’s anatomical structure was downloaded from Allen Mouse Brain Atlas 

(AMRA) (http://mouse.brain-map.org/static/atlas). As shown in Figure S1, these brain 

regions were manually annotated following the hierarchal structures in the 3-D reference 

atlas of AMRA, allowing brain parcellation scheme on different scales. On the finest scale, 

300 regions were selected to parcellate the whole mouse brain. As shown in Figure S2, these 

regions were then combined to obtain 96 regions and 69 regions parcellation scheme. 

Region names and the abbreviations were listed in Table S1. Notably, all the annotated 

regions were bi-partitioned by the left/right hemispheres. To enable comparisons, data 

obtained from different modalities were aligned to the space of AMRA before analysis.

2.1.2 Neuron tracing data and meso-scale connectome—Meso-scale connectomes 

were constructed based on the neuron tracing experiments. Neuron tracing data were 

downloaded from publicly available AMCA (Logothetis, 2008) (http://connectivity.brain-

map.org/). Images obtained from 1772 neuron tracing experiments covering the whole 

mouse brain were applied in this study. The experiments and preprocessing were carried out 

by Allen Institute for Brain Sciences (Oh et al., 2014). In each experiment, rAAV tracer was 

injected into target anatomical region of a mouse brain to label the projection from this 

region to the whole brain. For the purpose of efficiency, all the injection sites were located 

on the right hemisphere of mouse brain. After fixation and dissection, the mouse brain was 

then sliced (100 μm in thickness) and imaged (resolution 0.35 μm/pixel) with STPT (Ragan 

et al., 2012). Then the images were processed with injection volume manually annotated by 

experts and the traced neuronal projections segmented based on algorithm. A 3-D image 

stack was then obtained and registered to the 3-D reference atlas space. The size of labeled 

volume and the injection volume in each annotation regions were then computed. To 

construct meso-scale connectome, we downloaded the table of labeled volume size and 

injection volume size from AMCA. Since the injection size in AMCA experiments is 

relatively large, it may label the projection from multiple anatomical regions simultaneously 

which will cause ambiguity in counting the projection from specific regions. Thus, a 

regression approach were applied to obtain pair-wise connection strength between annotated 

regions (Oh et al., 2014). Specifically, taken each experiment result as an observation, the 

correlation coefficient and the corresponding p-value between the injection volume size of 

anatomical region i and the labeled volume size of anatomical regions j was calculated to 

measure the connection strength from region i to region j. When p-value is smaller than 

0.05, then we assume that there is axonal projection from region i to region j.

2.1.3 DTI data and macro-scale connectome—Macro-scale connectomes were 

constructed based on DTI data. Specifically, a high-resolution DTI data of an adult mouse 

brain was downloaded from the publicly available Mouse BIRN Data Repository and 

applied in this study. The specimen was fixed using 4% paraformaldehyde in phosphate-

buffered saline (PBS) for over one month and was placed in PBS for 24 hours before 

imaging. During imaging, the specimen was placed in MR-compatible tubes filled with 

fombin (Fomblin Profludropolyether, Ausimont, Thorofare, New Jersey, USA) to prevent 

dehydration. Imaging was acquired in a Bruker Biospin 500MHz (11.7 Tesla) spectrometer 

with following parameters: matrix size = 420 × 210 × 230; pixel resolution = 0.0625 mm 

isotropic; 14 diffusion-weighted images were acquired by 3D fast spin echo imaging 
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sequence and four signal averages were used; TR = 0.9s; TE = 35 ms, echo train length = 4 

(Zhang et al., 2002). The preprocessing of data includes diffusion tensor estimation, 

fractional anisotropic (FA) estimation, and manually skull removal (Jiang et al., 2006). DTI 

data was aligned to the 3-D reference atlas in AMRA. Since the reference atlas is based on 

stitched sections of Nissl stain, its contrast is very different from FA image and non-

diffusion (B0) image of DTI data (which are widely applied for the registration of DTI data) 

and there is zig-zag effect across sections (Figure S3), linear alignment based on FSL FLIRT 

