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Summary

Cardiac abnormalities are the most common birth defects. Derangement of circulatory flow affects 

many vital organs; without proper supply of oxygenated blood, the brain is particularly vulnerable. 

Although surgical interventions have greatly reduced mortality rates, patients often suffer an array 

of neurological deficits throughout life. Neuroimaging provides a macroscopic assessment of brain 

injury, and has shown that white matter is at risk. Oligodendrocytes and myelinated axons have 

been identified as major targets of white matter injury, but still little is known about how 

congenital heart anomalies affect the brain at the cellular level. Further integration of animal 

model studies and clinical research will define novel therapeutic targets and new standard of care 

to prevent developmental delay associated with cardiac abnormalities.

Keywords

congenital; heart; white matter; myelin; oligodendrocyte

Why congenital cardiac anomalies and white matter injury?

Congenital heart disease (CHD) is the most common major birth defect; nearly 8 in every 

1000 infants born each year suffer a cardiac abnormality [1]. Although significant advances 

have greatly reduced hospital mortality risk [2], patients with CHD frequently suffer from a 

broad spectrum of subsequent neurological deficits; including motor, cognitive, behavioral, 

social, and attention abnormalities [3–6]. Due to improvements in the mortality rate, it is 

estimated that 1 in every 150 young adults will be affected by some form of CHD within the 

next decade [7]. The personal, familial, and societal costs/hardships of neurological 

morbidity within this expanding population are inestimable. Therefore, as stated by the 

Pediatric Heart Network of the National Heart, Lung, and Blood Institute [8], “one of the 

most important challenges in the 21st century for CHD patients is to improve neurological 

deficits.”
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Neurological outcome in CHD patients is governed by multiple factors, including unusual 

fetal cerebral blood flow and oxygen saturation [9]. In normal fetuses, highly oxygenated 

blood is preferentially streamed to the developing brain; however, severe/complex CHD 

often alters blood flow (Figure 1), resulting in delivery of de-saturated blood to the brain 

[9,10]. These alterations have been shown to cause immature and delayed brain 

development in newborns [11–15]. Recent MRI studies demonstrate a high frequency of 

white matter (WM) injury (25–55%) in CHD patients [14,16–18]. In addition to the prenatal 

insults to WM development, clinical trials and animal models have identified peri-operative 

factors - such as cardiopulmonary bypass surgery - contributing to brain injury [17,19–22]. 

Cellular events associated with CHD-induced WM injury are largely unknown and 

unexplored, partially due to the technical and ethical difficulties of studying human tissue. 

Although several large and small animal models have been designed to mimic CHD, they 

are rarely utilized to study the impact of CHD on WM development, particularly at the 

cellular level. The purpose of this review is to summarize current knowledge in this field 

and highlight an urgent need to create a truly translational area of research in CHD-induced 

WM injury through further exploration and integration of animal models with findings in 

human subjects and in postmortem human tissue.

Congenital heart disease (CHD)

Worldwide, approximately 1.3 million infants are born with CHD each year and this 

population is steadily rising [23]. More than 75% of CHD children who survive the first year 

of life, including those with complex cardiac malformations, will live into adulthood [24]. 

Prolonged neurological deficits are commonly observed in patients with CHD and pose 

substantial socioeconomic and management challenges for patients, families, and society. 

Elucidating the cellular events underlying CHD-induced neurological deficits is not only a 

fundamental research endeavor: it is vital for the healthcare of this growing community of 

patients.

Several complex factors, often combinatorial and cumulative, contribute to neurological 

outcomes in patients with CHD (Figure 1), including: i) preoperative factors, such as 

unusual fetal cerebral blood flow; ii) perioperative factors involved with heart surgery; and 

iii) postoperative factors, such as length of hospital stay and parental stress [4,19,25]. 

Sophisticated imaging techniques are bringing prenatal events associated with neurological 

injury into focus [4,10]. Fetal cerebral blood flow involves preferential streaming of the 

most highly oxygenated blood to the developing brain [9]. However, heart abnormalities can 

alter these beneficial patterns, resulting in less or oxygen-deficient cerebral blood flow 

[9,10] (Figure 1). The first organ to form during embryonic development is the heart; 

through shared morphogenic programs, there is great time overlap between heart and brain 

development in human fetuses (for review, see [14,26]). Since the heart is nearly fully 

developed by the 7th week of gestation, cardiac abnormalities can disrupt fetal cerebral 

oxygen and nutrient delivery for more than 7 months during a period critical for brain 

development.

