
A computational atlas of the hippocampal formation using ex 
vivo, ultra-high resolution MRI: Application to adaptive 
segmentation of in vivo MRI

Juan Eugenio Iglesias1,2,*, Jean C. Augustinack2, Khoa Nguyen2, Christopher M. Player2, 
Allison Player2, Michelle Wright2, Nicole Roy2, Matthew P. Frosch3, Ann C. McKee4,5,6, 
Lawrence L. Wald2, Bruce Fischl2,7, Koen Van Leemput2,8,9, and for the Alzheimer’s 
Disease Neuroimaging Initiativei

1Basque Center on Cognition, Brain and Language, San Sebastián, Spain 2Martinos Center for 
Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 
3C.S. Kubik Laboratory for Neuropathology, Pathology Service, Massachusetts General Hospital, 
Harvard Medical School, Boston, MA, USA 4Departments of Neurology and Pathology, Boston 
University School of Medicine, Boston, MA, USA 5United States Department of Veterans Affairs, 
VA Boston Healthcare System, Boston, MA, USA 6Bedford Veterans Administration Medical 
Center, Bedford, MA, USA 7Computer Science and AI lab, Massachusetts Institute of 
Technology, Cambridge, MA 8Department of Applied Mathematics and Computer Science, 
Technical University of Denmark, Denmark 9Departments of Information and Computer Science 
and of Biomedical Engineering and Computational Science, Aalto University, Finland

Abstract

Automated analysis of MRI data of the subregions of the hippocampus requires computational 

atlases built at a higher resolution than those that are typically used in current neuroimaging 

studies. Here we describe the construction of a statistical atlas of the hippocampal formation at the 

subregion level using ultra-high resolution, ex vivo MRI. Fifteen autopsy samples were scanned at 

0.13 mm isotropic resolution (on average) using customized hardware. The images were manually 

segmented into 13 different hippocampal substructures using a protocol specifically designed for 

this study; precise delineations were made possible by the extraordinary resolution of the scans. In 

addition to the subregions, manual annotations for neighboring structures (e.g., amygdala, cortex) 

were obtained from a separate dataset of in vivo, T1-weighted MRI scans of the whole brain (1 

mm resolution). The manual labels from the in vivo and ex vivo data were combined into a single 

iData used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 
(adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or 
provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: 
adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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computational atlas of the hippocampal formation with a novel atlas building algorithm based on 

Bayesian inference. The resulting atlas can be used to automatically segment the hippocampal 

subregions in structural MRI images, using an algorithm that can analyze multimodal data and 

adapt to variations in MRI contrast due to differences in acquisition hardware or pulse sequences. 

The applicability of the atlas, which we will release as part of FreeSurfer (version 6.0), is 

demonstrated with experiments on three different publicly available datasets with different types 

of MRI contrast. The results show that the atlas and companion segmentation method: 1) can 

segment T1 and T2 images, as well as their combination, 2) replicate findings on mild cognitive 

impairment based on high-resolution T2 data, and 3) can discriminate between Alzheimer’s 

disease subjects and elderly controls with 88% accuracy in standard resolution (1 mm) T1 data, 

significantly outperforming the atlas in FreeSurfer version 5.3 (86% accuracy) and classification 

based on whole hippocampal volume (82% accuracy).

Graphical abstract

1 Introduction

The hippocampal formation is a brain region with a critical role in declarative and episodic 

memory (Scoville & Milner, 1957) (Eldridge, Knowlton, Furmanski, Bookheimer, Engel, & 

others, 2000), as well as a focus of structural change in normal aging (Petersen, et al., 2000) 

(Frisoni, et al., 2008) and diseases such as epilepsy (Cendes, et al., 1993) and, most notably, 

Alzheimer’s disease (AD) (Laakso, et al., 1998) (Du, et al., 2001) (Apostolova, et al., 2006). 

The hippocampal formation consists of a number of distinct, interacting subregions, which 

comprise a complex, heterogeneous structure. Despite its internal complexity, limits in MRI 

resolution have traditionally forced researchers to model the hippocampus as a single, 

homogeneous structure in neuroimaging studies of aging and AD (Boccardi, et al., 2011) 

(Chupin, et al., 2009). Even though these studies have shown that whole hippocampal 

volumes derived from automatically or manually segmented MRI scans are powerful 

biomarkers for AD (Convit, et al., 1997) (Jack, et al., 1999) (Frisoni, et al., 1999) (De 

Toleto-Morrell, Goncharova, Dickerson, Wilson, & Bennett, 2000) (den Heijer, Geerlings, 

Hoebeek, Hofman, Koudstaal, & Breteler, 2006) (Wang, et al., 2003) (Fischl, et al., 2002), 

treating the hippocampus as a single entity disregards potentially useful information about 

its subregions. In animal studies, these subregions have been shown to have different 
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memory functions (Acsády & Káli, 2007) (Hunsaker, Lee, & Kesner, 2008) (Kesner, 2007) 

(Rolls, 2010) (Schmidt, Marrone, & Markus, 2012). In humans, they are also thought to play 

different roles in memory and learning (Gabrieli, Brewer, Desmond, & Glover, 1997) 

(Acsády & Káli, 2007) (Knierim, Lee, & Hargreaves, 2006) (Kesner, 2013) (Kesner, 2007) 

(Reagh et al., 2014) (Yassa & Stark, 2011), and to be affected differently by AD and normal 

aging – as indicated by ex vivo, histological studies (Braak & Braak, 1991) (Braak & Braak, 

1997) (Arnold, Hyman, Flory, Damasio, & Van Hoesen, 1991) (Thal, et al., 2000) (Brady & 

Mufson, 1991) (Simic, Kostovic, Winblad, & Bogdanovic, 1997) (Harding, Halliday, & 

Kril, 1998).

Findings from histological studies on hippocampal samples have sparked interest in studying 

the hippocampal subregions in vivo with MRI, which has been made possible by recent 

advances in MRI acquisition. Neuroimaging studies that have characterized the subregions 

in normal aging and AD with in vivo MRI include (Mueller, et al., 2007) (Wang, et al., 

2009) (Mueller, Schuff, Yaffe, Madison, Miller, & Weiner, 2010) (Small, Schobel, Buxton, 

Witter, & Barnes, 2011) (Kerchner, Deutsch, Zeineh, Dougherty, Saranathan, & Rutt, 2012) 

(Wisse, et al., 2012) (Wisse, et al., 2014) (Burggren, et al., 2008). Most of these studies rely 

on manual segmentations made on T2-weighted MRI data of the hippocampal formation. 

The T2 images are often acquired anisotropically, such that resolution along the direction of 

the major axis of the hippocampus is reduced in exchange for higher in-plane resolution 

within each coronal slice. This design choice is motivated by the internal structure of the 

hippocampus: resembling a Swiss roll, its spiral structure changes less rapidly along its 

major axis, which is almost parallel to the anterior-posterior direction. In in vivo T2-

weighted data, part of this spiral becomes visible as a hypointense band that corresponds to 

the stratum radiatum, lacunosum moleculare, hippocampal sulcus and molecular layer of the 

dentate gyrus. These layers separate the hippocampus from the dentate gyrus. Henceforth, 

for simplicity in writing, we will refer to this band as the “molecular layer”i.

Manual segmentation protocols of high resolution, in vivo MRI data of the hippocampal 

subfieldsi often rely heavily on this molecular layer, which is the most prominent feature of 

the internal region of the hippocampus that is visible in MRI. However, manual delineation 

of the subregions in these high-resolution images is extremely labor-intensive – 

approximately fifty hours per case. Few laboratories currently possess the resources in 

neuroanatomical expertise and staffing that are required to carry out such studies. Even 

within those laboratories, the number of cases that can be used in a study is limited by how 

time-consuming manually tracing the subregions is, which in turns limits the statistical 

power of the analysis.

These limitations can be overcome with the use of automated algorithms. Two major 

methods have been proposed for automated and semi-automated hippocampal subregion 

segmentation so far. In (Yushkevich, et al., 2010) – further validated in (Pluta, Yushkevich, 

iThis band has been referred to as the “dark band” in the literature, but is actually bright when imaged with T1-weighted MRI; 
therefore, we prefer to use the term “molecular layer”.
iWe use the term “subfields” to refer to the CA structures (i.e., CA1–4), and subregions to refer to the whole set of hippocampal 
substructures, including parasubiculum, presubiculum, subiculum, fimbria, molecular layer and hippocampus-amygdala transition area 
(in addition to the subfields).
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Das, & Wolk, 2012) – Yushkevich and colleagues combined multi-atlas segmentation, 

similarity-weighted voting, and a learning-based label bias correction technique to estimate 

the subregion segmentation in a nearly automated fashion. The user needs to provide an 

initial partitioning of MRI slices into hippocampal head, body and tail. In (Van Leemput, et 

al., 2009), our group introduced a fully automated method based on a statistical atlas of 

hippocampal anatomy and a generative model of MRI data.

These two methods approach the segmentation problem from different perspectives – 

parametric and non-parametric. The algorithm we developed – which follows a generative, 

parametric approach – focuses on modeling the spatial distribution of the hippocampal 

subregions and surrounding brain structures (i.e., the underlying segmentation), which is 

learned from labeled training data. The segmentation, which is a hidden variable in the 

model, is connected to the observed image data through a generative process of image 

formation that does not make any assumptions about the MRI acquisition. This is indeed the 

strongest point of the algorithm, since it makes it adaptive to any MRI pulse sequence and 

resolution that might have been used to acquire the data - even if multimodal (Puonti, 

Iglesias, & Van Leemput, 2013). Conversely, the algorithm developed by Yushkevich and 

co-workers relies on a combination of a registration-based, multi-atlas algorithm (a non-

parametric method) and machine learning techniques. Both components of their method 

effectively exploit prior knowledge about the distribution of image intensities derived from 

training data – information which our parametric method disregards. While the use of prior 

knowledge about the image intensities is advantageous when the MRI pulse sequence of the 

test scan matches that of the training data, segmentation of MRI images with different 

contrast properties is not possible with such an approach. Nonetheless, both Yushkevich’s 

method and ours have successfully been used to carry out subregion studies on large 

populations (Teicher, Anderson, & Polcari, 2012) (Das, et al., 2012) (Iglesias, Sabuncu, & 

Van Leemput, 2013).

