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Abstract

Diffusion MRI provides quantitative information about microstructural properties which can be 

useful in neuroimaging studies of the human brain. Echo planar imaging (EPI) sequences, which 

are frequently used for acquisition of diffusion images, are sensitive to inhomogeneities in the 

primary magnetic (B0) field that cause localized distortions in the reconstructed images. We 

describe and evaluate a new method for correction of susceptibility-induced distortion in diffusion 

images in the absence of an accurate B0 fieldmap. In our method, the distortion field is estimated 

using a constrained non-rigid registration between an undistorted T1-weighted anatomical image 

and one of the distorted EPI images from diffusion acquisition. Our registration framework is 

based on a new approach, INVERSION (Inverse contrast Normalization for VERy Simple 

registratION), which exploits the inverted contrast relationship between T1-and T2-weighted brain 

images to define a simple and robust similarity measure. We also describe how INVERSION can 

be used for rigid alignment of diffusion images and T1-weighted anatomical images. Our 

approach is evaluated with multiple in vivo datasets acquired with a different acquisition 

parameters. Compared to other methods, INVERSION shows robust and consistent performance 

in rigid registration and shows improved alignment of diffusion and anatomical images relative to 

normalized mutual information for non-rigid distortion correction.
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1. Introduction

Diffusion MRI is a non-invasive imaging technique that can provide quantitative and 

qualitative information about microstructural tissue properties in vivo [1–3]. Quantitative 

information about diffusion processes can be combined with T1-weighted anatomical 

images in order to identify, delineate, and quantify the microstructural characteristics of 

neuro-anatomical structures and the white matter connections between them. In order to 

jointly analyze these images, they must first be co-registered [4, 5].

There are two primary challenges in accurate co-registration of T1-weighted and diffusion 

images. First, diffusion MRI frequently uses Echo Planar Imaging (EPI) for data acquisition, 

which results in localized susceptibility-induced distortions in the reconstructed diffusion 

weighted images (DWIs) as a result of inhomogeneities in the primary magnetic (B0) field. 

These distortions can be particularly pronounced in regions where susceptibility is rapidly 

changing, such as at the interfaces of soft tissue, air and bone [4, 6, 7]. Second, co-

registration of T1-weighted and diffusion images (distorted or undistorted) is difficult 

because the images are sensitive to different physical properties of the underlying tissue and 

exhibit very different image contrast. This makes it an inter-modal registration problem [8–

10]. When an accurate estimate of the B0 fieldmap is available, several methods can be 

employed for accurate correction of the localized susceptibility-induced EPI distortion [6, 

11–19]. However, accurate B0 fieldmap information is not available in many neuroimaging 

studies and in this paper we present a registration-based method for EPI distortion correction 

in absence of a fieldmap.

In registration-based methods the distortion field is generally estimated by a non-rigid 

alignment of the distorted EPI image with no diffusion weighting (i.e. a T2-weighted (T2W) 

EPI image with a diffusion b-value of 0 s/mm2) to an anatomical image with negligible 

geometric distortion [20–28]. A T2W-EPI image is commonly used for this purpose because 

it shows similar image structure to an anatomical image, is almost always acquired in 

quantitative diffusion studies and manifests very similar distortion as different DWIs [23–

28]. Most methods use a T2-weighted anatomical image since these have similar contrast to 

the T2W-EPI image [20–22, 24–26]. In our approach we use T1-weighted anatomical 

images as they are frequently acquired in brain-mapping studies to delineate cortex and sub-
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cortical anatomical structures. Since the contrast of a T1-weighted anatomical image is 

different from that of the T2W-EPI image, previous approaches [23, 27, 28] use standard 

inter-modality cost functions that are insensitive to contrast differences (e.g., mutual 

information (MI) [29–31] or correlation ratio (CR) [32]). Both MI and CR lead to non-

convex and non-smooth optimization problems that can be challenging to solve [8–10, 33–

36]. In this paper we propose a new approach, INVERSION (Inverse contrast Normalization 

for VERy Simple registratION), that exploits the approximately inverted contrast 

relationship between T1- and T2-weighted brain images to transform the contrast of one 

image into the contrast of the other. This means that the complicated inter-modal 

registration problem can be simplified to an intra-modal registration problem, which is 

easier to solve and is less sensitive to highly-misaligned images. We use INVERSION both 

for co-registration of T1-weighted anatomical and diffusion images and for fieldmap-free 

susceptibility-induced distortion correction1.

INVERSION is similar in concept to previous methods that estimate synthetic image 

contrast [38–45]. Specifically, some MRI-PET [38] and MRI-ultrasound [39] co-registration 

methods also use image contrast transformations, though these transformations are generally 

quite complicated and depend on an initial tissue segmentation. Choi et al. [40] use a similar 

contrast transformation to enhance registration-based distortion correction, but do not use 

physics-based constraints on the non-rigid deformation field [6, 20]. Other approaches use a 

multiple-contrast atlas to estimate image intensities for different modalities, either using a 

non-rigid registration framework [41] or using a patch-based sparse intensity prediction 

approach [42]. These approaches require solving large optimization problems, whereas 

INVERSION is computationally cheaper and does not require the construction of an atlas. 