In order to survive, a majority of newborns with severe/complex CHD require cardiac 

surgery within the first few weeks of infancy. Since surgery cannot be performed on a 
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beating heart it is necessary to stop the heart during cardiopulmonary bypass surgery (CPB) 

- a technique involving mechanical circulation and oxygenation of blood throughout the 

body while bypassing the heart and lungs. Although CPB facilitates heart surgery, this 

process mounts an inflammatory response associated with WM injury to the developing 

brain [27,28]. In addition to CPB, surgical correction of complex congenital cardiac 

anomalies may also require deep hypothermic circulatory arrest (DHCA). During this 

procedure the body is cooled to 15–18°C and blood circulation is completely stopped, which 

carries a risk of hypoxic/ischemic and reoxygenation injuries to the brain. Cardiac surgery 

itself introduces additional and compounding insults to the developing brain including 

gaseous and particulate microemboli.

To understand mechanisms underlying neurodevelopmental impairments in patients with 

CHD, it is imperative to fully investigate cellular events within the brain associated with 

CHD and corrective surgery. Understanding the combinatorial nature of these etiologies is 

also necessary for the development and improvement of treatment strategies for CHD.

Outcomes of CHD-induced brain injury: from conception to adolescence

Nearly all serious congenital cardiac abnormalities can be detected prenatally in the United 

States, and preoperative neurodevelopmental impairments are identifiable within days of 

birth [14,29]. In neonatal and early infant periods, motor asymmetries, absent suck, feeding 

difficulties, hyper- and hypotonia, poor visual orientation, and unusual cranial sizes are 

amongst the visible abnormalities that will likely result in neurological impairments later in 

life [9,30,31]. Following surgery for CHD, prospective clinical trials and retrospective 

clinical studies have documented worse outcomes for motor skills than cognitive abilities in 

children 1 and 4 years of age [5,6,32]. These findings are consistent with several recent 

studies using magnetic resonance imaging (MRI) in newborns and infants after cardiac 

surgery, which - as discussed below - also documented significant evidence of WM injury.

As infants mature into childhood, a battery of advanced neurodevelopmental and 

neuropsychological tests can readily identify neurological abnormalities in the CHD 

population that cannot be assessed in neonates. Children born with complex CHD requiring 

surgery may exhibit motor, cognitive, and behavioral difficulties encompassing problems in 

a broad range of skills: visual-spatial, fine and gross motor, memory, attention, language, 

executive, and psychosocial [9,33,34]. The broad range of neurological dysfunction 

documented in CHD patients is remarkably similar to the deficits observed in preterm 

survivors, in whom WM injury is a major source of morbidity [35–37].

Few studies have followed the neurodevelopmental outcome of children born with a CHD 

into adolescence. Increasing evidence that CHD newborns are at high risk of manifesting 

neurodevelopmental disorders [3] has spurred a consensus to the need of continuously 

monitoring these patients during childhood and throughout adolescence. The 

neurodevelopmental outcome of adolescents born with d-transposition of the great arteries 

(d-TGA) who underwent surgical correction was recently reported [3]. Despite a history of 

special academic services and psychotherapeutic counseling, these adolescents performed 

significantly lower than the population mean on a battery of tests scoring academic 
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achievement, general memory, visual-spatial skills, social cognition, and attention [3,38]. A 

significant correlation between neurodevelopmental deficits in CHD patients and WM injury 

determined by conventional imaging techniques has not been identified [32,39]. However, a 

recent study demonstrated altered WM microstructure in CHD patients with diffusion tensor 

imaging (DTI) in regions of the brain displaying no obvious WM abnormalities by routine 

MRI [40]. Adolescents with CHD show a strong correlation between cognitive outcome and 

reduced WM microstructures assessed with DTI [41]. Additionally, a recent study reported a 

high incidence of depression and anxiety in adults with CHD [42].

Since WM is crucial for proper neural connectivity and communication [43], WM 

immaturity and injury likely account for the type and severity of neurological deficits 

exhibited in CHD patients. In light of findings from neurological assessments in patients 

with CHD, there is a clear need to define the cellular response and vulnerability to CHD-

induced WM injury during critical developmental periods in order to develop therapeutic 

interventions to treat and promote recovery of CHD-induced WM damage.

Neuroimaging of white matter in CHD patients

Advances in neuroimaging technology have provided a wealth of information regarding 

brain development and injury in patients born with CHD (Box 1). Collectively, the most 

recent WM imaging studies in newborns have primarily focused on preoperative WM 

abnormalities and newly acquired WM injury patterns associated with, and following, 

cardiac surgery (summarized in Table 1).

Diffuse and focal (e.g. – periventricular leukomalacia) WM injury represent the predominant 

signatures detected by MRI in CHD patients. Over the past five years, MRI studies have 

demonstrated that CHD patients often exhibit WM abnormalities and immaturity at birth 

(Table 1). Additionally, it has become widely recognized that newly acquired WM injury 

from perioperative factors is one of the most prevalent lesions seen in CHD patients (Table 

1). A recent clinical study reported that WM injury was the most common brain injury in 

infants born with various forms of CHD before (20%) and after (44%) heart surgery [17]. 