(Jenkinson and Smith, 2001) was applied and it works reasonably well in establishing 

correspondence between these two modalities (Figure S3). To further evaluate the 

performance of alignment, we quantitatively measured the overlap between manually 

annotated fiber tracts in AMRA and the fiber tracts in aligned DTI data detected based on 

FA value (FA>0.3). For all the annotated fiber tracts, 52.4% volume overlaps with DTI data 

and for forebrain bundle system, 66.8% volume overlaps with DTI data. Streamline fiber 

tractography was performed via DTI Studio using the streamline model (Jiang et al., 2006). 

The connection strength between two anatomical regions is defined by the number of fibers 

passing through both regions.

2.2 Connectome Oriented Optimization of DTI Tractography Parameters and Parcellation 
Scheme Scales

In DTI tractography, the results largely depend on the selection of parameters and 

tractography algorithms (Dauguet et al., 2007; Jbabdi and Johansen-Berg, 2011; Moldrich et 

al., 2010). Most of the previous studies selected their parameters empirically. The 

performance of the algorithm based on the selected parameters will thus be limited to one’s 

knowledge and experience. Here, we propose an optimization scheme with a global view to 

obtain the optimal parameters for DTI tractography based on its accuracy in constructing 

large-scale connectome. For the DtiStudio (Jiang et al., 2006) on which we applied to 

perform tractography (and also for most state-of-art diffusion tensor tractography tools), the 

fiber tracking result is regulated by the FA threshold and angular threshold. 1) FA threshold: 

when the FA value of a voxel is larger than the threshold, the voxel will be taken as a seed 

point to initiate fiber tracks; and when the FA value is lower than the threshold, fiber tracks 

will terminate. 2) Angular threshold: when fiber tract bends in an angle larger than the 

threshold, tracking will terminate. We chose the minimum FA value to start/end fiber 

tracking from {0.1, 0.2, 0.3}; and the maximum angular value to terminate fiber tracking 

from {40°, 50°, 60°, 70°, 80°}. Moreover, the impact of the selection of parcellation scheme 

on constructing connectome based on DTI data was also analyzed based on the hierarchical 

parcellation scheme of AMRA. Specifically, connectivity strength matrices were constructed 

with each entry filled by the number of fiber streamlines connecting two brain anatomical 

regions. By taking the whole brain connectome constructed based on neuron tracing data as 

the truth and changing the threshold of fiber streamline number to form connectivity, the 

rate of true positive (sensitivity) and false positive (1 - specificity) connections identified 

based on DTI tractography can be calculated. The well-established receiver operating 

characteristic (ROC) curve is then plotted for each connectivity strength matrix and the area 

under the curve (AUC) is computed to quantitatively measure the performance. Those 

parameters resulted in highest AUC will be viewed as the optimal ones. When selecting the 
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fiber number threshold to binarize DTI based brain connectome, equal weights were 

assigned to the cost of false connections and missing connections (isocost lines are at 45°).

2.3 Validation of DTI Tractography based on Neuron Tracing Data

Validation of DTI tractography has been performed in two aspects. First, 3D morphology of 

fiber streamlines were compared with neuron trace track-wisely. Second, by taking neuron 

tracing experiments based connectome as truth, false connections in DTI derived large-scale 

connectome will be identified and analyzed across the whole brain.

In the AMCA, the images of histology slices were aligned into a 3D stack, which can be 

morphologically compared with fiber streamlines reconstructed on DTI tractography (Figure 

1). To quantitatively compare DTI-derived fiber tracts and neuron traces, we adopted the 

Hausdorff distance (Huttenlocher et al., 1993) to measure the distance or discrepancy 

between streamlines of DTI-derived fibers and the neuron trace in the AMRA space. Given 

a streamline F represented by a set of connected vertices (equation (2)) and a trace T 
represented by a set of voxels (equation (3)), for each voxels in T, its shortest distance to F 
are calculated, denoted as distance D; and the Hausdorff distance is defined as the largest of 

D (equation (1)):

(1)

(2)

(3)

where F is a set of 3D points P arranged in orders defined by K⃗, and T is a set of tracer 

labeled voxels V indexed by I.