INVERSION also has similarities to a histogram bin transformation approach [43] for 

registration of MRI and CT images, although that approach requires user interaction to setup 

the intensity bin mapping between the histograms of the images while INVERSION is 

completely automated. In other similar registration methods, a contrast relationship is 

estimated by using the joint histogram [44] or by assuming a polynomial relationship 

between the intensities of different images [45]. Both these approaches perform nicely when 

the registration parameters are initialized well, but poorly otherwise. INVERSION uses an 

intensity mapping that matches the histograms of the two images so that registration works 

well even for large displacements between the two images.

The methods described in this paper are implemented in the BrainSuite Diffusion Pipeline 

(BDP) software, freely available from http://brainsuite.org/. Since conventional inter-

modality registration approaches perform well when they have good initializations [33, 35], 

also seen in our evaluations (section 3), we use Normalized Mutual Information (NMI) [31] 

based registration to further refine the deformation field estimated by INVERSION 

approach in our software implementation. This makes the whole registration framework in 

BDP robust to large misalignment and aligns the images accurately. Note that in this paper 

we are only interested in evaluating the performance of INVERSION alone and we do not 

1Diffusion MRI images can also be subject to other forms of distortion and misalignment, e.g., due to eddy currents, gradient 
nonlinearities, motion etc. [4, 6, 37]. In this work, similar to previous approaches [22, 23, 27, 28], we assume that these other sources 
of distortion are negligible.
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use NMI based registration after INVERSION in any of the results except Fig. 5. BDP also 

includes multiple methods for modeling diffusion processes such as diffusion tensor and 

orientation distribution functions.

2. Material and methods

EPI images can contain geometric distortions in the presence of B0 inhomogeneity. Fig. 1 

shows an in vivo example: while the T1-weighted image has negligible geometric distortion, 

the T2W-EPI image is substantially distorted. This leads to discrepancies between the two 

images when they are rigidly aligned to each other without distortion correction. 

Specifically, it can be noticed that image edges do not align correctly in distorted regions. 

We assume a standard DWI acquisition in which all images have the same EPI phase 

encoding direction (PED), as used in the vast majority of modern DWI acquisitions.2

2.1. Inter-modal image registration

Image registration finds a spatial transformation of a moving image (I1) which aligns it to a 

static image (I2). The spatial transform is typically represented as a deformation map φ : X2 

→ X1 from the static image coordinate X2 to moving image coordinate X1. The optimal φ 

can be estimated by minimizing a cost-function of the form [ (I2, I1 ∘ φ) + α (φ)] where 

(·) measures dissimilarity between the images, I1 ∘ φ is the transformed moving image such 

that (I1 ∘ φ) (X2) = I1 (φ(X2)), (·) is a regularization function that penalizes non-smooth 

deformation maps, and α is a regularization parameter [8, 9].

The choice of dissimilarity measure (·) is crucial for accurate registration of the images 

and it is desirable that (·) be sensitive to slight differences in alignment between the 

images. CR and MI are common dissimilarity measures that depend on the relationship 

between the distributions of the image intensities [30–32] and have been used widely in 

inter-modal registration [8–10]. However, both are non-convex and non-smooth over the 

transformation space which makes the cost-function difficult to minimize [8–10, 33–36]. 

INVERSION enables robust and consistent performance by making use of a smoother and 

simpler dissimilarity measure based on the sum of squared differences (SSD).

SSD is a simple dissimilarity measure between two images I1 and I2 expressed as [9]

(1)

where Ω represents the set of voxels that are present in both the images and Nv is the 

cardinality of Ω. SSD is a well-behaved measure in images with similar contrast [9]. 

However, SSD is generally not appropriate for inter-modal registration problems [9, 50]. We 

use the INVERSION approach to first transform the contrast of the T2W-EPI image to look 

like that of the T1-weighted image (or vice versa) which allows us to exploit the nice 

properties of the SSD cost function.

2In special cases where data is available with multiple different PEDs, the method described in this paper is likely to be suboptimal 
relative to more advanced methods that leverage additional information about the structure of multi-PED data [16–19, 46–49].
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2.2. INVERSION

INVERSION is motivated by the fact that both T1- and T2-weighted images from the same 

subject have similar anatomical structure but have an approximately inverted contrast 

relationship. Specifically, the image intensities are ordered such that white matter > gray 

matter > CSF in a T1-weighted anatomical image, while CSF > gray matter > white matter 

in a T2-weighted image. In the INVERSION method, we define the dissimilarity measure 

between T1-weighted anatomical image IT1 and a corresponding T2W-EPI image IEPI as 

(2)

where  (IEPI) transforms the intensity of IEPI to match the contrast of IT1,  (IT1) 

transforms the intensity of IT1 to match the contrast of IEPI and β is a scalar weighting 

parameter determined experimentally. We assume, without loss of generality, that the 

intensities of both IT1 and IEPI are normalized to lie in the range [0,1] and express the first 

contrast matching transform as (IEPI) = [fIT1,IEPI(1 − IEPI) · MIEPI] where MIEPI is a binary 

image representing the brain mask for the T2W-EPI image and fIT1,IEPI (·) is a 

monotonically increasing histogram matching function which is computed by matching the 

histograms of intensities inside the brain masks of the anatomical image IT1 and the inverted 