Although WM injury has been reported in several clinical studies, it is important to consider 

the multivariate nature and complexity of these studies encapsulating (i) patient 

demographics: most studies include a mixed population of patients with several forms of 

CHD (Table 1); (ii) type of surgical intervention; and (iii) perioperative procedures. 

Prospective MRI studies performed on patients diagnosed with the same CHD and 

undergoing the same surgical procedure will be of great value in determining the 

vulnerability of WM in the developing brain.

Until recently, the maturation process of WM in the developing fetus was unknown, due to 

the technical difficulty of motion artifacts during fetal MRI scans [15,44]. Using advanced 

fetal MRI imaging on living fetuses with hypoplastic left heart syndrome (HLHS), a 

progressive decline in WM brain volume from 25 to 37 weeks of gestation was seen, when 

compared to control fetuses [15]. Interestingly, these differences were only significant after 

30 weeks gestation. This study provides strong evidence that immature WM is particularly 
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vulnerable in CHD patients prior to birth, and underscores the importance of imaging the 

brain longitudinally in utero.

In parallel with antenatal WM findings, CHD fetuses also display drastic delays in cortical 

folding, preceding a progressive decline in normal cortical and subcortical gray matter 

development [15]. The use of magnetic resonance spectroscopy (MRS) also demonstrates 

lower NAA:Cho – a measure of neuronal [metabolic] integrity – in CHD fetuses during the 

third trimester; a critical period with elevated oxygen demands during robust synapse 

formation/activity [13]. Though indirect, these findings strongly suggest the presence of 

CHD-induced neuronal abnormalities during fetal development.

Doppler ultrasound is an emerging technique that can predict brain volumetric abnormalities 

and neurodevelopmental outcomes of fetuses with certain CHDs [15,45–50]. This 

noninvasive technique offers important information regarding fetal hemodynamics by 

measuring the velocity of blood flow through cerebral arteries. CHD fetuses with lower 

cerebroplacental resistance (CPR < 1.0) were found to have less white, cortical gray, and 

subcortical gray matter volumes associated with an absence of antegrade blood flow to the 

developing brain [15]. Additionally, a reduction in fetal cerebral oxygen consumption 

correlates with smaller brain volumes in CHD fetuses [46]. Abnormal cerebrovascular 

resistance in the middle cerebral arteries of CHD fetuses was recently reported to precede 

lower cognitive development scores, assessed at 18 months of age [45]. MRI, MRS, and 

Doppler ultrasound offer useful measures of macroscopic brain structures/volumes, 

metabolic activity, and blood flow during fetal development. Routine and follow-up scans, 

commencing in the second trimester, will be invaluable in understanding the etiologies of 

CHD-induced brain injury and defining optimal windows for interventions and treatments of 

neurological sequelae.

The emergence of DTI has provided great insights into WM immaturity and injury in CHD 

patients. A DTI study recently demonstrated that delayed WM development was directly 

correlated with abnormal cardiac anatomy associated with reduced brain perfusion in term 

infants with CHD [51]. Another study reported lower FA values in several WM tracts within 

the brains of CHD infants, including optic radiations, corticospinal tracts, corpus callosum, 

and the internal capsule [52]. WM microstructure in the brains of adolescents following the 

arterial switch procedure to correct d-transposition of the great arteries has also been 

explored [40]. With DTI, this group demonstrated significantly lower FA values within 18 

regions of WM underlying the cerebrum and cerebellum; importantly, only scant WM injury 

was seen with conventional MRI in this cohort [40]. These findings highlight the need for 

more sensitive imaging acquisitions in CHD patients in order to better understand the 

manifestation of specific, associated neural deficits.

Although neuroimaging studies have provided a wealth of knowledge regarding WM injury, 

there is an urgent need for further, more detailed investigations. It is becoming increasingly 

evident that MRI scans of CHD patients have a similar signature/pattern to those of the 

preterm brain [53]. Future studies with DTI and refined imaging techniques will greatly aid 

in acquiring a full picture of WM immaturity and newly acquired injuries on the 

microstructural level within specific WM tracts. Additionally, follow-up studies on 
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postmortem CHD tissue will fuel investigations of how CHD affects WM at the cellular 

level; for example, DTI imaging paired with histological analysis.

The recent surge in animal imaging technologies offers several avenues for elucidating the 

multifactorial etiologies underlying brain impairments within the CHD population. Animal 

models allow for controlled conditions, such as genetic background, as well as a wide array 

of experimental approaches unfeasible or unethical in human patients. Unlike postmortem 

human tissue, euthanasia by perfusion in animals allows for rapid fixation of brain tissue to 

visualize microscopic changes to pathological insults at precise, static time points. Thus, 

there is a solid need for animal studies incorporating clinically relevant imaging approaches 

paired with high quality histological analysis of the cellular/molecular responses to CHD-

induced brain injury. Studies of this nature will expedite, inform, and guide future clinical 

research in order to improve the neurological outcome of CHD patients.