Our original subfield segmentation method, which is publicly available as part of the 

FreeSurfer open-source software package (Fischl, FreeSurfer, 2012) (version 5.3), is based 

on a probabilistic atlas that was built from in vivo MRI data acquired at 0.38×0.38×0.8mm 

resolution (Van Leemput, et al., 2009). Henceforth, we refer to this atlas as the “in vivo 

atlas” (FreeSurfer v5.3). The resolution of this atlas is only sufficient to produce a coarse 

segmentation of the subregions in standard-resolution MRI (i.e., 1 mm); a more accurate 

model of anatomy is necessary to analyze newer, higher resolution data where the 

hippocampal substructures are more clearly visualized. Specifically, the in vivo atlas in 

FreeSurfer v5.3 suffers from three shortcomings. First, the image resolution of the in vivo 

training data was insufficient for the human labelers to completely distinguish the 

subregions, forcing them to heavily rely on geometric criteria to trace boundaries, which 

affected the accuracy of their annotations. In particular, a problematic consequence is that 

the molecular layer was not labeled, compromising the ability of the atlas to segment high-

resolution in vivo data. A second issue is that the delineation protocol was designed for the 

hippocampal body and did not translate well to the hippocampal head or tail. Due to the 

second issue, a third problem is that the volumes of the subregions did not agree well with 
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those from histological studies (Simic, Kostovic, Winblad, & Bogdanovic, 1997) (Harding, 

Halliday, & Kril, 1998), as pointed out by (Schoene-Bake, et al.).

In this study, we address these shortcomings by replacing the hippocampal atlas in 

FreeSurfer v5.3 with a new version (FreeSurfer v6.0) built with a novel atlasing algorithm 

and ex vivo MRI data from autopsy brains. Since motion effects are eliminated, much longer 

MRI acquisitions are possible when imaging post-mortem samples. Our ex vivo imaging 

protocol yields images with extremely high resolution and signal-to-noise ratio, dramatically 

higher than is possible in vivo, which allows us to accurately identify more subregions with 

a delineation protocol specifically designed for this study. To the best of our knowledge, 

there is only one ex vivo atlas of the hippocampus, presented in (Yushkevich, et al., 2009); 

Adler et al. (2014) have presented promising work towards an atlas based on both ex vivo 

MRI and histology, but they only labeled one case. Compared with Yushkevich’s atlas 

(henceforth “UPenn atlas”), our atlas (FreeSurfer v6.0) has the following advantages: 1. it is 

built at a higher resolution (0.13 mm isotropic, on average, vs. 0.2 mm); 2. it models a larger 

number of structures (15 vs. 5); 3. it is built upon a larger number of cases (15 vs. 5); and 4. 

in addition to the hippocampal subregions, it also models the surrounding structures, which 

enables its use in a generative modeling framework to directly segment in vivo MRI data of 

varying contrast properties. To include the neighboring structures in the atlas, we have 

developed a novel atlas construction algorithm that combines the dedicated ex vivo data with 

a standard resolution dataset of in vivo scans of the whole brain, for which manual labels of 

the surrounding tissue are already available; this algorithm eliminates the need to delineate 

the neighboring structures at ultra-high resolution, which would be extremely time 

consuming. Throughout this article, we will refer to the hippocampal atlas resulting from 

these delineations as the “ex vivo atlas” (FreeSurfer v6.0) – even though, as explained above, 

in vivo data were used to build the model of the structures around the hippocampus.

In addition to the atlas, we also present in this study a segmentation algorithm for analyzing 

in vivo MRI scans with the ex vivo atlas. The method is largely based on (Van Leemput, et 

al., 2009). It is important to stress that a procedure that can adapt to different intensity 

distributions is required for using ex vivo data to infer in vivo structures. The ex vivo scans 

are acquired on fixed tissue with dramatically different contrast properties than in vivo 

tissue. The fixation process cross-links proteins, significantly shortening T1 and leaving 

little remaining T1-contrast. As a result, the ex vivo scans that we acquire are largely T2* 

weighted. Thus, even if one was to match acquisition protocols in vivo and ex vivo, the 

resulting images would have dramatically different intensity characteristics due to the 

changes in the intrinsic tissue properties that give rise to MRI contrast. Therefore, to take 

advantage of the ultra-high resolution images that can only be obtained ex vivo, one must 

use a procedure that does not require the same intensity characteristics in the atlas as in the 

in vivo scans to be segmented.

The rest of the paper is organized as follows. Section 2 describes the MRI data, delineation 

protocol and mathematical framework that were used to build the statistical atlas, shows the 

resulting atlas, and compares the subregion volumes that it yields with those from the UPenn 

atlas and from two histological studies. Section 3 details an algorithm to use the atlas to 
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segment in vivo MRI data, and presents results on three datasets with different resolutions 

and types of MRI contrast. Finally, Section 4 concludes the article.

2 Atlas construction

The statistical atlas that we propose is built from a combination of ex vivo and in vivo MRI 

training data. Here we first describe the acquisition (Section 2.1) and manual labeling 

(Section 2.2) of the ex vivo data. Next, we introduce the in vivo training data we used 

(Section 2.3). The algorithm to build the atlas is described in Section 2.4, and the resulting 

atlas presented in Section 2.5.

2.1 Autopsy brain samples and ex vivo MRI acquisition

The ex vivo data consists of fifteen autopsied brain hemispheres from two different sources. 

Eight of the samples were from the Framingham Heart Study and Boston University 

Alzheimer’s Disease Center (Veterans Administration Medical Center, Bedford, VA). The 

other seven samples were from the Massachusetts General Hospital Autopsy Service 

(Massachusetts General Hospital, Boston, MA). The samples consisted of whole brain 

hemispheres (left n=8, right n=7) from 15 different subjects. Ten of the subjects did not have 

any neurological conditions, whereas four of them had mild AD and one had mild cognitive 

impairment (MCI). Eight samples were fixed with periodate-lysine-paraformaldehyde 

(PLP), and the other seven were fixed with 10% formalin. The demographics of the ex vivo 

samples were the following: age at death was 78.6± 11.9 years, 35.7% were females, 53.3% 

were left hemispheres and the post-mortem interval was less than 24 hours in all cases for 

which this information was available. The demographics are detailed in Table 1.

A block of tissue including the hippocampus was excised from each ex vivo sample. 

Depending on its size, the block was placed in either a plastic cylindrical centrifuge tube (60 

ml, 3 cm diameter) or, if it did not fit, inside a bag filled with PLP and sealed. In the latter 

case, air was pumped out using a needle and a vacuum pump in order to minimize the 

number and size of air bubbles in the samples. Two different pumps were used in the 

process: a DV-185N-250 Platinum 10 CFM by JB (Aurora, IL), and a S413801 by Fisher 

Scientific (Hampton, NH).

The tissue block was subsequently scanned in a 7 T Siemens scanner using a 3D FLASH 

sequence with TR = 50 msec, TE = 25 msec, α=20°. Two of the samples were scanned at 

0.1 mm isotropic resolution, seven at 0.12 mm, five at 0.15 mm and one at 0.2 mm (see 

Table 1). Three different coils were used in the acquisition, accommodating variations in 

sample size: a 4-turn solenoid coil (28.5 mm inner diameter, 44 mm length), a 4-channel 

phased-array (a linear array of loop coil elements each with 5 cm coil diameter, 1.5 cm 

overlap between adjacent elements, 16 cm in length) and a small birdcage (24 rings, outer 

diameter = 19.7 cm, inner diameter = 19.3 cm, length = 12 cm). Despite the fact that 

different coils were used to scan the different samples, the output images were comparable 

in quality. The whole procedure received IRB approval before its execution by the Partners 

Human Research Committee. Figure 1 displays some sample slices of the data.
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2.2 Manual segmentation of ex vivo MRI data: anatomical definitions

In this section we describe the protocol for manually labeling the hippocampal subregions in 

the ex vivo data. The protocol was specifically designed for this study, and is largely based 

on the histology and morphometry from (Rosene & Van Hoesen, 1987), and partly also on 

(Lorente de No, 1934) (Insausti & Amaral, 2011) (Green & Mesulam, 1988). The Duvernoy 

atlas (Duvernoy, 1988) was also used as an aid in the delineation process. The set of 

annotated labels, along with the protocol for their annotation, is described in Table 2. The 

descriptions in the table are based on ex vivo contrast, not histological data. Given the 

excellent resolution of the ex vivo MRI data (100 µm), most of the subregion boundaries 

were visible in the images, but subtle transitions were still difficult to distinguish. Another 

source of differences between our ex vivo MRI labels and histology is that many boundaries 

are oblique (rather than perpendicular) to the imaging planes. Nonetheless, we used 

previously published anatomical contrast to guide us (Augustinack, et al., 2005) (Fischl, et 

al., 2009) (Augustinack, et al., 2010) (Augustinack, et al., 2013). We also used 

neuroanatomical knowledge of particular layers to help us identify boundaries.

Distinguishing the boundaries between subiculum, CA1, CA2 and CA3 was more difficult 

due to the lack of image contrast between those subfields, but we used the pyramidal layer 

thickness and pyramidal layer intensity for this. We also combined the knowledge of 

location and pyramidal layer thickness to determine the subregions: the subiculum is widest, 

CA1 is thinner than subiculum, CA2 is thinner than CA1, and finally CA3 is the thinnest of 

the subfields. To distinguish the subicular boundaries, we used neighboring neuronal 

groupings such as entorhinal layer II islands (Augustinack, et al., 2005), presubicular clouds 

(Green & Mesulam, 1988), and reduced lamination in parasubiculum (compared with 

presubiculum and entorhinal cortex) (Green & Mesulam, 1988). A full description of the 

histologic architecture is beyond the scope of this work because the atlas described here is 

based on ex vivo contrast. Nonetheless, our ex vivo MRI delineations represent a significant 

improvement over the previous FreeSurfer hippocampal segmentation (that only used 

geometric properties), and are much closer to the underlying subregion boundaries.