Relatively small Hausdorff distance between a pair of DTI derived fiber streamline and 

neuron trace indicates close correlation between them. When the Hausdorff distance of a 

fiber streamline to a neuron trace is small, it can be concluded that the streamline 

successfully capture the white matter pathway detected by the neuron tracing experiment. 

On the other hand, with the large number of neuron tracing experiments in the AMCA 

covering the whole brain, we premised that the majority of white matter pathways are 

captured by these experiments. Thus, if a DTI derived fiber streamline is detected to have a 

relatively large distance to all the neuron tracers, this fiber streamline is possible to be a 

false tracking. Based on this assumption, the smallest Hausdorff distance (SHD) of each 

fiber streamline to all the neuron tracing experiments is selected as the best quantifiable 

value to measure the reliability of DTI tractography. SHDs of all the DTI derived fiber 

streamlines were computed for quantitative analysis. Notably, as the injection sites only 

locate on the right hemisphere in the AMCA, the ipsilateral pathways on the left hemisphere 

were not labeled in these experiments. Thus only those DTI derived axonal fibers that 

project within/to/from right hemisphere were applied for analysis.
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3 Results

3.1 Optimal parcellation scheme and parameters to construct DTI based connectome

ROC curves on different scales with different parameters were shown in Figure 2 and Figure 

3 for ipsilateral connection (right hemisphere) and contralateral connection accordingly, and 

the corresponding AUCs were listed in Table 1. It can be seen that the FA threshold has 

more impact on reconstructed connectome than the angular threshold. As shown in Table 1, 

AUCs were relatively higher with small FA threshold (0.1) and large angular threshold 

(50°–80°). Intuitively, smaller FA threshold and larger angular threshold will result in more 

fibers and increase the chance to establish connections, as highlighted by green arrows in 

figures, which results in higher AUCs. However, this may also increase the risk of false 

positive connections at the same time. On the other hand, an increasing amount of 

connections were missed by DTI tractography when more restrict tractography thresholds 

were selected, which results in horizontal lines in Figure 2 and Figure 3. Nevertheless, by 

looking at the overall trend of ROI curves, a clear tradeoff between sensitivity (true positive 

rate) and specificity (1 – false positive rate) can be observed when tuning the threshold of 

fiber numbers and tractography parameters which agrees with the findings in (Thomas et al., 

2014). If we only focus locally on ROC curves as highlighted by the red arrows in the 

figures, we can see that smaller FA threshold (0.1) and angular threshold (40°) gives the best 

performance – to construct largest number of correct connections with the fewest wrong 

connections. Thus, we took this parameter as the optimal one. In Figure 4, we compared the 

obtained brain connectome based on optimal DTI tractography parameters with those none-

optimized ones. Specifically, we extracted and highlighted those corrected connections after 

optimization in Figure 4(d)–(f). It can be seen that a significant amount of connections have 

been corrected after optimization and suggests that applying optimal DTI tractography 

parameters is critical in generating accurate result when analyzing brain connectome. The 

fiber tracts and the corresponding connectome applied for comparison between DTI 

tractography and neuron tracing in the next sessions were obtained based on this optimal set 

of parameters.

Meanwhile, it is obvious that DTI performs much better in constructing connectome with 

coarser anatomical parcellation scheme in comparison with the finest anatomical 

parcellation scheme. As shown in Table 1 and highlighted by the dark red and pink arrows 

in Figure 2(d) and Figure 3(d), parceling the mouse brain into 69 regions or 96 regions is 

more favored over 300 regions to construct brain connectome. Intuitively, for smaller brain 

region, less DTI-tracked fibers will go through it. With larger brain regions, connections 

could be more easily captured. However, with more fibers going through a region, the 

chance to generate wrong connections is also increased at the same time. Thus though DTI 

performs equally well for 96 regions and 69 regions when larger fiber number threshold was 

selected as highlighted by the dark/light red arrows in Figure 2(d) and Figure 3(d), the best 

performance was obtained with 96 regions when smaller fiber number threshold was chosen 

and denser connections were obtained as highlighted by magenta arrows in both figures. 