The white matter: before and after

WM accounts for 50% of human brain volume. WM growth is a complex, multi-staged 

process during human brain maturation [43]. A primary constituent of WM is myelin, a 

lipid-rich membrane synthesized by specialized cells called oligodendrocytes. Myelin 

sheaths encase and insulate axons, which not only provides protection from their 

extracellular environment, but also enables efficient axonal communication. Additionally, 

myelin integrity is crucial for proper cognitive stability [54,55]. In humans, the onset of 

myelination is near midgestation; a surge of WM maturation persists into the second year of 

life. WM development and maintenance continue throughout adulthood [56].

Specialized imaging techniques - such as myelin water fraction imaging - have recently 

revealed the spatio-temporal patterns of normal WM development in humans throughout 

infancy and early childhood [57,58]. WM development occurs at different rates within each 

hemisphere and structure of the maturing brain. For example, myelination is robust in 

structures such as the cerebellum 3–4 months following birth, and more prominent in the 

frontal and temporal lobes around 6–8 months of age [57]. Hence, certain WM tracts in 

CHD patients are likely more vulnerable to operative factors depending on the age and time 

of surgical intervention.

The cellular events underlying myelination are well established and involve incremental 

stages of oligodendrocyte (OL) genesis and maturation (for review, see [59,60]). 

Oligodendrocyte precursors (OPCs) have the capacity to self-renew, and – after birth - 

primarily originate from the largest germinal zone of the postnatal mammalian brain, the 

subventricular zone (SVZ). Following cellular expansion, OPCs migrate into the WM where 

they undergo differentiation and myelination. Following WM injury, OPCs display a 

remarkable endogenous recovery potential, which recapitulates many of the processes 

during normal WM development ([61,62]; see below).

WM maturation delays and injury are frequently seen in CHD patients (Table 1). In order to 

understand the association between WM damage caused by CHD in humans, it will be 

necessary to understand WM injury at the cellular/molecular level. OLs simultaneously 

myelinate several axons, therefore loss of a single OL can have widespread effects on neural 
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connectivity and communication. This can also impact axonal function, ultimately resulting 

in severe neurological impairment.

Animal models of CHD

Multiple animal models have been developed in order to mimic congenital heart 

abnormalities (Table 2), and determine the underlying causes and subsequent effects of these 

complex birth defects. These models encompass three broad categories: (i) genetic, (ii) 

environmental, and (iii) surgical. Since environmental factors can be readily explored in 

both models, we will focus on the genetic and surgical aspects to highlight the 

complementary nature of small and large animal studies.

Mouse models provide significant advantages: low cost, large litter sizes, genetic and 

molecular manipulation, and an eclectic toolkit of cutting edge techniques. More than 750 

genetic syndromes have been associated with CHD patients [34], and a vast majority of 

mouse CHD models rely on manipulation or deletion of a single gene (Table 2). The 

primary aim of these studies has been to model the structural anomalies of the heart 

exhibited in CHD patients. Targeting genes within cardiac neural crest precursor cell pools 

has been a common approach and results in several types of developmental heart defects. 

Interestingly, both the heart and brain largely originate from a shared ancestral pool of cells 

[14] and craniofacial abnormalities are commonly associated with structural abnormalities 

of the heart in rodent models (Table 2).

Unlike humans, WM development within the mouse brain begins postnatally [63,64]. 

However, nearly all genetic mouse models of CHD result in embryonic lethality; therefore, 

the pathological effects of CHD on WM maturation cannot be assessed in these models. 

Additionally, these genetic alterations typically perturb/impair the development of several 

vital organs in addition to the structural alterations of the heart, such as the lungs. Therefore, 

in order to better understand the neurological deficits seen in CHD patients, it is necessary to 

develop a conditional rodent model in which only cardiac defects are apparent in utero and 

allow proper birth and postnatal development.

Recently, it was demonstrated that the Galnt1 gene is necessary for normal heart valve 

development and proper cardiac function in mice [65]. Although this study uncovered 

several of the cellular and molecular mechanisms underlying the formation and remodeling 

of heart valves, it holds great promise for putative brain abnormalities. Nearly 75% of 

Galnt1 null mice survive into adulthood with little evidence of abnormalities in other organs 

(Table 2). Future studies focused on white matter development in the brains of these mice 

will likely provide vast insights into the cellular and molecluar mechanisms underlying brain 

immaturity and injury in CHD patients.