Seven manual labelers that were supervised by J.C.A. used the protocol described in Table 2 

to annotate the subregions in the 15 ex vivo scans. Annotating each scan took approximately 

60 hours; a single hippocampus at this resolution contains more voxels than an in vivo scan 

of an entire brain. The annotations were made using Freeview, a visualization tool that is 

included in FreeSurfer. The first step in the protocol was to rotate the MRI volume to align 

the major axis of the hippocampus with the perpendicular direction to the coronal view. 

Then, assuming a left hippocampus (in right hemispheres, the image was flipped for 

delineation), the subregions were labeled using the definitions in Table 2. When bubbles 

were present in the images, the labelers filled them with the label of the structure they 

believe would be under the bubble. Since this introduces noise in the manual labels, 

minimizing the number and size of air bubbles in the sample prior to acquisition is crucial. 

The delineations were made in coronal view, while using information from the other two 

views (sagittal and axial) to guide the tracing; even though this might lead to slightly jagged 

boundaries in sagittal and axial view, this roughness is averaged out when the manual 

segmentations are downsampled and combined into the probabilistic atlas (see Section 2.5). 
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In order to ensure the consistency between the manual labelers, J.E.I and J.C.A. evaluated 

their delineations and served as quality control for each case, refining the segmentations 

where necessary. Sample manual tracings, along with the color coding of the subregions (for 

visualization purposes), are shown in Figure 2.

2.3 In vivo training MRI data

Learning the spatial distribution of labels surrounding the hippocampus from the ex vivo 

data requires manual delineation of its neighboring structures. Even though it would be 

possible to trace these structures on ultra-high resolution, ex vivo MRI data, such approach 

would represent an unnecessary labeling effort for two reasons. First, the neighboring 

structures only need to provide a course context to assist the subregion segmentation, and 

therefore do not require labeling at ultra-high resolution, which is extremely time 

consuming; delineation at standard resolution (i.e., ~1 mm) is sufficient. And second, there 

is already a number of publicly available and proprietary in vivo datasets for which such 

structures have already been manually labeled.

These are the motivations for using an additional training dataset consisting of in vivo, 

whole brain MRI scans. The dataset consists of T1-weighted scans from 39 subjects (19 

males, 20 females, mean age: 56.3 years, 29 controls, 10 mildly demented) acquired with a 

MP-RAGE sequence in a 1.5T scanner with the following parameters: TR=9.7ms, TE=4.ms, 

TI=20ms, flip angle = 10°, 1 mm. isotropic resolution. Thirty-six brain structures, including 

the whole left and right hippocampi, were manually delineated using the protocol described 

in (Caviness, Filipek, & Kennedy, 1989); see sample slices, as well as a qualitative 

comparison with the ex vivo delineation protocol, in Figure 3. Note that these are the same 

subjects that are used to construct the probabilistic atlas in the software package FreeSurfer.

2.4 Algorithm for atlas construction

Here we describe the procedure to build our probabilistic atlas from in vivo and ex vivo data. 

We will first describe the underlying model, which is based on a tetrahedral mesh 

representation. Then, we will use Bayesian inference to learn the parameters of the mesh 

from manual annotations, assuming that its topology is fixed. Finally, we introduce a 

Bayesian algorithm to optimize the topology of the mesh, which is a model selection 

problem. Throughout the rest of this section, we will assume that all the training samples 

correspond to left hippocampi; samples from right hippocampi are simply flipped before 

being fed to the algorithm.

Underlying model—To build our probabilistic atlas of the hippocampal formation from 

ex vivo and in vivo data, we developed a generalization of our previous method (Van 

Leemput K., 2009) that can deal with partial information. The algorithm aims to produce a 

compact tetrahedral mesh representation of the atlas, in which each vertex has an associated 

vector of probabilities for the different hippocampal subregions and surrounding structures. 

The topology and resolution of the mesh are locally adaptive to the shape of each anatomical 

region i.e., coarse in uniform regions and fine around convoluted areas. The difference with 

respect to the original method is that we no longer assume that all the labels of the training 

dataset are readily available: for the ex vivo data, the labels for the surrounding structures are 
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not given, and for the in vivo data, the hippocampal subregions are not available. Instead, we 

observe a modified version in which some sets of labels have been collapsed into more 

general labels in a deterministic fashion. The function that collapses the labels is different 

for each training dataset: for the ex vivo samples, it collapses all the non-hippocampal 

structures into a single, generic background label. For the in vivo data, the function collapses 

all the hippocampal subregions into a single label corresponding to the whole hippocampus.

Specifically, let there be M label volumes Cm, m = 1,2, …, M, derived from in vivo or ex 

vivo data. Each label volume  has I voxels, where each voxel has a 

manual label belonging to one of P possible collapsed classes: . We 

model these label images as having been generated by the following process (illustrated in 

Figure 4):

a. A tetrahedral mesh covering the image domain is defined. This mesh is described 

by the position of its N vertices  and their connectivity . 

Henceforth, we will refer to xr as the reference position of the mesh. Each mesh 

node has an assigned vector of label probabilities , where 

{1,2, …, L} is the set of labels before collapsing. The probabilities satisfy 

.

b. M deformed meshes are obtained by sampling M times from the following 

probability distribution:

where xm is the deformed mesh position, T is the number of tetrahedra in the mesh, 

β is a mesh flexibility parameter, and  is a penalty that goes to infinity if 

the Jacobian determinant of the tth tetrahedron’s deformation becomes zero 

(Ashburner, Andersson, & Friston, 2000). This deformation model allows the mesh 

to describe a broad spectrum of hippocampal shapes, while preventing the Jacobian 

determinant of the deformation of each tetrahedron from becoming zero (which is 

equivalent to collapsing it) or negative (which is equivalent to reversing its 

orientation). By avoiding collapses and orientation reversals of the tetrahedra, we 

ensure that the topology of the mesh is preserved. Throughout the rest of this paper, 

we will assume that β is a known constant.

c. From each deformed mesh xm, a latent label  is generated for 

each voxel i by sampling from the label probabilities given by the mesh. At non-

vertex locations, these probabilities are computed using barycentric interpolation: 

, where pi is the prior probability at voxel i, xi is 

the spatial location of voxel i, and  is an interpolation basis function attached 

to node n of mesh m – see details in (Van Leemput K., 2009). Assuming 
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conditional independence of the labels between voxels given the deformed mesh 

position xm, we have that:

where  is the m-th latent label volume.

d. Finally, the observed label volumes are given by  (for in vivo volumes) 

and  (for ex vivo volumes). The function fin collapses all the 

hippocampal subregion labels into a single, global hippocampal label, whereas fex 

collapses all the non-hippocampal labels into a single, generic background label. 

Therefore, we can write:

Equation 1

where  denotes looping over the labels such that . If the mapping 

from L to C is bijective (i.e., no labels are collapsed), the generative model is the 

same as in (Van Leemput K., Encoding probabilistic brain atlases using bayesian 

inference, 2009).

Given this probabilistic model, the construction of the atlas is equivalent to solving the 

following inverse problem: given a set of (collapsed) label volumes (i.e., manual 

segmentations), we search for the atlas that most likely generated them according to the 

model. We use Bayesian inference to find the answer, as detailed below.

Optimization of model parameters – mesh deformations and atlas 
probabilities—Assuming that the mesh connectivity  and reference position xr are 

known, the problem to solve is:

where α̂ and {x̂m} represent the most likely atlas probabilities and atlas deformations, 

respectively. Using Bayes’s rule, we have:

Equation 2

where we have assumed a flat prior for α, i.e., p(α) ∝ 1. Now, taking the logarithm of 

Equation 2, and expanding the sum over voxels and hidden labels (Equation 1), we have:

Equation 3: target function for atlas 

building
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The first term in ℒ in Equation 3 represents the (negated) cost of warping the mesh 

according to the deformation model we have borrowed from (Ashburner, Andersson, & 

Friston, 2000), whereas the second term represents the data fidelity. We solve Equation 3 by 

optimizing α with {xm} fixed and vice versa until convergence. Updating α amounts to re-

estimating the label probabilities at each spatial location, whereas the optimization of {xm} 

with α fixed represents a group-wise, nonrigid registration process. As shown below, the 

update equations are analogous to those from the original method (Van Leemput K., 

Encoding probabilistic brain atlases using bayesian inference, 2009).

Update of {xm}: We perform the optimization of Equation 3 with respect to {xm} one 

dataset index m at the time. We use a conjugate gradient algorithm to numerically optimize 

the expression. The gradients are given in analytical form by:

Update of α: We carry out the optimization of Equation 3 with respect to α with an 

expectation maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977) as follows. 

Leaving aside the term that is independent of α, we iteratively build a lower bound to the 

target function ℒ(α,{xm};Cm, xr, β, ) that touches it a the current value of α (“E step”) and 

subsequently optimize this bound with respect to α (“M step”). This procedure is guaranteed 

to always improve the value of the original target function (or leave it unchanged when 

convergence has been achieved). If α̃ is the current estimate of α, the bound is:

where  is given by:

Equation 4: E step

It can easily be shown that the maximum of, Q(α; α̃) is attained at:
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Equation 5: M step

As mentioned previously, the optimization scheme in (Van Leemput K., Encoding 

probabilistic brain atlases using bayesian inference, 2009) is recovered when the mapping 

from L to C is bijective.