This agrees with the observation based on AUCs in Table 1 that the connectome generated 

based on middle scale parcellation scheme with 96 regions has the highest AUCs.
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In previous analysis, we did not specify the streamline length threshold. To further 

investigate the impact of streamline lengths on constructing accurate brain connectome, we 

separated fiber streamlines into 3 groups by their length (0–5mm, 5–10mm, longer than 

10mm) and construct whole brain connectome based on different groups using similar 

approaches as previously. Then by taking tracing data derived connectivity as the truth, their 

reliability in constructing whole brain connectome were analyzed (Table 2). Interestingly, 

similar to the findings in (Thomas et al., 2014), different group of fibers has different 

preference in higher specificity or higher sensitivity. Short streamlines have higher 

specificity while long streamlines have higher sensitivity (especially for contralateral 

connections). Another interesting finding is that higher accuracy and precision were 

obtained with shorter fiber streamlines. Though long distance connection will be missing 

(false negative) when only considering short fiber streamlines, it will also reduce the 

number of false positive and increase the number of true negative at the same time. Since in 

our experiment, long distance connections reconstructed based on neuron tracer are 

relatively sparse, which means the chance to generate false positive long distance 

connection is relatively high, high accuracy and precision were obtained when excluding 

long fiber streamlines in analysis. However, the overall connections identified were reduced 

by only consider part of the fiber streamlines (reduced AUCs). Thus in successive analysis, 

the fiber streamlines were not filtered by length.

3.2 Tract-wise comparison

To evaluate the description power of Hausdorff distance and examine the performance of 

DTI tractography, we extracted DTI derived fiber streamlines with Hausdorff distances 

smaller than 0.5 mm to certain neuronal projection tracing for visual analysis (two examples 

showed in Figure 1 and 10 more examples showed in Figure S4). By visual check, we found 

that the identified corresponding DTI derived streamlines are close to the neuron tracing 

result which suggests that Hausdorff distance is powerful in measuring similarity between 

these two sets of data. On the other side, it can be seen that DTI tractography performs 

reasonably well in identifying major axonal projection pathways such as the contralateral 

connections of hippocampus including fornix system (Figure 1(a), the yellow arrows) and 

the projection pathways from somatosensory area (Figure 1(b)) including corpus callosum 

(the azure arrows) and corticospinal tract (the red arrows). Intriguingly, in addition to the 

major white matter pathways, our observation suggested that DTI tractography is also able 

to infer detailed axonal connections such as the projection from the somatosensory area to 

the motor area through layer 6 detected by neuron tracer as highlighted by the magenta 

arrows shown in Figure 1(b).

Our experiments showed that the correspondence can be precisely established between brain 

pathways identified by neuron tracing experiments and the DTI derived fiber streamlines in 

the case of small Hausdorff distances (smaller than 0.5mm) and when the Hausdorff 

distance is larger than 1mm, the correspondence between tracer labeled projections and fiber 

streamlines is not reliable (Figure 5(e)). By taking SHDs of DTI derived fiber streamlines to 

tracing experiments as a measurement, the reliability of DTI tractography was examined 

quantitatively. Our result suggests that most of the DTI derived fibers have relatively small 

SHDs (Figure 5(a)). 92.9% fibers have SHDs smaller than 0.5 mm and only 0.48% fibers 
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have SHDs larger than 1 mm (Figure 5(d)). This result suggests that DTI is in general 

reliable (>90% accuracy) in identifying meaningful axonal fibers. It is also worthwhile to 

examining further the remaining 7.1% of fibers with SHD larger than 1mm as where the 

causes of false tracking fibers embedded.