Large animals, such as swine and lambs possess a developmental WM profile similar to 

humans and are large enough to undergo prenatal surgery [21,66–68]. Bilateral carotid 

artery occlusion models in sheep fetuses to induce cerebral ischemia have provided great 

insights into WMI, both on a macrostructural and cellular level [69,70]. It was recently 

demonstrated that prenatal cerebral ischemia impairs cortical growth associated with 

disturbances in dendritic arborization and synapse formation in sheep [70]. Another study 
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reported a reduction in pre-myelinating OLs and arrested preOL differentiation localized to 

gliotic lesions in a sheep model of cerebral ischemia [69]; importantly, the histological 

findings strongly correlated with WMI detected by MRI.

Although large animal models are informative, powerful approaches to understanding the 

brain pathology of CHD, studies in these species have been largely limited to surgical 

approaches and systemic outcomes. Several groups have investigated how intra- and post-

operative factors affect subsequent development, utilizing open-heart surgery approaches 

commonly performed to correct CHD (Table 2). Although there has been great success in 

emulating the surgical repair of CHDs in large animal studies, the post-operative 

neurological outcome was rarely assessed.

Considering the prevalence of WM developmental delays and injury in CHD patients, the 

near absence of knowledge and lack of emphasis on cerebral WM in animal models is 

alarming. While rodent models provide explanations of abnormal heart development, these 

studies are greatly limited by the longevity of subjects. On the other hand, large animal 

models have the potential to explore the peri- and post-operative vulnerability of cerebral 

WM during and following corrective surgery, respectively. For these reasons, there is still a 

scarcity of knowledge regarding CHD-induced WM impairment. Integrative approaches, 

capitalizing on the strengths of these complementary models will greatly aid in unveiling the 

underlying mechanisms resulting in the neurological impairments seen in infants born with a 

CHD and surviving heart surgery into adulthood.

Cellular and developmental analysis of WM injury in CHD

Our labs recently developed a cardiopulmonary bypass (CPB) surgery model in healthy 

neonatal piglets to assess the intraoperative contributions to WM injury [21]. WM 

maturation in piglets is area-dependent and greatly mirrors the progression seen in humans 

[21]. CPB-induced ischemia-reperfusion and reoxygenation injury demonstrated maturation-

dependent vulnerability of WM; particularly, immature WM was most vulnerable. 

Histological analysis aimed at identifying different developmental stages of the 

oligodendrocyte lineage revealed a selective vulnerability of O4+ preoligodendrocytes (pre-

OL) (Figure 2) [21]. Oligodendrocyte precursor cells (OPCs), however, displayed great 

resilience to the surgical insult and represent the endogenous recovery potential of WM 

tissue based on their potential to generate new oligodendrocytes. An arrest in OL maturation 

- paired with delayed myelination - was evident one month following surgery [21]. 

Additionally, this study identified modifiable, perioperative measures - reduced 

inflammation and maintenance of high oxygen-protective of WM injury during immature 

stages of brain development [21].

In order to further investigate the pre- and intraoperative effects of in utero hypoxia and 

CPB on WM development and injury, respectively, we also developed a rodent brain slice 

model [22,71]. Mice were reared in prolonged hypoxic conditions during a neonatal 

developmental time window overlapping with the period spanning third trimester to term 

birth in humans [22]. Viable brain slices were cultured in a perfusion system with artificial 

CSF where circulatory arrest could be simulated simply by oxygen-glucose deprivation 
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(OGD). These combined approaches demonstrated pre-OL vulnerability paired with OPC 

resistance to insult in normal brains [22,71]. However, mature OLs and OPCs were 

significantly more vulnerable to OGD in brains that had developed under hypoxic conditions 

[22]. This shift in susceptibility to WM injury was temperature-specific and deep 

hypothermia during OGD was protective to OPCs [22].

Brain injury in CHD patients is remarkably similar to that seen in premature neonates. Both 

populations exhibit delays in WM maturation, and cardiac surgery often results in secondary 

WM injury. Cerebral hypoxia is an underlying commonality between these patients: in CHD 

patients, de-saturated blood is streamed to the brain in utero and following birth. After birth, 

premature infants often experience hypoxia due to underdeveloped lungs that cannot handle 

normal oxygen loads. Interestingly, studies modeling premature birth with hypoxia report 

similar findings to those seen in CHD models, even at the cellular level [61,62].

Proliferation and expansion of endogenous OPC pools is critical for replacing OLs and 

repairing damaged/absent myelin following hypoxia [61,62]. Although several key 

regulators of the OPC regenerative response have been identified, molecular manipulation in 

rodent models often relies on genetic or invasive techniques that may not be practical or 

ethical approaches in treating humans. Two recent studies explored the feasibility and 

efficacy of intranasal drug delivery to target OPCs to protect/repair WM following hypoxic 

or hypoxic-ischemic insults [62,72]. Intranasal infusion of human apotransferrin (aTf) prior 

to hypoxia-ischemia reduced WM injury and enhanced OPC survival and proliferation 

within the SVZ and corpus callosum [72]. Intranasal administration of heparin binding 

epidermal growth factor (EGF) immediately following hypoxic exposure reduced OL death, 

promoted OL generation, and improved functional/behavioral recovery [62].