T2W-EPI image (1 − IEPI).  (IT1) is expressed in a similar fashion as  (IEPI) i.e. by 

interchanging IT1 and IEPI. We use histogram matching because both the T2W-EPI and T1-

weighted image are acquired for the same subject and should depict the same tissues and 

tissue boundaries, but may differ in the intensities of each tissue. As a result, an intensity 

transformation should be able to approximately match the histogram of the images. We used 

our implementation of the histogram matching method described in [51] to estimate fIT1,IEPI 
(·). In our studies, the brain masks are obtained by intensity thresholding of the T2W-EPI 

image and by using the BrainSuite software [52] for the T1-weighted image. An example of 

the INVERSION intensity transformation is shown in Fig. 2 for an in vivo dataset.

Our registration-based distortion correction is initialized using a simple rigid alignment of 

the T2W-EPI and T1-weighted anatomical images (described in Section 2.2.1), which is 

followed by non-rigid registration to estimate the distortion (described in Section 2.2.2). 

Note that even if the DWIs have been distortion corrected using other methods, a rigid 

alignment is required for co-registration of the T1-weighted anatomical image and diffusion 

images. As a result, the rigid registration approach described in Section 2.2.1 is still useful 

in, e.g., cases where a B0 fieldmap was acquired.

2.2.1. Rigid alignment using INVERSION—For rigid alignment, we set the T2W-EPI 

image (IEPI) as the static image and we seek to estimate a rigid transformation φR1: XEPI → 

XT1 that maps the EPI coordinate XEPI to the corresponding T1-weighted anatomical 

coordinate XT1. The optimal rigid transformation φR1 is estimated by solving 

(3)
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where IT1 ∘ φR1 is the transformed T1-weighted anatomical image. The rigid transformation 

φR1 is parametrized by a vectors of six elements, representing translational and rotational 

components. Note that the contrast matching functions  (·) and  (·) are independent of 

rigid alignment and only need to be calculated once as a pre-computation before the actual 

registration process begins. In our experience, we found that the first contrast matching term 

in Eq. (2) is sufficient to obtain an accurate rigid alignment, so we set β = 0 in eq. (2) while 

solving Eq. (3), which also lowers the computational requirements.

We use a two step method to achieve robustness to local minima for large transformations 

while solving Eq. (3). Our first step involves a coarse grid search to quickly initialize with 

reasonable rotation parameters. Similar to other approaches [8–10], we use the centroids 

(center of mass) of each image to define the origins of their respective coordinate systems. 

Then we evaluate the registration cost function for each of several different rotations from a 

coarse grid defined over the three Euler angles. To enhance computational speed, this step is 

performed using low resolution images, which are generated by applying a Gaussian blur 

with a full-width at half-maximum (FWHM) of 5mm, followed by downsampling. For 

typical datasets (such as those shown in our results), this first stage requires 15–20 seconds 

to search over 2197 different rotations (stepsize of 15° over range of −90° to 90° for each 

Euler angle) on a modern 4-core 2.10GHz processor.

The second step applies a simple gradient descent approach to refine the registration 

parameters, initialized with the best rotation parameters found in the first step. We use 

numerically-computed gradients and a multi-resolution approach. Our two-step approach 

does not guarantee finding the globally-optimal solution, but is both fast and simple. In 

addition, our experience suggests that the well-behaved nature of the INVERSION cost 

function makes our approach robust to local minima and increases the chances of accurately 

aligning the images.

2.2.2. Distortion correction using INVERSION—Susceptibility-induced geometric 

distortions in diffusion MRI images are commonly modeled as being 1-dimensional as they 

occur primarily along the PED and are generally negligible along the readout and slice 

directions [11, 12, 23]. We can express the deformation due to B0 inhomogeneity as a map 

φΔB0: XU → XEPI which maps the coordinate XU = (xU, yU, zU) in an ideal undistorted 

image to the erroneous coordinate XEPI = (xEPI, yEPI, zEPI) in a distorted EPI image. 

Assuming that the PED is oriented along the y-axis, the ideal undistorted image IU and 

distorted EPI image IEPI are related as [11, 12, 20]

(4)

Further,  where ΔB0 is the 

B0 inhomogeneity (units of T), γ is the gyromagnetic ratio (2.675×108 rad/s/T for protons), τ 

is the echo-spacing in seconds, N is the number of phase encoding steps in the EPI 

acquisition and λy is the spatial resolution of each voxel along the PED in appropriate units.
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In the absence of a fieldmap, we estimate ΔB0 by registering the distorted IEPI to the 

undistorted anatomical image IT1 in a non-rigid registration framework. This requires 

estimation of a non-rigid deformation map (φΔB0) which would undistort IEPI and a rigid 

transformation φR2: XU → XT1 which would align IT1 to the undistorted image IU. The 

optimal map is obtained by solving 

(5)

where  is a regularizer explained later and α is a scalar weighting parameter determined 

experimentally.  (·) is defined in eq. (2) with β equal to the ratio of mean intensities of 