By our observation, most of these possible false tracking fibers were relatively long and 

were likely to be caused by the false merging/linking to different pathways (type I error) 

(Figure 5(b)). To better demonstrate it, we manually extracted those possible false tracking 

fibers projected from/to the left main olfactory bulb (MOB) and visualized them with white 

curves in Figure 5(c). It can be seen that most of these fiber streamlines form contralateral 

projections from/to left MOB. Previous neuron tracing study has pointed that the only 

efferent projection of MOB to the contralateral half of the brain was to the anterior olfactory 

nucleus (Shipley and Adamek, 1984), suggesting that those extracted DTI fiber streamlines 

with large SHDs are likely to be false tracking result – when the projection between MOB 

and hippocampal formation reconstructed, the algorithm mistakenly linked the streamline to 

the corpus callosum tracts and fornix system tracts, as highlighted by the dashed curves and 

red crosses in Figure 5(c).

In addition to the above mentioned false connections (type I error), we also noticed false 

breaks (type II error) that cannot be detected by SHD in our analysis. For instance, in Figure 

1(b), though the corticalspinal tract has been successfully reconstructed by DTI 

tractography, if we manually highlight those corticalspinal tracts (Figure 6(a)), a clear gap 

was observed between the tract and the isocortex. As a result, the connection between 

somatosensory area and the spinal regions identified by neuron tracers were not identified by 

DTI tractography. Another example is the efferent projection from nucleus of reunions (RE) 

to hippocampal formations such as the entorhinal area (ENT) or CA1 (Herkenham, 1978) 

identified by neuron tracers (highlighted by magenta curves in Figure 6(c)). Even though, 

the pathway has been partially identified by DTI derived axonal fibers, as highlighted by 

different colors in Figure 6(b), the pathway is composed by disjoint segments of DTI 

derived fibers. Thus no direct connection between RE and hippocampal formations can be 

identified by DTI tractography. Nevertheless, such type II error will be ignored by 

morphology descriptor such as SHDs proposed and can only be detected by analyzing 

regional connections. Facing such problem, in the next session, whole brain connectome in 

large scale will be compared between two sets of data to count both types of error globally 

and guide the selection of optimal parameters.

3.3 Connectome-wise comparison

We then compared the obtained connectomes on different scales based on neuron tracing 

and DTI data. We jointly visualized the binarized connectome matrices obtained based on 

DTI and neuron tracing in different annotation scales for ipsilateral connection (Figure 7) 

and contralateral connection (Figure 8). Intriguing, by visual check, we can see that DTI 

performs better in constructing ipsilateral connection than contralateral connection. Similar 

observation can also be obtained by comparing ROC curves in Figure 2 and Figure 3 and the 

AUCs in Table 1. It is also evident that a considerable amount of errors have been generated 

by DTI. Though DTI performs reasonably well when constructing connectome based on 
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optimal parameters, we could still see a considerable amount of disagreement between DTI 

derived connectome and neuron tracing derived connectome. For further analysis, we then 

clustered regions by their anatomical locations and computed the accuracy of DTI in 

constructing inner cluster connections and intra cluster connections. The result is shown in 

Table 3. The overall performance of DTI is relatively good across the whole brain. 

However, as highlighted by the red boxes, DTI displayed poor performance in constructing 

connections for stratium (STR) and cerebellum (CB). For STR, this is partially because it is 

surrounded by white matter fiber pathways and penetrated by axonal fiber bundles which are 

more easily identified by DTI as connected via axonal fibers. Thus more connections than 

expected were identified in this region that resulted in overwhelmed false positive 

connections. However, as for cerebellum, it is partially because only a few neuron tracing 

experiments (40) has been taken in current released of AMCA and relatively small dose 

neuron tracer was injected for some of them. As a result, fewer connections than reality were 