A recent study demonstrated that OPCs are critical for the coordination of vascular growth 

in developing WM in mice [73]. OLs and OPCs often make direct contact with blood 

vessels which provide oxygen and nutrition, two key ingredients necessary for the high 

metabolic demand of membrane expansion during myelination. Interestingly, OPC-encoded 

hypoxia inducible factor (HIF) signaling was found to regulate angiogenesis while arresting 

OPC differentiation prior to myelination [73]. The newly formed blood vessels provide the 

appropriate oxygen levels to inhibit HIF activity which allows for OL differentiation and 

myelination in the presence of an adequate metabolic supply. These data offer a potential 

mechanism for delayed/arrested WM maturation in CHD fetuses; the absence of highly 

oxygenated cerebral blood flow stabilizes HIF activity, preventing OPC differentiation and 

subsequent myelination.

HIF-1α is a transcription factor that regulates several target gene products including 

erythropoietin (EPO) and vascular endothelial growth factor (VEGF) [74]. A recent clinical 

study found increased levels of HIF-1α and EPO gene expression in term newborns with 

CHD associated with hypoxia [74]. Erythropoietin treatment, shortly following preterm 

birth, has resulted in positive clinical outcomes in recent years and has promising 

neuroprotective potential [75–79]. Early administration of recombinant EPO (rEPO) reduced 

white and gray matter injury in preterm infants [75]. Additionally, follow-up studies have 
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shown that rEPO treatment in infancy significantly improves neurodevelopmental and 

cognitive outcomes in toddlers and through early adolescence [76–78].

In view of the similarities in WM and cell-specific vulnerabilities seen in CHD and preterm 

animal models, it is likely that there is a common mechanism of injury. Future studies 

modeling CHD could greatly benefit through extrapolations of findings from the enormous 

population of preterm birth models. Additionally, engineering and testing noninvasive or 

less invasive drug administration will allow for quicker translation into the clinic.

Conclusions & Future Perspectives

Over the past few decades, surgical and clinical care has significantly improved the survival 

rates of children born with even the most complex forms of CHD. Clinical research has 

recently shifted from a focus on survival to routine evaluation of morbidity throughout 

development [34]. As stated by the American Heart Association, the growing population of 

infant cardiac surgery survivors demands new unified stratification methods and algorithms 

to classify, diagnose, and manage developmental disorders in CHD patients [34].

Clinical trials and animal studies have provided a wealth of bidirectional information 

regarding the neurological impairments seen in the CHD population; however, several large 

gaps in knowledge remain (Box 2). While clinical studies have identified many 

psychological and anatomical associations between neurological defects and heart 

abnormalities, they are limited in technical and experimental approaches. However, such 

findings have guided the design of several animal models that have begun elucidating the 

cellular and molecular mechanisms underlying these pathologies. There is a growing need 

for integrative approaches, such as animal models that recapitulate clinical outcome 

measures while providing information on the cellular/molecular level in order to develop 

novel therapies.

Considering the complexity of severe CHD and the array of putative comorbidities, 

identifying independent causes of WM injury is difficult and will require careful study 

design. Infants born with d-Transposition of the great arteries (d-TGA) represent a unique 

avenue for integrative approaches because they typically receive surgery within 2 weeks of 

birth; additionally, d-TGA is rarely associated with confounding genetic syndromes seen 

with other anomalies [9]. With few exceptions, our neuroanatomical information regarding 

WM development and injury comes from clinical studies evaluating pools of patients with 

different types of CHD. Retrospective studies, in which patients are subdivided by specific 

CHD, will also be of great value.

Although large animal models are limited in genetic approaches commonly utilized in 

rodents, they serve as a great platform for understanding the cellular dynamics underlying 

CHD-induced brain injury before and after surgical intervention. Additionally, higher 

mammals share several anatomical, physiological, and metabolic similarities to humans and 

are ideal candidates for testing human drugs while closely monitoring systemic and 

neurological responses seen in the clinic. Banking and indexing brain tissue from CHD 

patients will facilitate postmortem analysis of WM injury and improve the quality of new 

study designs. Integrating the genetic, cellular, and molecular approaches in animal models 
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with novel imaging tools used on humans will mutually inform future research and provide 

large steps towards developing new therapies and treatment windows to improve the 

neurological outcomes seen in CHD patients.
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Box1: Neuroimaging Techniques

Since the first computed tomography (CT) scan in the 1970s, there have been tremendous 

advances in neuroimaging technologies. State-of-the-art imaging techniques not only 

provide anatomical details but also greatly aid in surgical, stereotactic precision. These 

technologies vary -in cost, utility, length of scan, resolution- and have given us 

noninvasive longitudinal windows into abnormalities during fetal and postnatal brain 

development within the CHD population. Additionally, neuroimaging studies offer the 

promise of predictive measures in CHD developmental disorders.