Optimization of mesh topology – model selection—So far we have assumed that 

the mesh connectivity and reference position were fixed. Optimizing the mesh topology is 

important to avoid overfitting to the training data due to the large variability in 

neuroanatomy across subjects. For instance, at a given spatial location, an atlas built upon a 

small training dataset could incorrectly assign a zero probability for a given label, if it was 

not present in any of the training volumes. This problem can be partly overcome by 

smoothing the atlas (Ashburner & Friston, 2001). As shown in (Van Leemput K., Encoding 

probabilistic brain atlases using bayesian inference, 2009), the mesh topology can be 

optimized such that an automatically estimated amount of blurring is introduced in the atlas, 

allowing it to generalize well to previously unseen data. Following Van Leemput’s 

framework, we compare meshes with different topologies by evaluating their so-called 

evidence, which expresses how probable the observed training data is for each mesh 

topology. To compute the model evidence, we follow (Van Leemput K., 2009), with the 

difference that we replace  by  – 

recovering our previous algorithm if f(·)(l) is bijective. The evidence is given by:

Equation 

6: model 

selection

where , α̂, x̂m are the minimizers of Equation 3, and where the 

constant Z includes a number of factors that only depend significantly on β (which is kept 

fixed in this work).

In order to compute the most likely connectivity  and reference position xr using Equation 

6, these variables are first initialized with a high-resolution, regular mesh. Then, the mesh 

parameters {α̂, {x̂m}} are optimized by solving the problem in Equation 3. Finally, the mesh 

is simplified by repeatedly visiting each edge (in random order), comparing the effect on the 

evidence of either keeping the edge while optimizing the reference position of the two nodes 

at its ends, or collapsing the edge into a single node and optimizing its reference position; 

the details can be found in (Van Leemput K., Encoding probabilistic brain atlases using 

bayesian inference, 2009).

Data preprocessing—To build the atlas, all the training label volumes must be in the 

same coordinate space. For this purpose, we carried out the following preprocessing steps: 1. 

manually rotating the FreeSurfer whole brain atlas – described in (Fischl, et al., 2002) – so 

that the major axis of the left hippocampus was aligned with the anterior-posterior axis; 2. 
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extracting from the atlas a binary mask corresponding to the voxels for which the left 

hippocampus is the most likely label; 3. left-right flipping all right hippocampi in the 

training data; 4. affine co-registration of the training data (using binary hippocampal masks) 

to the left hippocampus of the rotated FreeSurfer atlas, using sum of squares as metric; 5. 

resampling to 0.25 mm resolution (which is above the limit that can currently be achieved 

with in vivo brain MRI scanning); and 6. cropping a bounding box around the hippocampi, 

leaving a 10 mm margin with respect to the boundary as defined by the FreeSurfer atlas – 

which yielded volumes of dimension 131×241×99 voxels. The resampling of label volumes 

was carried out by resampling binary masks for each label separately using cubic 

interpolation, and picking the label with the maximum value at each voxel. This approach 

mitigates the block effect caused by nearest neighbor interpolation. This preprocessing 

pipeline yielded 93 (78 in vivo, 15 ex vivo) volumes with the same size and resolution, in 

which the hippocampi were affinely aligned, and which were then fed to the algorithm 

described above. The mesh flexibility parameter was set to β = 0.15; visual inspection of the 

results of pilot segmentation experiments using the algorithm proposed in Section 3.4 below 

and 10 T1 scans of the OASIS dataseti showed that this value of β provided a good 

compromise compromise between specificity and generalization ability.

2.5 Statistical atlas: volumes of subregions and sample slices

Coronal slices from the resulting statistical atlas are displayed in Figure 5. The atlas has a 

total of 18,417 vertices, so the dimensionality of x – which is equal to the number of degrees 

of freedom of the nonlinear deformation – is approximately three times this value, i.e., ca. 

55,000. Figure 5 also displays the original in vivo atlas currently distributed with FreeSurfer 

for comparison. Both atlases show similar levels of blurring in the label probabilities that 

allow them to avoid overfitting the training data and generalize well to test images. 

However, the ex vivo atlas follows the internal structures of the hippocampus with much 

more accuracy than the in vivo version, which relies much more on geometric features – see 

for instance the vertical boundary of CA1 (in red) in Figure 5. In fact, the in vivo atlas does 

not describe the molecular layer (dark brown), which is the main feature that will allow the 

atlas to segment high-resolution MRI data of the hippocampus. The figure also displays the 

UPenn atlas from (Yushkevich, et al., 2009), which has lower resolution than the presented 

ex vivo atlas, has fewer subregions, and does not model additional surrounding 

(extrahippocampal) structures.

The improved accuracy of the ex vivo atlas is also reflected on the volumes of the 

subregions. Table 3 shows the average subregion volumes for the in vivo (FreeSurfer v5.3) 

and ex vivo atlases (FreeSurfer v6.0), for the UPenn atlas (Yushkevich, et al., 2009), and for 

two different previous histological studies: (Simic, Kostovic, Winblad, & Bogdanovic, 

1997) and (Harding, Halliday, & Kril, 1998). Compared with the in vivo atlas, the ex vivo 

counterpart models a larger number of subregions and also yields volumes for CA1 and 

(especially) CA2/3 that are much closer to those reported by the referenced histological 

studies. The UPenn atlas yields accurate volumes for CA4 (for which it agrees well with our 

ex vivo atlas), but underestimates the volume of CA2/3 and largely overestimates the volume 

ihttp://www.oasis-brains.org

Iglesias et al. Page 13

Neuroimage. Author manuscript; available in PMC 2016 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.oasis-brains.org


of CA1. Both our ex vivo atlas and the UPenn atlas overestimate the volume of the dentate 

gyrus, compared with the histological studies.

3 Segmentation of in vivo MRI data

In this section, we first introduce an algorithm to segment in vivo MRI data using the 

proposed statistical atlas (Section 3.1). Subsequently, Sections 3.2 through 3.4 present 

segmentation results on three different publicly available datasets with different resolutions 

and MRI contrasts, in order to demonstrate the ability of the algorithm to adapt to 

monomodal and multimodal data acquired with different MRI protocols and different 

hardware platforms. In Section 3.2, the algorithm is applied to high resolution (0.6 mm 

isotropic) T1/T2 data, segmenting the T1 and T2 channels both independently and 

simultaneously. In Section 3.3, we use 1 mm isotropic T1 data and corresponding high-

resolution T2 images (0.4 mm in-plane, 2 mm slice thickness) to find group differences in 

subregion volumes between MCI subjects and elderly controls. Finally, in Section 3.4 we 

automatically segment 1 mm isotropic T1 scans of AD subjects and elderly controls to 

compute volumes that are used as feature in classification experiments.

3.1 Algorithm for segmenting an in vivo scan

Here we describe the algorithm to segment an in vivo MRI scan given the atlas built in 

Section 2. We first describe the underlying generative model, which builds on that of 

Section 2.4, and then detail an algorithm to estimate the segmentation using Bayesian 

inference. As in the previous section, we will assume that we are segmenting a left 

hippocampus. If we wish to segment the right hippocampus, we simply flip the atlas in the 

left-right direction.

Generative model—The built atlas can be used to segment a previously unseen MRI scan 

acquired with any type of MRI contrast (monomodal or multimodal), using the generative 

model displayed in Figure 6. The first layers of the model are the same as in Figure 4: the 

atlas, which defines prior probabilities of label occurrences in space, is first deformed 

according to the model proposed in (Ashburner, Andersson, & Friston, 2000), and then 

labels are sampled at each voxel location to obtain a segmentation L. The difference is that 

now this segmentation is connected to image intensities through a likelihood term, for which 

we assume that a Gaussian distribution is associated with each label.

In order to reflect the fact that there is very little contrast between different white matter 

structures in structural MR images of the brain, we assume that the fimbria and the cerebral 

white matter belong to a global white matter class, described by a single Gaussian 

distribution. Likewise, the cerebral cortex, amygdala and hippocampal gray matter structures 

(para-, pre-, and subiculum, CA1–4, GC-DG, HATA) also are assumed to be part of a global 

gray matter class. The cerebrospinal fluid (CSF) structures (ventricles, hippocampal fissure) 

share a class as well. The diencephalon, thalamus, pallidum, putamen and choroid plexus 

each have independent intensity classes. The alveus and molecular layer could in principle 

be part of the global white matter class; however, due to their thin shape, they are often 

affected by partial voluming, so we allow them to have their own Gaussian parameters as 

well.
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The observed MRI intensity image Y is assumed to have been generated by sampling a 

Gaussian distribution at each voxel i, parameterized by the mean and covariance 

corresponding to its global class:

where G(li) represents the global class corresponding to label li, μG and ΣG) are the mean 

and covariance of the global tissue class G, (·;μ, Σ) represents the (possibly multivariate) 

Gaussian distribution with mean μ and covariance Σ, and yi denotes the intensity in voxel i.

The generative model is completed by a prior distribution on the Gaussian parameters {μG}, 

{ΣG}. We use a normal-inverse-Wishart distribution for each class – which is the conjugate 

prior for a multivariate Gaussian distribution with unknown mean and covariance – with 

covariance-related hyperparameters set to zero (i.e., uninformative prior on the covariance 

structure):

Here {MG} and {νG} are the remaining hyperparameters of the normal-inverse-Wishart 

distribution. Their interpretation is that prior to observing any image data, we have an initial 

guess MG of the mean of tissue class G, which is assumed to have been obtained as the 

sample mean of νG observations (note that for νG = 0 a uniform prior is obtained).

Segmentation as Bayesian inference—Using the described generative model, 

segmentation is cast as an optimization problem in a Bayesian framework – we search for 

the most likely labeling given the probabilistic atlas and the observed image intensities. 