identified for brain regions in the cerebellum and current incomplete data cannot tell us 

much on DTI’s performance in the cerebellum. On the other side, as highlighted by the 

green box, DTI performed relatively well in identifying ipsilateral connections for 

retrohippocampal region (RHP), while performed relatively poor for contralateral 

connections. This is partially because RHP locates at the lateral part of the brain and long 

distance connections are required to form contralateral connections which DTI tractography 

failed to construct. On the contrary, for regions locate at the hindbrain that is close to brain 

midline (e.g. pons (P), medulla (MY)), DTI performs equally well to construct both 

ipsilateral and contralateral connections in coarser scale.

4 Discussion

By taking neuron tracing data in mouse brain in the AMCA as a validation tool, we have 

investigated the performance of whole brain DTI tractography and the corresponding large-

scale connectome. A novel framework was presented for quantitative comparison between 

DTI data and tracing data. With quantitative measurement, we showed that over ninety 

percent DTI derived axonal fibers could identify corresponding fiber pathways, which 

suggested that DTI is a reliable tool in studying major brain pathways. Yet we have revealed 

that the optimal parameters and the right scale of parcellation scheme are critical in 

constructing a reliable large-scale brain connectome. In comparison with angular threshold, 

FA threshold was shown having more impact on DTI tractography result. In our case, small 

FA threshold (0.1) generated the best result which agrees with the other’s work (Dauguet et 

al., 2007). Our results also suggested that to construct large-scale connectome, right 

parcellation scheme is very important and the size of analyzed brain regions should neither 

be too small nor too big. For our data, annotating mouse brain with 96 regions is the best in 

comparison with finer and coarser parcellation schemes. With the optimal parameters, the 

overall performance of DTI tractography is reasonably good in constructing large-scale 

connectome.

Overall, DTI can be a substantially more reliable tool to investigate brain connectome on 

the conditions that optimal parameters and the appropriate parcellation scheme were 

carefully selected. Nevertheless, our framework still detected type I and type II errors with 

DTI tractography. This agrees with the findings in macaque brain in (Thomas et al., 2014). 
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Not surprisingly, a considerable amount of disagreement between DTI constructed 

connectome and neuron tracing constructed connectome – especially in the contralateral 

connections and the connections of striatum and cerebellum – were noted. Though some 

type I errors can be accounted by the incompleteness of the neuron tracing data set such as 

those in the cerebellum, most of them might result from the inaccuracy of DTI tractography. 

These errors could be potentially caused by the complex wiring pattern in the brain (Jbabdi 

and Johansen-Berg, 2011) that cannot be modeled by the classic diffusion tensor model 

applied in this work. Notably, more comprehensive multi-orientation models such as Q-ball 

(Hess et al., 2006; Tuch, 2004), DSI tractography (Wedeen et al., 2008, 2005), or 

susceptibility tensor imaging (STI) (Liu et al., 2012) could be used to reduce the possibility 

of such breaking or missing fibers by considering fiber bundle cross in the model. On the 

other hand, instead of the limited accuracy of DTI tractography, some errors could also be 

caused by the registration error. Since it is quite challenging to register images from 

different modalities and there is zig-zag effect in stitched sections of AMRA, current study 

applied linear registration and images were not perfectly aligned before analysis. Thus, 

with specially designed registration algorithm dedicated to this problem and the better 

quality data, it would be interesting to benchmark and compare the advanced tracing models 

on their performance in constructing fiber pathways (Fillard et al., 2011) and whole brain 

connectome and to investigate the effect of individual variability and acquisition variability 

on tractography results.