Acquisition of a head ultrasound (HUS) is most common across centers, least expensive, 

quickest, and can identify major structural abnormalities within the brain that may 

worsen following cardiac surgery [34]; however, the limitations of HUS in detecting the 

wide spectrum of structural brain abnormalities are increasingly recognized [80]. On the 

other hand, Doppler imaging by HUS is still a useful tool to measure fetal cerebral blood 

flow [10]. This technique is also utilized as an intraoperative monitoring system to 

standardize cerebral oxygen delivery for the individual patient [32,81].

Over the last decade there has been an increased utilization of magnetic resonance 

imaging (MRI) in clinical studies and trials. Although, until recently, MRI was not a 

routine procedure in neonates with CHD [34] - perhaps due to clinical feasibility, cost, 

and safety - several prospective studies have underscored the need for brain MRIs in 

these children. Magnetic resonance spectroscopy (MRS) is a specialized imaging 

technique which provides the concentration of metabolites, such as N-Acetylaspartic acid 

(NAA) and choline (cho), in target brain regions. Together, these complementary 

techniques allow for visualization as well as metabolic activity of specific brain 

structures.

Recent clinical and research laboratory studies have employed more sophisticated 

technologies, such as diffusion tensor imaging (DTI) which enables visualization and a 

quantitative measure of WM microstructures. DTI is a sensitive imaging technique that 

measures the diffusion of water molecules and provides high-resolution images of 

microstructures within the brain. With diffusion tractography, WM fiber bundles can be 

reconstructed and quantitatively analyzed in an un-biased manner. Fractional anisotropy 

(FA) is a common metric of DTI and describes the directional dependence of water 

displacement; lower FA values are indicative of WM immaturity or injury.
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Box 2: Outstanding Questions

• Can we create an animal model that recapitulates the morphogenic, 

developmental aspects of CHD without directly affecting other organs or 

developmental processes?

• What are the prenatal and neonatal cellular responses to CHD in the developing 

brain?

• What are the molecular mechanisms underlying WM immaturity and 

vulnerability to CHD and how can we intervene?

• How can we accurately assess the dynamic neurological outcomes of CHD 

and/or corrective surgery in animal models?

• Prenatal or postnatal insults to the developing brain: which is most devastating 

in regards to developmental and behavioral disabilities?

• How can we best extrapolate from, and integrate, neuroimaging findings/

correlations in human patients with cellular/molecular approaches in animal 

models?
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Highlights

• Complex CHD is often associated with developmental delay and behavioral 

problems

• Currently, the neurological deficits displayed by CHD patients are irreversible

• Animal studies offer powerful avenues to understand CHD brain impairments
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Figure 1. 
Fetal cerebral circulation, white matter (WM) damage, and risk factors associated with 

neurological outcomes in congenital heart disease (CHD). (A,B) Cartoon illustrating fetal 

cerebral blood flow. In normal fetuses (A), oxygenated blood (red arrows) from the placenta 

is preferentially pumped to the left heart, exits through the carotid arteries, and flows to the 

brain. In fetuses with hyoplastic left heart syndrome (HLHS) (B), oxygenated and 

deoxygenated (blue arrows) blood mix (purple arrows) and is misdirected to the aorta, 

bypassing the carotid arteries. Retrograde flow of mixed blood exits through the carotid 

arteries at a low flow rate to the brain. In HLHS, developing fetal brains receive less and 

hypoxic blood, resulting in delayed WM maturation. (C,D) Risk factors associated with 

neurological deficits in CHD patients throughout life.
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Figure 2. 
Immature oligodendrocytes (OLs) are highly vulnerable to cardiac surgery-induced brain 

injury which delays/impairs white matter (WM) development [21]. (A) Gross anatomy of 

perinatal pig brain. (B, C, F, G) Immunostains labeling apoptotic (Caspase3+) cells in the 

OL lineage within the corpus callosum (CC) 3 days following severe cardiopulmonary 

bypass (CPB) surgery. OL precursor (PDGFRα+) and progenitor cells (Mash1+, PDGFRα+), 

as well as mature OLs (CC1+), survive the surgical insult; however, immature (O4+) 

oligodendrocytes undergo cell death (O4+/Caspase3+) following CPB surgery (F). Fewer, 

mature OLs are present in the CC 4 weeks following surgery (H) compared to control 

piglets (D). Additionally, less myelin (MBP) is seen the corpus callosum following injury (I) 
when compared to control animals (E).
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Table 1