IT1 and IEPI. In principle, we could have estimated a rigid transformation that maps the 

undistorted EPI image to the T1 image, instead of the other way around. The choice shown 

in Eq. (5) was motivated by computational efficiency. We parameterize φΔB0 as the outer 

product of 1D cubic B-spline kernels with uniformly spaced control points and coefficients 

Φi,j,k corresponding to the (i, j, k)th control point [53, 54]. In order to constrain the 

deformation along the PED, we only allow the y-coefficient of Φi,j,k to change while solving 

Eq. (5). We repeat and interpolate the end control points so that the deformation field is 

well-behaved everywhere, including along the boundary [53]. We use a regularizer that 

penalizes the roughness of the control-point coefficients as described in [55]. In our 

framework it is expressed as 

(6)

where (Φi,j,k) is the set of control-points that are neighbors of Φi,j,k. This penalty 

encourages smoothness of the deformation field [55].

We solve Eq. (5) using a multi-resolution approach, which helps to avoid local minima and 

enables faster computation [8, 9]. Prior to solving Eq. (5), we rigidly align the T1-weighted 

image to the distorted T2W-EPI image using the method described in sec. 2.2.1. The 

contrast matching functions (·) and (·) depend on the estimate of φΔB0 (as the intensities 

in the T2W-EPI image are modulated by the Jacobian of the transformation) and so they 

should, ideally, be updated at each iteration. However, we found that changes in the contrast 

matching function were negligible at each iteration and so we only compute once at the 

beginning of each level of the multi-resolution approach. In our implementation the B-spline 

control points are refined twice, starting from a separation of 28mm to final separation of 

7mm, in a multi-resolution approach using the Lane-Riesenfeld Algorithm [56]. We use a 

simple gradient descent method for all the optimization and use analytical expressions for 

the gradients for efficient computation.

2.3. Materials

2.3.1. Experimental data—We evaluated the performance of the INVERSION method 

using simulated and multiple in vivo datasets. For simulations, we used images available 
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from BrainWeb (http://brainweb.bic.mni.mcgill.ca/brainweb/) [57]. Although the BrainWeb 

phantom is artificially simple in contrast and image features, the availability of ground truth 

offers useful insight into the performance of the method. We used a simulated T2-weighted 

spin echo image (TR=10000m, TE=120ms, Flip angle=90°, 2mm slice thickness) as the 

undistorted T2W-EPI image and also simulated a corresponding T1-weighted MPRAGE 

image with 1mm isotropic resolution. To simulate EPI distortion, we used a real B0 

inhomogeneity map taken from an in vivo scan as ground truth distortion map and used a 

least-squares time segmentation approach to model the effects of field inhomogeneity on k-

space data [58, 59]. We also added Gaussian noise to the modulus distorted image (in the 

image domain). The simulated distorted EPI image is shown in Fig. 7(b).

We also evaluated performance using a total of 22 in vivo single-shot EPI diffusion brain 

scans. All scans were acquired on 3T scanners and B0 fieldmaps were used as references to 

evaluate the registration-based deformation estimates. These 22 scans are divided into three 

different groups with different acquisition parameters, as summarized in Table 1. The 

differences in acquisition parameters ensures a more comprehensive evaluation of the 

proposed method.

Dataset-1 was a single-subject dataset, with the acquisition specifically designed to yield a 

good distortion-corrected reference image. Specifically, we used a specialized acquisition 

scheme for dataset-1 where we acquired each diffusion image with 4 different PEDs, which 

were combined to form a distortion-corrected reference image using the accurate 4-PED full 

method described in [17]. Datasets-2 and 3 represent typical diffusion images from ongoing 

neuroscience studies. Dataset-2 includes 10 subjects that were scanned at the University of 

Southern California under a grant to Hanna Damasio, PI, from the Air Force Office of 

Scientific Research (FA9620-10-1-109). Dataset-3 includes 11 subjects obtained from the 

NKI-Rockland sample [60].

2.3.2. Dissimilarity measures for evaluation—In our evaluation, we compare 

INVERSION against in-house implementations of normalized mutual information (NMI) 

and CR. For a pair of images I1 and I2, NMI is defined as [31]

(7)

where H(I1, I2) = −Σi,j p(i, j) log p(i, j) is the standard joint entropy computed from joint 

intensity histogram p(i, j) of I1 and I2; and H(I1) and H(I2) are the marginal entropies 

computed similarly, but using the marginal histograms for I1 and I2 in place of the joint 

histogram. We used a Parzen window estimate [61] for all histograms and used only the 

intensities from voxels in the overlapping region of the two images. CR is defined as [32]

(8)
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where I2,k = {I2(ω); ω ∈ Ωk},  is the kth iso-set of I1 in the 

image overlap region Ω, and Nv and Nk are the cardinalities of Ω and Ωk respectively. In our 

implementation, we also used cost apodization for CR similar to that described in [36].