Notably, the evaluation of DTI tractography obtained based on the proposed framework may 

not be readily applicable to human brains at the current stage. Given the significant 

differences between the nature of human brain and mouse brain such as size and anatomical 

structures, it is still an open question on how to link the findings in the brain of these two 

species. From DTI data acquisition perspective, the image resolution is also very different 

(e.g. mouse: 50–100 micron resolution (Calamante et al., 2012; Zhang et al., 2002), human: 

1–3 mm resolution (Hansen et al., 2011; Sotiropoulos et al., 2013)), thus the microstructures 

inferred by tractography in mouse and human brains have a magnitude difference (Mori and 

Zhang, 2006; Xu et al., 2008). Also, the DTI data in mouse brains is post-mortem which 

allows long scanning time for more details and low SNR, but it will influence water 

molecule diffusion properties in comparison with live brain applied in human study at the 

same time. However, the principles and methods of dMRI and the tractography approaches 

are virtually the same in all animal models. The findings in this paper largely agree with the 

recent findings in macaque brain which is more comparable to human brain that dMRI 

tractography has limited accuracy in inferring brain structural connections and there is 

tradeoff between sensitivity and specificity (Thomas et al., 2014). It is noteworthy to 

mention that the study in macaque brain was limited to only two tracer injections. By 

comparison, our proposed framework and the corresponding findings are based on the 

AMCA dataset which includes 1772 tracer injections that covers the whole brain. Our 

proposed framework can be applied as a reliable test bed for dMRI tractography, and should 

be generally applicable to the assessments of the performance of advanced dMRI 

approaches, guiding a better design of tractography algorithms, and the optimization of 

parameters and parcellation schemes. On a higher level, as mammal animals, the mouse 

brain still shares certain level of common anatomy and function mechanisms as the human 
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brain (Song et al., 2014) which is an importance source of knowledge in understanding brain 

mechanisms. And to fully understand brain mechanisms, it is more desired to validate 

findings in different scales, different modalities, and different animal models including 

mouse (e.g. Jbabdi et al., 2013; Jiang, 2013; Rilling et al., 2008; Zhang et al., 2013).

Most importantly, based on our findings, we would like to draw attention to those studies 

that rely solely on DTI tractography to study brain connections: DTI can be a substantially 

more reliable and useful tool with optimized tractography parameters and brain parcellation 

schemes. If these conditions are not met and the performance is not tested, DTI-generated 

connection maps may contain numbers of the potential errors which can lead to erroneous 

conclusions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

1. Joint evaluation of DTI and neuron tracing data.

2. Performance of whole brain DTI tractography has been evaluated by ground 

truth.

3. With optimized parameters and scales, we can substantially more confidently 

trust DTI.

4. Serving as a ground truth method to facilitate the development of novel fiber 

tracking algorithms.
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Figure 1. 
Two examples of a joint 3D view of neuron tracers and the corresponding DTI derived 

axonal fibers (with Hausdorff distance smaller than 0.5 mm) from different views. For each 

sub-figure, 3D rendering of tracer density is shown on the left and the corresponding DTI 

fiber tracks are shown on the right together with injection sites highlighted by white arrows. 

A transparent reconstructed cortical surface is also shown in each figure. (a) Injection site 

locates at CA3. (b) Injection site locates at the somatosensory area.
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Figure 2. 
ROC curve for DTI derived ipsilateral connectome on the right hemisphere with different 

parameters using different percolation schemes by taking tracing experiments based 

connectivity as truth. The fiber tracking termination angle varies from 40 degree to 80 

degree. The FA threshold for fiber tracking to start and stop varies from 0.1 to 0.3. For each 

combination of tractography parameters, a ROC curve is generated with the threshold of 

fiber number to establish connectivity changes alone the curve. Color legend is shown on the 

right bottom of each sub-figure. (a),(b),(c): the brain is parcellated into 300, 96, and 69 

regions accordingly. (d) When the FA threshold is 0.1, comparisons across different 

parcellation scales are shown.
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Figure 3. 
ROC curve for DTI derived contralateral connectome with different parameters using 

different percolation schemes by taking tracing experiments based connectivity as truth. The 

fiber tracking termination angle varies from 40 degree to 80 degree. The FA threshold for 

fiber tracking to start and stop varies from 0.1 to 0.3. For each combination of tractography 

parameters, a ROC curve is generated with the threshold of fiber number to establish 

connectivity changes alone the curve. Color legend is shown on right bottom of each sub-

figure. (a),(b),(c): the brain is parcellated into 300, 96, and 69 regions accordingly. (d) When 

the FA threshold is 0.1, comparisons across different parcellation scales are shown.
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Figure 4. 
Examples of improvements of DTI derived connectome after parameter optimization. Whole 

brain is annotated by 96 regions with the center of each one represented by white sphere. 