Exact inference would require marginalizing over the model parameters x (the mesh 

deformation) and {μG, ΣG}, which leads to an intractable integral. Therefore, we make the 

approximation that the posterior distribution of such parameters in light of the atlas and 

observed image intensities is heavily peaked. This allows us to first find the maximum-a-

posteriori (MAP) estimates of the parameters, and then use these values to derive the 

segmentation:

where the most likely model parameters are given by:

Equation 7: model 

parameter estimation

Using Bayes rule, the problem in Equation 7 can be rewritten as:

Iglesias et al. Page 15

Neuroimage. Author manuscript; available in PMC 2016 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Equation 

8: target 

function 

for 

parameter 

estimation

where we have introduced the prior for global tissue class G as: pi(G|α, x, ) = Σk∈G pi(k|α, 
x, ). We solve Equation 8 by alternately optimizing for the mesh deformation x and the 

Gaussian parameters {μG}, {ΣG}. We update the mesh deformation x by optimizing 

Equation 8 directly with a conjugate gradient algorithm, and the Gaussian parameters with 

an EM algorithm. In the E step, we perform a probabilistic label classification for each 

voxel:

and in the M step, the Gaussian parameters are updated as follows:

Once the optimal parameters x, {μ̂
G}, {Σ̂

G}, have been estimated, the (approximately) 

optimal segmentation  can be computed voxel 

by voxel as:

If we are interested in the volumes of the different structures, their expected values are given 

by:

Equation 9: estimation of volume

Image preprocessing, algorithm initialization and computation of 
hyperparameters—To initialize the segmentation algorithm and compute the 

hyperparameters {MG, νG}, we use the output from the standard FreeSurfer pipeline 

(“recon-all”), which operates on whole brain T1 data at 1 mm resolution. FreeSurfer 
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produces a skull-stripped, bias field corrected volume that we use as T1 component of the 

input to the hippocampal segmentation algorithm. It also produces a segmentation of this 

whole brain volume into 36 structures. If additional channels (e.g., high-resolution T2) are 

available, they are first rigidly coregistered with the T1 scan with mutual information 

(FreeSurfer’s “mri_robust_register”), using the brain mask provided by FreeSurfer to 

eliminate the influence of non-brain tissue on the alignment. The resulting transform is used 

to map the (skull-stripped, bias field corrected) T1 data and its automated segmentation to 

the space of the additional scan. The mapped segmentation is used to skull strip the 

additional channels. The preprocessed data from all the available channels is then resampled 

to the voxel size at which we desire to compute the segmentation, which is equal to the 

resolution at which the atlas will be rasterizedi.

We position the cuboid region that the atlas models by mapping it to the image to be 

segmented with an affine, sum of squares based registration algorithm (implemented in 

“mri_robust_register”). The algorithm uses the binary hippocampal segmentation from 

FreeSurfer as target image, and a soft probability map for the whole hippocampus – 

computed from the mesh in reference position – as source image for the registration. 

Henceforth, we refer to the region covered by the mapped atlas cuboid as “atlas region of 

interest (ROI)”. The voxels outside the atlas ROI are not considered by the segmentation 

algorithm.

In addition to preprocessing the input data and computing the atlas ROI, the segmentation of 

the brain into 36 structures generated by FreeSurfer is also used compute the 

hyperparameters {MG, νG} as follows: for each global class G, we first find all the voxels 

segmented as such structure by FreeSurfer. Next, we set MG to the modality-wise median 

intensity of that structure. Then, we set νG to the number of voxels used in the estimation of 

the median. Using the FreeSurfer segmentation from the whole brain improves the estimate 

of the Gaussian parameters, especially when the number of voxels for a given class is small 

within the atlas ROI. For instance, it is not always easy to estimate the Gaussian parameters 

of the CSF from the atlas ROI, partly due to the presence of the choroid plexus. However, if 

we look at the whole brain, such parameters can be easily estimated from the full ventricles.

There are however four classes for which the hyperparameters are computed in a different 

manner: gray matter, white matter, alveus and molecular layer. For the gray and white 

matter, since there are so many voxels labeled as such in the whole brain, we only use those 

from the hippocampus and neighboring regions in the FreeSurfer parcellation of each 

hemisphere. This way, we take advantage of a relatively large number of voxels to inform 

the model while eliminating the drift in the hypermeans {MG} that could be caused by 

voxels far away from the hippocampus due to the MRI bias field. For the white matter, we 

use the superior occipital gyrus, the orbital part of inferior frontal gyrus and the opercular 

part of the inferior frontal gyrus of the corresponding hemisphere. For the gray matter, we 

use the parahippocampal, entorhinal and fusiform cortices, as well as the whole 

hippocampus and amygdala from the corresponding hemisphere.

iConverted from the mesh representation to discrete voxels with barycentric interpolation.
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The hyperparameters of the alveus and molecular layer are computed in a different way 

because, due to their thin shapes, they are more severely affected by the partial volume 

effect, such that the global white tissue class does not model their intensity distribution 

correctly (despite the fact that they are white matter structures). We compute the 

hyperparameters of these structures by mimicking the partial volume effect as follows. First, 

we rasterize the mesh at the initial position x at the native resolution (0.25 mm isotropic). 

Next, we sample a label li at each voxel i from li ~ pi (k|α, xm, ) to generate a sample 

segmentation L. Then, we assign to each voxel the mean intensity of its corresponding label, 

while assuming that the alveus and molecular layer belong to the global white matter class. 

Then, we blur this image with a Gaussian kernel that matches the resolution of this synthetic 

image to that of the test scan to segment, by setting its FHWM (in voxels) in each direction 

to the voxel size of the test scan in that direction divided by the native voxel size of the atlas 

(0.25 mm). Finally, Malv and MML are set to the median intensity of the fimbria and 

molecular layer in the synthetic image, whereas we set νalv and νML to the volume of these 

two structures provided by the atlas (see Section 2.5).

3.2 Qualitative segmentation results on high resolution T1/T2 data from Winterburn et al. 
(2013)

In this section, we show qualitative results on a publicly available dataset of high resolution 

T1/T2 data. The dataset (Winterburn, et al., 2013) is a public repository of T1 and T2-

weighted scans of five subjects (two males, three females, ages 29–57) acquired on a 3T GE 

scanner with an 8-channel head coil. Both the T1 and the T2 scans were acquired at 0.6 mm 

isotropic resolution, and then super-sampled to 0.3 mm isotropic. Manual delineations of 

five subregions are also available as part of the repository: CA1, CA2/3, dentate gyrus, 

molecular layer and subiculum. Note, however, that a direct evaluation through comparison 

of manual and automated segmentations (e.g., with Dice scores) is not possible due to the 

differences between our subregion labeling protocol (described in Section 2.2) and theirs. 

Instead, we present qualitative results: since high resolution images are available for both 

the T1 and T2 channels (see sample slices in Figure 7), we can compare the outputs 

produced by the segmentation algorithm on the T1 data, the T2 data, and both combined. 

When using a single channel in the segmentation, yi is a scalar with the T1 (or T2) intensity, 

and {μG, ΣG} are also scalars with the means and variances of the tissue types. When we 

segment both channels simultaneously, yi is a 2 × 1 vector with the T1 and T2 intensities at 

spatial location i, while the means {μG} are 2 × 1 vectors and the covariances ΣG are 2 × 2 

matrices. In this experiment, the work resolution is set to 0.3 mm – equal to the voxel size of 

the input scans.

Figure 8 and Figure 9 show sample segmentations from “subject 3” in the dataset using the 

T1 scan alone, the T2 scan alone, and both scans simultaneously; segmentations from the 

other four subjects in the dataset are provided in the supplementary material (Figure 20 and 

Figure 21). Note that we have removed from the final segmentation the neighboring 

structures of the hippocampus, as well as the alveus; showing very little contrast in in vivo 

MRI due to its thin shape, its automated segmentation is often unreliable. The method 

effectively adapts to the MRI contrast in each case, successfully segmenting the 

hippocampus in all three scenarios. The segmentation based solely on the T1 image 
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accurately captures the global shape of the hippocampus, but often under-segments the 

molecular layer (marked with blue arrows in the figures) and CSF pockets (red arrows), 

which are hardly visible in T1. These features are correctly segmented in the T2 image, 

which, on the other hand, captures the global shape of the hippocampus less accurately than 

the T1 scan, due to its poorer contrast between gray and white matter (see regions marked 

with yellow arrows in the figures). The output based on multimodal MRI data takes 

advantage of the information from both channels to produce a smoother, more accurate 

segmentation that combines the advantages of the T1 and T2 MRI contrasts.

Figure 8 and Figure 9 also show the corresponding manual segmentations from the original 

article (Winterburn, et al., 2013). The agreement between the manual and automated 

segmentations is fair in general, but some differences can be found in the areas where the 

segmentation is poorly supported by the image contrast (e.g., the medial digitation in Figure 

8) and also in the hippocampal regions where our definitions of the subregions and theirs 

disagree. First, some of the labels of our protocol do not exist in their labeling scheme: tail, 

fimbria, GC-DG, HATA, parasubiculum and presubiculum. Second, even though the 

agreement of the protocols is good in the superior part of the hippocampus (see 3D 

renderings in Figure 10), large differences in the definition of the subregions can be 

generally observed in the inferior part: our subiculum is largely part of their CA1, while our 

presubiculum and parasubiculum correspond approximately to their subiculum.

3.3 Quantitative results on ADNI T1/T2 data

In this section, we present segmentation results on a dataset of 30 T2 MRI scans from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The 

ADNI was launched in 2003 by the National Institute on Aging, the National Institute of 

Biomedical Imaging and Bioengineering, the Food and Drug Administration, private 

pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-

private partnership. The main goal of ADNI is to test whether MRI, positron emission 

tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to analyze the progression of MCI and early AD. Markers of 

early AD progression can aid researchers and clinicians to develop new treatments and 

monitor their effectiveness, as well as decrease the time and cost of clinical trials. The 

Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center and 

University of California - San Francisco. ADNI is a joint effort by co-investigators from 

industry and academia. Subjects have been recruited from over 50 sites across the U.S. and 

Canada. The initial goal of ADNI was to recruit 800 subjects but ADNI has been followed 

by ADNI-GO and ADNI-2. These three protocols have recruited over 1,500 adults (ages 55–

90) to participate in the study, consisting of cognitively normal older individuals, people 

with early or late MCI, and people with early AD. The follow up duration of each group is 

specified in the corresponding protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects 

originally recruited for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. 

For up-to-date information, see http://www.adni-info.org.