3. Results

3.1. Evaluation of dissimilarity measures

We studied the behavior of the different dissimilarity measures by observing how the 

different measures change when a T1-weighted image is misaligned from a corresponding 

co-registered T2W-EPI image. We used the accurate 4-PED full distortion corrected T2W-

EPI image from dataset-1 for these experiments in order to avoid confounding factors due to 

distortion present in the diffusion datasets. To generate a gold standard co-registration, the 

T1-weighted image was rigidly registered to the T2W-EPI image using a manual procedure 

in Rview (http://rview.colin-studholme.net). The co-registered image pair was visually 

confirmed to have accurate alignment. Figure 3 illustrates the behavior of the different 

dissimilarity measures as we misalign the T1-weighted image by applying translation or 

rotation. Since multi-resolution approaches are commonly used for registration, this 

comparison is performed with several different degrees of Gaussian smoothing. Since CR is 

not a symmetric measure [32], i.e., (I1, I2) ≠ (I2, I1), we have plotted the two different 

versions of the CR measure that result from the two different possible choices of I1. For the 

INVERSION measure, we use β = 0 in these experiments as both the terms in eq. (2) are 

based on SSD and we observed no improvement in performance by including the second 

term for rigid registration.

We show the behavior of misalignment with only translational components in Fig. 3(a) and 

with only rotational components in Fig. 3(b). The translation experiment (Fig. 3(a)) shows 

that the behavior of all cost functions is smooth when the Gaussian smoothing is large. 

Having a smooth cost function makes it easier to accurately solve the optimization problem, 

and helps justify the use of a multi-resolution approach. However, we observe that both the 

CR and NMI measures exhibit non-convex behavior when the translation is large. In 

contrast to CR and NMI, the INVERSION dissimilarity measure has a convex appearance 

even for large translational misalignment. The shape of this function suggests that it might 

be better-suited than CR and NMI for robustly finding the translational components.

The rotation experiment (Fig. 3(b)) shows similar behavior i.e. all cost functions are smooth 

when the Gaussian smoothing is large. However, all cost functions show non-convex 

behavior at large rotational misalignment and have local minima away from the globally-

optimal solution for all levels of Gaussian smoothing. This means all the method could 

struggle to converge to the optimal solution using local optimization methods. This justifies 

our use of coarse grid search in Sec. 2.2.1 to find a good initialization with a limited number 

of cost evaluations. Fig. 3(b) shows that among all measures, the INVERSION measure has 

the widest area around the optimal solution which is well-behaved, especially for large 

Gaussian smoothing. This suggests that it has a higher chance of finding a good initial 

estimate in the coarse search over the rotation parameters and could avoid the need for 

multi-start optimization.
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Expanding on our previous experiment, we next examined the characteristics of the different 

dissimilarity measures by performing rigid registration, without any initialization, of the T1-

weighted and T2W-EPI images after applying known rigid transformations to the T1-

weighted image. Specifically, we applied 96 known rigid transformations: 32 with only 

translation, 32 with only rotation and 32 with both translation and rotation. For each trial and 

each dissimilarity measure (NMI, CR, and INVERSION), a 6-parameter rigid registration 

was performed without any initialization and the residual root mean square (RMS) error in 

the rigid alignment was computed for each trial. The RMS errors were computed using the 

method described in [10, 62] where we represent the rigid transformations as 4×4 affine 

matrices. Specifically, for each applied (known) rigid transformation A, we obtain an 

estimated transformation Â from the registration procedure. The RMS error in millimeters is 

then given by  where a is the radius of the brain region (with 

a spherical approximation), while M is a 3×3 matrix and t is a column vector of length 3 

computed according to . For CR based registration, we used the 

T2W-EPI image as I1, since as suggested by Fig. 3, this leads to a better-behaved cost 

function and higher accuracy.

The results of this evaluation are shown in Fig. 4. In the absence of any initialization, the CR 

and NMI based methods perform well for small misalignments (approximately less than 10 

mm) but perform poorly when the misalignment is large. This observation is consistent with 

the relatively flat behavior of these measures and presence of local minima that was 

observed in Fig. 3. In contrast, the INVERSION method consistently showed good 

performance across all transformations and was robust to large transformation even without 

any initialization. This demonstrates the well-behaved nature of INVERSION over a wider 

region around the optimal solution. However, it should be noticed that whenever the NMI 

based measure performed well, it showed lowest error among all the measures. This could 

probably be explained by the fact that it makes the fewest assumptions about the different 

images, and is therefore the least sensitive to assumption violations. This motivated us to use 

the NMI based registration as a refinement step after INVERSION in our software 

implementation. Fig. 5 shows a result of such refinement (note that all other results 

presented in this paper do not use any NMI-based refinement). It can be noticed that most 

edges are well aligned with sulci and gyri after INVERSION and the NMI-based refinement 

adds a very subtle improvement.