(a)–(c): Visualization of ipsilateral connectome derived from DTI tractography when 

different parameters were selected. Result based on optimal parameters is shown in (b). In 

(a), threshold of fiber number to establish connection is not optimized and set to 1. In (c), 

the parameters for fiber tracking are not optimized. (d) Visualization of eliminated false 

positive connections from the result shown in (a) after optimizing fiber threshold. (e) 

Visualization of improvements from the result shown in (c) after optimizing tracking 

parameters.
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Figure 5. 
(a) Visualization of fibers projected to/from the right hemisphere. Each fiber is color-coded 

by its SHD to all the neuron tracer volumes (color bar on the top left). Fibers were set 

transparent for better visualization. (b) Visualization of all the fibers with SHD larger than 

1mm. Fibers are color coded by local orientations. (c) Manually selected fibers that have 

SHD larger than 1mm from the left main olfactory bulb (MOB) as highlighted by the red 

circle. (d) Histogram of SHD for all fibers projected to/from the right hemisphere. (e) 

Visualization of fibers with certain Hausdorff distance to the neuron trace shown on the left.
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Figure 6. 
3D visualizations of the neuron tracing volume (left) and the corresponding fiber tracks 

(right) with type II error. (a) For the study shown in Figure 1(b), cortical-spinal projections 

were manually selected and highlighted by the white curves. A gap can be clearly observed 

between fiber streamlines and the cortex as highlighted by the white arrow. (b)–(c) A neuron 

tracing study with injection site locates in the nucleus of reunions (RE). As highlighted by 

the magenta dash curve, the connection follows the cingulum and is projected to the 

entorhinal area and CA1. Though the corresponding DTI streamlines were identified 

successfully, it is broken down into 3 segments as represented by the azure, green, and 

yellow curves shown in (b).
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Figure 7. 
Comparison of mouse brain ipsilateral connectome derived from neuron tracer or DTI using 

different percolation schemes. For neuron tracer, when the p-value of correlation coefficient 

between an injection site and a projection site is larger than 0.05, the projection will be 

identified as from the injection site to the projection site. For DTI, when number of fibers 

connected between two regions is larger than the threshold, these two regions were 

identified as being connected. The optimal threshold is selected based on the ROC curve 

accordingly. DTI tractography was performed based on the following parameters: FA 

threshold: 0.1, angular threshold 40. (a) 300 regions. (b) 96 regions. (c) 69 regions. The red 

color represents common connections detected by both approaches. The violet color 

represents connections detected by neuron tracer only. The azure color represents 

connections detected by DTI only.

Chen et al. Page 24

Neuroimage. Author manuscript; available in PMC 2016 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Comparison of mouse brain contralateral connectome derived from neuron tracer or DTI 

using different percolation schemes. For neuron tracer, when the p-value of correlation 

coefficient between an injection site and a projection site is larger than 0.05, the projection 

will be identified as from the injection site to the projection site. For DTI, when the number 

of fibers connected between two regions is larger than the threshold, these two regions were 

identified as connected. The optimal threshold is selected based on the ROC curve 

accordingly. DTI tractography was performed based on the following parameters: FA 

threshold: 0.1, angular threshold 40. (a) 300 regions. (b) 96 regions. (c) 69 regions. The red 

color represents common connections detected by both approaches. The violet color 

represents connections detected by neuron tracer only. The azure color represents 

connections detected by DTI only.
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Table 3

Accuracy of DTI constructed connectome for inner and inter regional connections.
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