The choice of the subset of ADNI scans for this analysis was motivated by the fact that these 

are the exact same images that were used in (Mueller, et al., 2013), which includes MCI 
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classification results derived from segmentations produced by a number of automated and 

semi-automated methods, as well as a manual delineation protocol that only considers five 

coronal slices in the body of the hippocampus (Mueller, Schuff, Yaffe, Madison, Miller, & 

Weiner, 2010). Using this dataset enables direct comparison of our results with those from 

(Mueller, et al., 2013). The 30 scans correspond to an acquisition protocol that has recently 

been added to the ADNI study, with the following parameters: TR = 8,020 ms, TE = 50 ms, 

resolution 0.4×0.4×2.0 mm (coronal), 24–30 slices, acquisition time 8 minutes. Of the 30 

scans, 16 correspond to subjects with early MCI (ages 74.3±7.6), and the other 14 to age-

matched healthy controls (ages 70.8±7.2). Since these scans are part of the ADNI, the 

corresponding T1-weighted images (sagittal 3D MPRAGE scans at 1 mm resolution) are 

also available. A sample coronal slice of a T2 scan from ADNI is shown in Figure 11a, and 

a sagittal slice (overlaid on the corresponding T1-weighted scan) in Figure 11b. The sagittal 

slice shows how narrow the field of view of these scans sometimes is, failing to cover the 

whole hippocampus.

To segment these ADNI data, we take advantage of not only the high-resolution T2 images, 

but also the 1 mm isotropic T1 scans, which provide complementary information. On the 

one hand, the T2 data have good contrast between subregions, but large slice separation and 

a narrow field of view. On the other hand, the T1 scans provide isotropic data throughout the 

whole brain – though with little information on the subregions. Therefore, we segment both 

channels simultaneously, i.e., {yi} and {μG} are a 2 × 1 vectors and the covariances {ΣG} 

are a 2 × 2 matrices. The information of the T1 scan is particularly important when the T2 

intensities are missing for some hippocampal voxels due to the limited field of view of the 

T2 scan (as in Figure 11b, where the hippocampal tail is only visible in the T1 scan). In that 

case, the equations for Gaussian parameter optimization in Section 3.1 needs to be modified 

in order to account for this missing information – see details in Appendix A. In this 

experiment, the work resolution is 0.4 mm isotropic – equal to the in-plane resolution of the 

T2 images.

Figure 12 shows slices from automated segmentations of some representative cases in the 

ADNI T1/T2 dataset. When the quality of the scan is good and the molecular layer is visible 

(as in Figure 12b), the model generally produces a good segmentation. However, mistakes 

occur sometimes due to image artifacts. In Figure 12c, CSF and white matter mix in the 

same voxel, making it resemble gray matter (partial volume effect) and thus misleading the 

segmentation algorithm. In Figure 12d, motion artifacts render the molecular layer invisible. 

In such cases, the internal boundaries of the hippocampus are mostly determined by the 

statistical atlas (rather than image intensities), and to a lesser extent by other features such as 

cysts or the hippocampal fissure. Finally, Figure 12e shows an example of when the lower-

resolution T1 is most useful, which is when the field of view of the T2 scan does not cover 

the whole hippocampus. In that case, the algorithm can still produce a seamless, smooth 

segmentation of the whole hippocampal formation.

Direct evaluation of the produced segmentations would require manual delineations for the 

T2 data made with the ex vivo protocol from Section 2.2, which are not available (and would 

be extremely difficult to make due to the lack of resolution). Therefore, we use indirect 

evaluation methods instead, based on assessing the ability of the automatically estimated 
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subregion volumes to discriminate two populations (MCI and elderly controls) in a group 

analysis framework. First, we compute the subregion volumes from the soft segmentations 

with Equation 9. Then, we correct these estimates for age and intracranial volume (ICV) by 

regressing them out with a general linear model. This step is important because the 

subregion volumes are strongly correlated with these two variables, which can easily 

confound the analysis – subjects with large ICV and/or of younger age are expected to have 

larger hippocampi; see for instance (Mueller, Schuff, Yaffe, Madison, Miller, & Weiner, 

2010). Moreover, such correction was used in (Mueller, et al., 2013), so we used this 

correction as well in order to directly compare the results.

Once the corrected volumes have been computed, we compare the volumes of the two 

groups for each subregion independently with unpaired, two-sample t-tests. Since we have a 

strong hypothesis that the volume of the subregions does not increase in MCI or AD (except 

for the fissure, which tends to increase in AD), we can conduct one-tailed tests – for the 

fissure, we just invert the sign of the test. In addition, we also conduct a power analysis in 

which we compute the sample size required by the test to have a poweri of 0.50 – which was 

the value used in (Mueller, et al., 2013) – as well as the power provided by the actual sample 

size of the dataset.

The group analysis of the subregion volumes is summarized in Table 4. The table also 

includes two sets of results reported in (Mueller, et al., 2013): a group analysis for subregion 

volumes derived from the manual segmentation protocol, and another group analysis for the 

volumes given by the semiautomated algorithm from (Yushkevich, et al., 2010). Our 

algorithm finds differences in the left and right CA1, molecular layer, dentate gyrus, CA4 

and whole hippocampus, as well as the left fimbria and CA2/3 region. The manual 

annotations (for which the volumes were left-right averaged) show differences in CA1 and 

dentate gyrus, whereas Yushkevich’s semi-automated method yields significant differences 

in CA1–3 and CA4-DG – also with left-right averaged volumes. Our results are quite 

consistent with theirs, given that their methods do not consider the smaller subregions 

contained in our protocol. In addition, our results show strong consistency with prior work 

using manual and semi-automated segmentation procedures on the same type of images: 

even if direct comparison across studies is not possible due to differences in labeling 

protocols, the differences in CA1, CA4-DG and whole hippocampus have been previously 

described in (Pluta, Yushkevich, Das, & Wolk, 2012), which is based on the method from 

(Yushkevich, et al., 2010). In addition, our algorithm also finds statistically significant 

differences in the molecular layer and fimbria; a decline of the former, which shows great 

discrimination power in both the left and right hippocampus, has been previously described 

in the literature (Kerchner, et al., 2010) (Kerchner, Deutsch, Zeineh, Dougherty, Saranathan, 

& Rutt, 2012).

In order to quantify the impact of the high-resolution T2 scan in the segmentation, we also 

compare the ability of the subregion volumes to discriminate the two groups when they are 

measured with the combined T1/T2 data and when they are derived from the T1 images 

alone. Table 5 displays the p-values of the corresponding t-tests, which show that the 

iDefined as the probability of correctly rejecting the null hypothesis when it is false.
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measurements using both modalities better capture the differences in the subregions between 

the two groups. When only the T1 scans are used, the resolution is insufficient to distinguish 

the molecular layer. In this case, the volumes of the subregions depend largely on the 

volume and shape of the whole hippocampus, which reduces the ability of the individual 

subregions to separate the two groups. Only the fimbria, which is visible at 1 mm resolution, 

seems to provide comparable discrimination power after the high-resolution T2 scan is 

removed from the analysis.

3.4 Quantitative results on standard resolution ADNI T1 data

Here we present results on a dataset of standard resolution scans from the ADNI. The 

dataset consists of 400 baseline T1 scans from the study, for which high-resolution T2 data 

are not available. These scans were acquired with MPRAGE sequences at 1 mm isotropic 

resolution. The MRI data were processed through the standard FreeSurfer pipeline, 

including the current hippocampal subfield module, which is useful to compare the 

segmentations yielded by the in vivo atlas with those produced by the ex vivo atlas we are 

introducing in this study. This hippocampal subfield processing did not complete 

successfully for 17 scans (due to software crashes), which were removed from the analysis. 

The demographics of the remaining 383 subjects are as follows: 56.2% elderly controls (age 

76.1±5.6 years), 43.8% AD patients (age 75.5±7.6); 53.6% males (ages 76.1±5.6), 46.4% 

females (ages 75.9±6.8). The resolution at which we rasterized the atlas and computed the 

segmentation in this experiment was 1/3 mm.

As in Section 3.3, we use the performance in a group analysis as a surrogate for 

segmentation quality. In this case, we validate the segmentation by comparing the subregion 

volumes of AD patients and elderly controls. As in the previous section, the resolution of the 

ADNI T1 scans is insufficient to distinguish the molecular layer, making the segmentation 

much less reliable. Therefore, the volumes of the subregions are largely determined by the 

whole hippocampal volume, such that most subregions show large discriminative power, but 

little differentiation between the subregions is observed. This is illustrated by the results in 

Table 6, which displays effect sizes for each subregion – for both the in vivo and ex vivo 

atlases – measured with Cohen’s d, i.e., the difference between two means divided by the 

standard deviation of the data. We used effect sizes rather than p-values in this experiment 

because, due to the large sample size and strong effect, all p-values were very small and the 

differences between the effects on the subregions were harder to appreciate. Large or very 

large effect sizes are observed for all subregions, except for the hippocampal fissure. The 

effect sizes given by the segmentations based on the in vivo and ex vivo atlases are quite 

similar, even though they are – on average – slightly larger for the ex vivo atlas. The main 

difference between the results of the two atlases is the effect for CA1, which is smaller in 

the in vivo version.

For the reason mentioned above, (i.e., the lack of internal contrast of the hippocampus at 1 

mm resolution), the results in Table 6 must be interpreted with caution. Therefore, we use 

another method to separate the two populations, based on a statistical classifier that 

discriminates the groups using all the subregion volumes simultaneously. The process is the 

following. First, we average the subregion volumes from the left and right hippocampi, as 
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this boosts the power of the analysis without compromising the generalization ability of the 

classifier by increasing the dimensionality of the data. Subsequently, we perform a 

correction for age and ICV, for each subregion independently, in the same way as described 

in Section 3.3. Then, we concatenate all the subregion volumes of each subject into a vector, 

and use it as input to a linear discriminant analysis (LDA) classifier (Fisher, 1936). The use 

of a simple, linear classifier such as LDA ensures that the classification accuracy is mainly 

determined by the quality of the input data (i.e., the subregion volumes) rather than 

stochastic variations in the classifier.