3.2. Comparison with existing methods for rigid-alignment

We also compared INVERSION to two registration methods provided in the FMRIB 

Software Library (FSL) [13] in a rigid registration experiment similar to that described in 

the previous section. We used the default settings with 6 degrees of freedom on FMRIB’s 

Linear Image Registration Tool (FLIRT version 6.0) as the first method which uses a CR-

based cost function in a hybrid global-local optimization approach for inter-modal rigid-

registration [10, 36]. For the second method we used EPI-Reg (http://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/FLIRT/UserGuide#epi_reg) which uses a boundary-based cost function [63] along 

with FLIRT’s global-local optimization approach. These two methods were selected for 
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comparison because FLIRT is widely used for affine registration by brain-mapping 

community and because EPI-Reg is specifically designed for registration of EPI images to 

anatomical (e.g. T1-weighted) images. We applied 194 known (randomly generated) rigid 

transformations to the pre-registered T1-weighted MPRAGE image from the previous 

section and used all the methods to estimate the rigid deformation. We used the accurate 4-

PED full distortion corrected T2W-EPI image from dataset-1 as the static image for all the 

methods to avoid confounding factors due to distortion. Fig. 6(a) and (b) compares the 

performance of different methods in this experiment. The results show that all the three 

methods show low RMS error across all applied transformations. EPI-Reg performs better 

than FLIRT in most cases, which is expected as EPI-Reg is specifically tailored for 

registration with EPI images and uses a sophisticated tissue classification for boundary-

based cost function. The proposed INVERSION method shows consistent behavior and the 

lowest RMS error for most of the applied transformation. Fig. 6(b) summarizes of the 

performance across all the applied transformation and indicates that the INVERSION based 

method outperforms all the other methods in this comparison.

3.3. Evaluation of INVERSION-based distortion correction

We first evaluated the proposed distortion correction method using the BrainWeb simulation 

data, comparing the distortion field estimated by INVERSION with the ground truth B0 

inhomogeneity map. Fig. 7(a) shows this comparison as a joint-histogram, which was 

computed using a Parzen-window estimate of the binned voxel counts. For ideal distortion 

correction, the joint histogram should be concentrated along the 45° line where the estimated 

distortion is equal to the true distortion. As seen in Fig. 7(a) our distortion estimate closely 

follows the ground truth. The mean absolute error in the displacement estimate was 0.8 ± 1.4 

mm inside the brain mask. Fig. 7(b) shows a qualitative result of the corrected T2W-EPI 

images with edge maps from the anatomical image overlaid in red. It can be noticed that 

edges align well with sulci and gyri accurately after INVERSION based distortion 

correction.

Next, we evaluated the performance of the proposed registration-based distortion correction 

method using several in vivo datasets. We measured performance by comparing the 

INVERSION displacement field against that from the corresponding fieldmap. We also 

compared the performance of the proposed method to that of a NMI-based distortion 

correction method, described in [23]. A MI-based method was used for this comparison 

because it has been used for EPI distortion correction in several previous approaches [20, 

23–25, 27, 28] and because MI-based methods are widely used for inter-modal registration 

[8, 9, 30, 31]. We present the results using the two methods for dataset-1 in Fig. 8. Fig. 8(a) 

shows the joint-histogram of the displacement estimates and the reference inside the brain-

mask. As seen in the figure, the NMI-based method performs well for small distortions, but 

has large deviations from the 45° line for larger distortions. In contrast, the joint histogram 

for the INVERSION method is more concentrated around the 45° line indicating overall 

better estimation of distortion field in most areas. Fig. 8(b) summarizes the performance of 

both the methods across all the voxels. For easier comparison we divide all the voxels in two 

sets, one set with minimal distortion (less than 2mm of reference displacement) and the 

other with severe distortion (more than 2mm of reference displacement). The INVERSION 
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approach shows overall lower absolute error in the displacement estimates for all the voxels 

as compared to NMI-based distortion correction. Fig. 8(c) shows a qualitative comparison of 

the corrected T2W-EPI images with edge maps from the anatomical image overlaid in red. 

We also show the corrected T2W-EPI images using the acquired fieldmap for reference. 

From the overlay images, it can be noticed that both the registration-based methods show 

similar alignment of anatomical structures, however there are some differences. The NMI 

based correction shows poorer performance in areas with severe distortion as can be seen in 

frontal and occipital areas of the brain. The INVERSION based distortion correction shows 

better correspondence than NMI to the reference correction, as seen in regions indicated by 

arrows. Fig. 8(d) shows absolute errors in the displacement estimates as compared to that 

calculated from the fieldmap. The NMI based method shows larger errors around air-tissue 

boundaries, especially in frontal areas of the brain, while INVERSION based correction 

shows overall lower errors in all areas.

Next we compared the performance of INVERSION and NMI relative to the measured 

fieldmap using 21 scans from datasets-2 and 3. Fig. 9(a) shows the pooled joint-histogram of 

displacement estimates and reference displacement values for all subjects. Similar to 

previous observations, the joint histogram for the INVERSION method follows the 45° line 

indicating overall better estimation of distortion as compared to NMI-based method. Fig. 

9(b) shows the histogram of absolute errors in the displacement estimates as compared to the 

fieldmap displacement for minimally and severely distorted voxels. Both registration 

methods show good and similar performance for minimal distortion. However, the NMI-

based method had substantial error for severely distorted voxels. A summary of performance 

of both the method for individual subjects is shown in Fig. 9(c) for severely distorted voxels 

(performance was similar for both the methods for minimally distorted voxels). Of the two 

methods, INVERSION shows lower median error and lower range of absolute errors for all 

subjects. Runtimes for the INVERSION-based approach were in the range of 6–15 minutes 

for all subjects, while the NMI-based method had runtimes from 10–30 minutes. Both 

methods were implemented in MATLAB on a 4-core 2.10GHz processor.