Recent neuroimaging studies assessing white matter injury

Cohort
a

Imaging
b WM Findings

c
Refs

Preoperative Postoperative

A. HLHS

fetuses MRI • Progressive decline in WM volume from 25 to 37 weeks of 
gestation N/A [15]

fetuses
MRI

WMI (13–50%)
• Prenatal diagnosis of WMI may be protective, depending on 
clinical practices N/A [82]

neonates WMI (46–50%)

neonates MRI WMI (19%)
 Males with aortic atresia were most vulnerable N/A [83]

B. Mixed

preterm neonates

MRI WMI (42%)
• Punctate WM lesions and structural abnormalities in central WM

N/A [84]

DTI • Microstructural abnormalities in the splenium of all preterm 
patients with CHD

preterm neonates DTI • Reduced FA in cerebral WM including optic radiations and 
splenium N/A [85]

neonates MRI WMI (13%) WMI (7%) [86]

neonates MRI WMI (16%) WMI (11–22%) [16]

newborns MRI WMI (17%) N/A [87]

newborns

MRI WMI

N/A [52]
DTI ↓ FA in WM tracts (optic radiations, internal capsul, corpus 

callosum, corticospinal)

newborns DTI ↓ WM FA ↓ WM FA associated with 
new WMI [88]

infants MRI WMI (24%) WMI (30–31%) [89]

infants MRI WMI (20%) WMI (42–44%) [17]

infants
MRI WMI (19%)

N/A [80]
HUS • Not sensitive enough to detect same brain injuries

infants HUS WMI (6%) N/A [90]

infants
MRI WMI (42%)

N/A [91]
DTI • Delayed WM microstructural maturation

adolescents MRI N/A WMI (11%) [92]

C. TGA, SVP

neonates MRI WMI (23%) WMI (31%) [93]

infants
MRI WMI (28%)

N/A [51]
DTI ↓ WM FA (optic radiations, perirolandic, posterior, frontal)

infants MRI N/A WMI (28%) [94]

adolescents
MRI WMI (20%)

N/A [40]
DTI ↓FA in 18 WM regions

Neuroimaging studies within the past 5 years.
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a
HLHS: hypoplastic left heart syndrome; TGA: transposition of the great arteries; SVP: single ventricle physiology.

b
MRI: magnetic resonance imaging; DTI: diffusion tensor imaging; HUS: head ultrasound.

c
WM: white matter; WMI: white matter injury; CHD: congenital heart disease; FA: fractional anisotropy.
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Table 2

Recent animal models of congenital heart disease and corrective surgery

Species WM
a

Gene Protein
b

Key Findings
c Refs

A. Genetic, Pharmacalogical

Mouse N/A Gata4 G295S atrial and ventral septation defects [95]

Mouse N/A Hoxa1 tetralogy of Fallot, interrupted aortic arch, abnormal subclavian artery [96]

Mouse N/A Smad7 septal chamber defects [97]

Mouse N/A RAR second heart field and septal defects [98]

Mouse N/A Pax3 double outlet right ventrical alignment defect [99]

Mouse N/A Galnt1 aortic and pulmonary valve stenosis [65]

Mouse N/A FOXP1 AVSD, HLHS [100]

Mouse N/A RA, FA TGA [101]

B. Surgical

Dog N/A N/A surgery induced severe neurological injury and drastic increases in gene regulation [102]

Pig N/A N/A under hypothermic conditions, high pressure perfusion was not beneficial during long-term 
cerebral perfusion [103]

Piglet √ N/A area- and maturation-dependent, cerebral WM injury following surgery [21]

Piglet N/A N/A higher rates of antegrade cerebral perfusion increased cerebral blood flow [104]

Piglet N/A N/A blood brain barrier permeability was increased following surgery [105]

Piglet N/A N/A ischemic preconditioning was neuroprotective following surgery [106]

Piglet N/A N/A delayed hypothermia reduced cerebral perfusion [107]

Piglet N/A N/A regional blood flow was highest in the brain following surgery with selective cerebral 
perfusion at 32 degrees Celsius [108]

Piglet N/A N/A intravenous injection of granulocyte-colony stimulating factor, prior to surgery, reduced pro-
apoptotic signalling in the brain - especially the striatum [109]

C. Brain slice culture

Mouse √ N/A hypoxic exposure prior to surgery exacerbates WM injury; hypothermic conditions during 
surgery were protective of WM progenitor cells [22]

Mouse √ N/A WM and WM producing cells were most vulnerable in younger mice [71]

a
WM: white matter; N/A: not assessed or not applicable.

b
N/A: not applicable; RAR: retinoic acid receptor; RA: retinoic acid; FA: folic acid.

c
AVSD: Atrioventricular septal defect; HLHS: hypoplastic left heart syndrome; TGA: transposition of the great arteries.
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