We compared the performance of the segmentations given by the new ex vivo atlas with 

those produced by the in vivo atlas in FreeSurfer v5.3 (we used the “off-the-shelf” 

implementation of the segmentation algorithm). We used two metrics in the comparison: the 

area under the receiver operating characteristic (AUROC) of the classifiers and their 

maximum classification accuracy. The latter is given by the threshold corresponding to the 

“elbow” of the receiver operating characteristic (ROC) curve, i.e., the point closest to 

FPR=0, TPR=1. We used leave-one-out cross-validation to compute the ROC. Significance 

in the difference in AUROCs was assessed with a non-parametric test (DeLong, DeLong, & 

Clarke-Pearson, 1988). In addition, we also compared a classifier based solely on whole 

hippocampal volume, which allows us to quantify the benefit of using the subregion 

volumes with respect to the whole hippocampus. We used two different estimates of the 

volume: the sum of the subregion volumes given by the ex vivo atlas (except for the fissure) 

and the whole hippocampus estimate provided by FreeSurfer’s automated segmentation 

(“aseg”).

The ROC curves for the AD vs. elderly controls discrimination task are shown in Figure 13, 

whereas the areas under the curves and accuracies are displayed in Table 7. The ex vivo atlas 

outperforms the in vivo counterpart, especially around the elbow of the ROC, which is the 

region where a classifier typically operates. The increment in the AUROC is moderate 

(1.4%), but statistically significant (p < 0.02). This indicates that the segmentations based on 

the ex vivo atlas provides more informative estimates of the volumes than those based on the 

in vivo version. Both the in vivo and the ex vivo atlas outperform the whole hippocampal 

segmentations, which yields 82% (“aseg”) and 84% (sum of subregions) classification 

accuracy. The difference in AUROC between the ex vivo atlas and the whole hippocampal 

segmentations is considerable (5.9% and 4.0%, respectively) and statistically significant (p < 

0.01 in both cases). These results indicate that the subregion volumes carry useful 

information, even when the images display limited contrast on the internal subregion 

boundaries. Automated segmentations of a test scan are shown in Figure 14.

4 Discussion and Conclusion

In this paper we have presented the construction of a statistical atlas of the hippocampus at 

the substructure level using a combination of ex vivo and in vivo MRI data. Manual 

annotations of the hippocampal subregions (on ex vivo images) and of the neighboring 

structures (on in vivo data) were combined into a single atlas using a novel algorithm. Using 

Bayesian inference, the constructed atlas can be used to automatically segment the 

hippocampal subregions in in vivo MRI scans. Given thethe generative nature of the 
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framework, the segmentation method is adaptive to MRI contrast and can naturally handle 

multi-contrast inputs. The segmentation algorithm was validated on three publicly available 

datasets with varying MRI contrast and resolution (Winterburn, ADNI T1/T2, and ADNI 

T1). We plan to release the atlas as part of the next release of FreeSurfer, replacing the in 

vivo atlas of the hippocampal subfield module in the current version of the package (v5.3).

The presented atlas improves previous high-resolution atlases of the hippocampus in several 

directions. Compared with the in vivo version, the ex vivo atlas was built upon data of much 

higher resolution, which allowed us to accurately trace the molecular layer with very little 

dependence on geometric criteria. As a consequence, the atlas yields subregion volumes that 

better matched values to previously reported histological studies (Simic, Kostovic, Winblad, 

& Bogdanovic, 1997) (Harding, Halliday, & Kril, 1998). Compared to the ex vivo UPenn 

atlas presented in (Yushkevich, et al., 2009), we have extended their work in four directions. 

First, we have scanned the samples at .13mm isotropic resolution on average, which yields 

voxels four times smaller than those in their atlas. Second, we have modeled a larger number 

of hippocampal structures (13 vs. 5). Third, we have used a greater number of cases (15 vs. 

5). And fourth, our ex vivo atlas models not only the hippocampal formation but also the 

surrounding structures. This is a critical difference, since it enables us to use the atlas in a 

Bayesian framework to directly segment in vivo MRI data of arbitrary contrast properties.

We have tested the ability of the volumes derived from automated segmentations given by 

the atlas to find differences between controls and subjects with MCI and AD. Using high-

resolution T2 data, we can reliably fit the atlas to the internal structure to the hippocampus; 

this was not possible with the previous atlas in FreeSurfer (v5.3 or earlier), which did not 

model the molecular layer. In a group experiment with MCI subjects and controls, our 

method reproduced the results of previous manual and semi-automated methods. Moreover, 

we found differences in the molecular layer and the fimbria, which the aforementioned 

methods do not segment. Since the molecular layer is a thin structure, it is possible that the 

lower volume estimates are due to motion artifacts, to which the MCI group is more 

susceptible. Regarding the fimbria, visual inspection of the images reveals that the 

appearance of this subregion tends to shift towards that of gray matter in aging and AD. It is 

important to note that we cannot conclude from our volumetric analysis whether this is a 

true biological process or the result of motion artifacts.

We also used the atlas to segment standard resolution (1 mm) T1 data. In this case, the 

molecular layer is not visible, and the fitting of the internal structure of the atlas mostly 

relies on the prior information encoded in it. Therefore, volumetric results from individual 

subregions must be interpreted with caution. Still, we hypothesize that the segmentations 

will be very useful as seed and target regions in functional and diffusion MRI studies, in 

which the large voxel sizes make the analysis less sensitive to small segmentation errors. 

Moreover, we have shown that the subregion segmentation carries, despite the lack of 

internal contrast of the hippocampus, useful information that is not conveyed by its whole 

segmentation: the ex vivo atlas significantly outperforms the in vivo atlas in the AD 

classification task, which in turns significantly outperforms the segmentation of the whole 

hippocampus.
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The segmentation algorithm runs in approximately 20 minutes on a desktop computer – 

approximately twice as long when the input consists of two MRI modalities. This is in 

contrast with multi-atlas methods which are currently used in hippocampal subregion 

segmentation – such as (Yushkevich, et al., 2010) – which are intrinsically slow (typically 

10–20 hours) due to the need to nonlinearly register a number of atlases to the test scan. On 

the other hand, our algorithm requires at this point that the data have been processed with 

the standard FreeSurfer pipeline, which takes approximately 10 hours on a single core.

A limitation of the atlas presented in this study is that, even with ultra-high resolution MRI, 

there are boundaries that cannot be seen in the training data, e.g., the interfaces between the 

CA fields along the pyramidal layer of the hippocampus or the CA4/GC-DG interface. This 

remains an open problem in the hippocampal subregion MRI literature, in which the 

discrepancy and variability in subregion definitions remains rather large (Yushkevich, et al., 

2015). This effect can be immediately noticed by comparing the heterogeneous manual 

annotations used in works such as (Yushkevich, et al., 2009) (Yushkevich, et al., 2010) 

(Winterburn, et al., 2013) (Mueller, et al., 2007) (Mueller, Schuff, Yaffe, Madison, Miller, 

& Weiner, 2010) (Van Leemput, et al., 2009) (Wisse, et al., 2012). Another potential 

limitation of the proposed atlas is that it was built from manual delineations in elderly 

subjects only. Therefore, the atlas might include slight hippocampal atrophy that could 

decrease its applicability to studies of younger populations.

Future work will follow three main directions. First, we will evaluate the usefulness of the 

segmentations on 1 mm data as seed and target regions on diffusion and functional MRI 

studies. Second, we plan to extend the atlas to include the hippocampal tail – which will 

require a careful histologic analysis of the autopsy samples – and also other subcortical 

structures of interest, such as the thalamic and amygdaloid nuclei. Due to the generative 

nature of the segmentation framework, we are not constrained to derive the manual 

delineations from MRI data: histology or optical coherence tomography can be used, too 

(Augustinack, Magnain, Reuter, van der Kouve, Boas, & Fischl, 2014) (Magnain, et al., 

2014). And third, we would like to include explicit models of the partial volume effect, as 

partial voluming makes it very challenging to accurately describe thin white matter 

structures such as fimbria, and the molecular layer. In this study, we tackled this problem by 

guiding the image intensity distributions of these structures with hyperparameters derived 

from subject-specific simulations of partial voluming. However, we believe that explicitly 

incorporating the partial volume effect in the model, for instance as in (Van Leemput, Maes, 

Vandereulen, & Suetens, 2003), will further increase the accuracy of our segmentations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix 1

Estimation of Gaussian parameters with missing data

In the segmentation of a multimodal test scan, it can happen that the MRI data for some 

channels are missing at a given voxel (as in Figure 11b or Figure 12e). In that case, the M 

step of the Gaussian parameter estimation (Section 3.1) becomes complicated. Instead, we 

use a generalization of the EM algorithm called “Expectation Conditional Maximization” 

(ECM) (Meng & Rubin, 1993), in which the M step is replaced by two iterative conditional 

maximization (CM) steps that update the means and covariance matrices, respectively. Let 

 and  represent the observed and missing parts of vector yi, respectively; let  and 

 represent the corresponding parts of the mean μG; let  represent the 

corresponding parts of the covariance matrix ΣG; and let  be the part of the 

covariance matrix describing the cross-correlation between the observed and missing 

components of yi. The update of the mean is then:

and the update of the covariance is:
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where ỹi is defined the same way as above, and the matrix Ψ̃i has observed and missing 

parts  and  (with the part describing their 

cross correlation equal to zero). The E step of the ECM algorithm is the same as in the EM 

counterpart, with the difference that the likelihood term is now evaluated as: 

.