4. Discussion

Our results demonstrate that INVERSION can accurately co-register diffusion MRI and T1-

weighted anatomical images. INVERSION improves the robustness of co-registration by 

using the simpler and smoother SSD dissimilarity measure by exploiting the approximately 

inverted contrast relationship in T2- and T1-weighted images of the human brain. This 

approach could also be applied to other multi-modal registration problems with similar 

contrast relationships.

It should be noted that more accurate correction of distorted EPI images can be performed in 

the presence of a fieldmap and/or more advanced acquisition schemes [6, 11–19]. Hence, we 

recommend the use of these approaches when they are available. However, even in such 

cases, INVERSION can still be useful for rigid alignment of the diffusion images to the T1-

weighted anatomical image.
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The intensity transformation used by INVERSION is only approximate, and this is 

especially true in regions with partial voluming between different tissue types. This is 

evident when looking at the boundaries between the white matter and the ventricles in Fig. 

2. This difference is caused by both mismatched resolution and the fact that INVERSION 

should ideally be applied to white matter and cerebrospinal fluid separately when both are 

present within the same voxel (the inverse of the sum is not the same as the sum of the 

inverses). For rigid transformations, the low dimensionality of the transform appears to 

provide some level of robustness against this problem so that the final registration errors are 

small as shown in Fig. 6. For nonrigid transformations, we found that the symmetric 

measure, where we map intensities from T1 to EPI as well as from EPI to T1, reduces 

sensitivity to this effect producing improved results relative to mapping in only one 

direction.

INVERSION uses a coarse search for initialization of rotation parameters followed by a 

local optimization strategy to solve Eq. (3), which does not guarantee to find the optimally-

global solution. Multi-start hybrid global-local optimization approaches [10, 36] could be 

used in place of our search-based initialization scheme. However, as shown in the results 

section, the smoothness of our dissimilarity measure makes the search-based initialization 

followed by local optimization robust to local minima.

Use of INVERSION requires a background segmentation as the background does not 

contribute any MR signal and should appear dark in both the diffusion and anatomical 

images. This pre-processing step is straightforward for most images with reasonable SNR, 

as the background can be easily detected based on intensity thresholding.

Another factor which can limit the use of INVERSION are images with inhomogeneous 

intensities resulting from bias fields, severe susceptibility-induced distortion, and other 

related sources. Bias fields are uncorrected intensity nonuniformities that can have a variety 

of causes [64, 65]. In case one of the images suffers from a severe bias field, the inverted 

contrast relationship may no longer be a reasonable approximation. However the 

confounding effects of bias field are not limited to the INVERSION approach, and other 

dissimilarity measures based on MI and CR will also have similar problems resulting from 

bias fields. Our acquired in vivo data had minor bias fields, but we did not notice any issues 

with INVERSION. In principle, bias field correction software [52, 66] can be applied in 

cases where the scanner produces images with severe bias fields.

Similarly, areas affected by severe susceptibility-induced distortion may not follow the 

inverted contrast relationship, since susceptibility-induced distortion can change local tissue 

intensities. It is possible that severely distorted voxels may bias results when they are 

included in estimation of the contrast matching function. In order to reduce the effects of 

these severe intensity distortions, the contrast matching function could be estimated at each 

iteration while solving Eq. (5). Another approach could be to identify the severely distorted 

voxels and exclude them from the estimation of the contrast matching function. However, in 

our experience, the number of highly distorted voxels was small compared to the number of 

minimally distorted voxels in our images and the estimation of the histogram-matching 

function did not change substantially because of these voxels.
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5. Conclusion

We described a new method for the correction of susceptibility-induced distortion in 

diffusion images and the co-registration of diffusion images with T1-weighted anatomical 

images. Our method combines an appropriate mathematical model based on the physics of 

distortion in EPI images, with prior information about the contrast relationships between T1 

and T2-weighted brain images. Evaluations of our method with in vivo datasets demonstrate 

improved distortion correction relative to normalized mutual information in diffusion 

weighted images in the absence of a fieldmap and robust alignment with T1-weighted 

anatomical images. Our methods are implemented in a freely available software (http://

brainsuite.org/).
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Highlights

We describe INVERSION, a new method for rigid coregistration of diffusion and 

structural (T1-weighted) images.

The known contrast relationship between these image types is exploited to obtain a 

smoother cost function.

INVERSION can also be used for distortion correction of diffusion images without a 

fieldmap

INVERSION rigidly-aligns image more accurately than current software tools/

methods against which we compared.

Our method also achieves lower errors for distortion correction than normalized 

mutual information.
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Figure 1. 
Example of distortion in a human brain T2W-EPI image acquired with EPI sequence. (A) 

An undistorted T1-weighted anatomical image. (B) T2W-EPI image from a diffusion 

dataset. (C) The displacement map (in millimeters) computed from an acquired fieldmap. 

Edges from the T2W-EPI image are overlaid in red on the T1-weighted image in (D) and 

vice-versa in (E) after rigid alignment (using INVERSION approach described later). 

Arrows point to areas with substantial distortion. (F) The fractional anisotropy (FA) map 

derived from diffusion dataset overlaid with edges from the T1-weighted image in red.
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Figure 2. 
An example of INVERSION in an in vivo dataset. (a) shows corresponding slices from (i) 

the T1-weighted image, (ii) the intensity transformed T2W-EPI image, (iii) the intensity 

transformed T1-weighted image, and (iv) the original T2W-EPI image. (b) Intensity 

transformation maps (·) in INVERSION for voxels inside the brain mask for the dataset 

shown in (a).
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Figure 3. 
Behavior of different dissimilarity measures as a function of misalignment by (a) translation 

along the x-axis and (b) rotation along the x-axis. Different lines represent different level of 

smoothing applied to both images and illustrate behavior at different resolutions. The full-

width at half-maximum (FWHM) of the Gaussian smoothing is reported in units of 

millimeters (mm).
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Figure 4. 
Performance of different dissimilarity measures as a function of the applied transformation 

in a rigid registration experiment without any initialization.
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Figure 5. 
Result of the rigid registration procedure an in vivo image from Dataset-2 dataset (after 

distortion correction using fieldmap). The T2W-EPI image is overlaid by edge maps from 

the MPRAGE image in red (left) after initialization, (center) after INVERSION, and (right) 

after NMI-based refinement. NMI-based refinement adds a very subtle improvement which 

can be best noticed around edges of ventricles. Note that all other results presented in this 

paper do not use any NMI-based refinement.
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Figure 6. 
(a) Comparison of INVERSION to existing methods in a rigid registration experiment. (b) 

Box-and-whisker plot showing the summary of performance of different methods. The line 

inside the box represents the median RMS error and the whiskers extend to minimum and 

maximum RMS error.
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Figure 7. 
Performance of INVERSION-based distortion correction in the simulated BrainWeb dataset. 

The scatterplot of estimated displacement versus ground true displacement (calculated from 

the applied fieldmap) is shown as a joint histogram in (a). Note that the colorbars use a 

logarithmic scale to enhance visualization of the results for both minimally and severely 

distorted voxels. (b) Qualitative result of the INVERSION based correction in (top) an axial 

and (bottom) a sagittal slice. T2W-EPI images are overlaid with edge maps from the T1-

weighted MPRAGE image in red.
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Figure 8. 
Performance of registration-based distortion correction in dataset-1. (a) The joint-histogram 

of the reference displacement (calculated from the fieldmap) and estimated displacement 

using (left) NMI and (right) INVERSION based method. (b) Box-and-whisker plots 

showing the absolute error in displacement estimated using NMI and INVERSION based 

distortion correction methods across (left) minimally distorted and (right) severely distorted 

voxels. The box extends from 25th to 75th percentile with the interior line representing the 

median and the whiskers extending from 10th to 90th percentile. (c) Qualitative comparison 

of distortion correction methods in (top) an axial and (bottom) a sagittal slice. Fieldmap 

based correction is shown as a reference for comparison. The distortion-corrected T2W-EPI 

images are shown overlaid with edge maps from the T1-weighted MPRAGE image in red. 

Arrows point to areas with inaccurate distortion correction in the NMI-based correction. (d) 

Visualization of the absolute errors (in mm) in displacement relative to the fieldmap 

estimated by INVERSION and NMI-based methods in (top) an axial and (bottom) a sagittal 

slice.
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Figure 9. 
Performance of registration-based distortion correction with 21 subjects from dataset-2 and 

3. (a) The pooled joint-histogram of the reference displacement (calculated from the 

fieldmap) and estimated displacement using (left) NMI and (right) INVERSION based 

methods for all subjects. Note that the colorbars use a logarithmic scale. (b) Histogram of 

the absolute errors in displacement estimate for (left) minimally and (right) severely 

distorted voxels. (c) Box-and-whisker plot showing the absolute error in the displacement 

estimated in severely distorted areas for each subject using NMI and INVERSION based 

distortion correction method. The box extends from 25th to75th percentile with the dot inside 

the box representing the median error and the whiskers extend from 10th to 90th percentile. 

Subjects from dataset-2 have labels starting with ‘N’ and subjects from dataset-3 have labels 

starting with ‘A’.
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Table 1

Acquisition parameters for the in vivo datasets used for evaluation. The diffusion datasets differ mainly in 

echo spacing (ES), the use of parallel imaging, contrast parameters (TE, TR, and TI), b-values and resolution.

Dataset-1 Dataset-2 Dataset-3

T1-weighted
TE=3.09ms, TR=2530ms TE=3.09ms, TR=2530ms TE=3.5ms, TR=2500ms

TI=800ms, 1×1×1 mm3 TI=800ms, 1×1×1 mm3 TI=1200ms, 1×1×1 mm3

Diffusion

TE=88ms, TR=10000ms TE=115ms, TR=10000ms TE=85ms, TR=6000ms

ES=0.85ms, 2×2×2 mm3 ES=0.69ms, 2×2×2 mm3 ES=0.81ms, 1.4×1.4×3.0 mm3

b=1000s/mm2, GRAPPA 2× b=2500s/mm2 b=1000s/mm2, GRAPPA 2×

B0 Fieldmap TE1=10ms, TE2=12.46ms TE1=10ms, TE2=12.46ms TE1=4.92ms, TE2=7.38ms
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