In the specific case that the test has two channels and one of them is always observed – 

which is the case of the experiments of the ADNI T1/T2 data in Section 3.3, it can be shown 

(Provost, 1990) that the M step is closed form, which leads to faster convergence of the 

algorithm. In our implementation of the presented Bayesian segmentation algorithm, we use 

these update equations whenever it is possible – including the experiments with the ADNI 

T1/T2 data in this paper.
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Highlights

A highly detailed computational atlas of the human hippocampus built upon ex vivo MRI

Volumes of hippocampal subregions agree well with prior histological studies

Application to Bayesian segmentation of hippocampal subregions from in vivo MRI

The segmentation method is adaptive to MRI contrast and resolution

The atlas and segmentation code will be released as part of FreeSurfer 6.0
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Figure 1. 
sample sagittal (a), coronal (b) and axial (c) slices from the ex vivo data of Case 8. Sample 

sagittal (d), coronal (e) and axial (f) slices from the ex vivo MRI data of Case 14. In (e), two 

regions of the slice are zoomed in to better appreciate the level of resolution of the scan (0.1 

mm). Note that the acquisition of Case 8 was carried out in a bag, whereas Case 14 was 

scanned in a tube.
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Figure 2. 
Eight coronal slices from Case 14 and corresponding manual annotations. The slices are 

ordered from anterior to posterior. Sagittal and axial slices, as well as 3D renderings of the 

manual segmentation are shown in the supplementary material (Figure 15, Figure 16 and 

Figure 17).
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Figure 3. 
In vivo dataset and comparison with ex vivo images. (a) Sagittal slice in vivo. (b) 

Corresponding manual delineation of brain structures; note that the hippocampus (in yellow) 

is labeled as a single entity. (c) Coronal slice in vivo. (d) Corresponding manual delineation. 

e) Close-up of the hippocampus (in yellow) on a sagittal slice in vivo. f) An approximately 

corresponding slice from Case 12 of the ex vivo dataset. (g) Close-up of the hippocampus on 

a coronal slice in vivo. (h) An approximately corresponding slice from Case 12 (ex vivo).
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Figure 4. 
Illustration of the generative model of the manual labels for ex vivo (top) and in vivo 

(bottom) MRI.
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Figure 5. 
corresponding coronal slices (from anterior to posterior) of the label probabilities derived 

from the proposed ex vivo (top two rows) and original in vivo (middle two rows) atlases, as 

well as the UPenn atlas (Yushkevich, et al., 2009) (bottom two rows). For the FreeSurfer 

atlases, the color at each voxel is a linear combination of the colors assigned to the 

substructures, weighted by the corresponding probabilities. For the UPenn atlas, the color 

corresponds to the label with highest probability at each location. The color legend for the 

hippocampal subregions is the same as in Figure 2. The color code for the surrounding 
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structures is displayed in the figure – note that the in vivo atlas uses generic labels for the 

gray matter, white matter and cerebrospinal fluid structures. Sagittal and axial slices of the 

atlases are provided as part of the supplementary material (Figure 18 and Figure 19).
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Figure 6. 
Illustration of the generative model of MRI images (monomodal data).
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Figure 7. 
Sample images (T1 and T2 weighted) and manual segmentations of “subject 1” from 

(Winterburn, et al., 2013). (S1–S4) Sagittal slices, from medial to lateral. (C1–C9) Coronal 

slices, from anterior to posterior. (R1) 3D rendering of manual segmentation, anterior view. 

(R2) 3D rendering, inferior view.
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Figure 8. 
Sample coronal slices of “subject 3” from (Winterburn, et al., 2013), from anterior (left) to 

posterior (right). Top row: T1 image. Second row: T2 image. Third row: segmentation 

computed with the T1 scan. Fourth row: segmentation computed with T2 scan. Fifth row: 

segmentation computed with T1 and T2 scans simultaneously, overlaid on the T2 images. 

Bottom row: manual segmentation from the original study. The red arrow marks a CSF 

pocket, the blue arrows mark the molecular layer, and the yellow arrow marks the medial 

digitation.
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Figure 9. 
Sample sagittal slices of “subject 3” from (Winterburn, et al., 2013), from medial (left) to 

lateral (right). See caption of Figure 8 for an explanation of the different rows. The red 

arrow marks a CSF pocket, the blue arrows mark the molecular layer, and the yellow arrows 

mark segmentation errors in the whole hippocampal shape.
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Figure 10. 
3D renderings of segmentations of the high-resolution T1/T2 data. (a) Manual segmentation 

from (Winterburn, et al., 2013), anterior view. (b) Automated segmentation using T1 and T2 

volume simultaneously, anterior view. (c–d) Inferior view of (a–b).
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Figure 11. 
(a) Coronal slice from T2 scan from ADNI, and close-up of the hippocampi. (b) Sagittal 

slice from a T2 scan from ADNI, overlaid on the corresponding T1 volume. This view 

illustrates the limited field of view of the T2 scans in ADNI. The in-plane resolution of the 

T2 scans is 0.4 mm, and the slice separation is 2 mm. The T1 scans are 1 mm isotropic.
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Figure 12. 
Inputs (T1, T2) and segmentations for five representative cases of the ADNI T1/T2 dataset. 

The resolution of the T1 scans is 1 mm isotropic, whereas the T2 scans have 0.4 mm in-

plane resolution (coronal) and 2 mm slice separation. (a) A cyst being segmented as 

hippocampal fissure. (b) A case with good contrast, well-segmented. (c) A case where the 

partial volume effect has misguided the segmentation, such that part of the lateral ventricle 

(marked by the arrow) is labeled as CA2/3. (d) A case with poor contrast; the internal 

segmentation of the hippocampus is largely determined by the prior. (e) A case in which the 

field of view of the T2 scan does not cover the whole hippocampus; the segmentation of the 

tail relies solely on the T1 data. All slices are coronal except for (e), which is sagittal. More 

slices are displayed in the supplementary material (Figure 22).
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Figure 13. 
ROC curves for the AD discrimination task using a LDA classifier on the hippocampal 

subregion volumes estimated by our ex vivo atlas (FreeSurfer v6.0) and the in vivo atlas 

(FreeSurfer v5.3 and earlier), as well as for discrimination based on whole hippocampal 

volume as estimated by FreeSurfer (“aseg”) and by the ex vivo atlas (adding up the volumes 

of the subregions).
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Figure 14. 
Automated segmentation of the hippocampal subregions of a sample case from the ADNI T1 

dataset (T1-weighted, 1mm isotropic) using FreeSurfer automated segmentation (“aseg”), as 

well as the in vivo and ex vivo atlases. a) Slices of the segmentation. b) 3D renderings of 

their shape. The color map is the same as in Figure 2 and Figure 5.
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Table 2

Protocol for manual segmentation of the ex vivo MRI data.

STRUCTURE DEFINITION

Alveus (beige) The alveus, a white matter structure, covers the hippocampus on the superior rim. It is the white matter 
directly adjacent to the cornu ammonis, not extending separately (such as fimbria). The alveus borders the 
amygdala at the anterior end and fuses with the fimbria/fornix at the posterior end. The alveus extends from 
the floor of the inferior horn of the lateral ventricle until it meets the cerebral white matter where the 
ventricle ends laterally. The alveus is present throughout the rostrocaudal regions of the hippocampus (head, 
body, and tail). The alveus appears dark in FLASH MRI.

Parasubiculum (yellow) The parasubiculum is Brodmann’s area 49. Parasubiculum is considered periallocortex (~5–6 layers) and 
lies on the lower bank of the hippocampal fissure. Parasubiculum is the medial-most of the subicular 
cortices, with presubiculum laterally and entorhinal cortex medially. The parasubiculum is relatively small 
compared to the subiculum and presubiculum. Parasubiculum displays less lamination than presubiculum 
and entorhinal cortex in ex vivo MRI (i.e. superficial layers about the same size, thickness, and contrast as 
infragranular layers).

Presubiculum (dark purple) The presubiculum is Brodmann’s area 27. The presubiculum is periallocortex and has distinct superficial 
layers with a heavily myelinated molecular layer. The presubiculum makes up a large portion of territory on 
the lower bank of the hippocampal fissure in the human brain and extends posteriorly to the retrosplenial 
region. The presubiculum lies between the parasubiculum (medially) and the subiculum (laterally). The 
contrast in presubiculum is heterogeneous, with light and dark contrast in its superficial layer (the lamina 
principalis externa), making it a particularly distinctive pattern in ex vivo MRI. The lamina principalis 
externa of the presubiculum ends at the subiculum.

Subiculum (blue) The subiculum belongs to the allocortex group – three layered cortex with a molecular layer, a pyramidal 
layer and a polymorphic layer. As the light and dark contrast of the presubiculum ends, the subiculum 
begins laterally. The boundary between presubiculum and subiculum is distinct because the subiculum has a 
well-defined pyramidal layer in ex vivo MRI. The pyramidal layer in the subiculum widens (compared to 
presubiculum) and ramps up from a narrow wedge to full-fledged allocortex. The molecular layer appears 
directly superior to the subiculum. It is between presubiculum and subiculum that the cortex simplifies to a 
three-layered cortex. We did not segment the prosubiculum.

CA1 (red) The subiculum transitions into CA1 laterally. CA1 displays light homogeneous contrast for the pyramidal 
layer, similar to the subiculum and other CA fields. The subiculum/CA1 boundary occurs approximately 
where the hippocampus turns upward (at 7 o’clock using the letter C as a representation for the hippocampus 
and radiologic convention for the right side). We labeled the hippocampal molecular layer separately from 
CA1 pyramidal layer because we could distinguish the difference. CA1 continues until the top of the first 
hippocampal fold, where it meets CA2. CA1 dominates at the hippocampal head and lessens in the 
hippocampal body. The uncal (medial) portion of CA1 was included in the CA1 label.

CA2/3 (green) We combined subfields CA2 and CA3 due to lack of distinguishing contrast in MRI and variability among 
our labelers in preliminary experiments. We encountered great variability particularly with the angle of the 
original CA2 label. CA2/3 showed a light intensity and homogeneous contrast as the pyramidal layer in CA1 
but the pyramidal layer of CA2/3 appeared thinner than in CA1. The thickness change between CA1 and 
CA2/3 was a distinguishing feature to delineate these two subfields. When this change was gradual, the 
boundary was placed approximately in the center of the region of varying thickness. CA2/3 extended from 
the posterior half of the hippocampal head to the tail. CA2/3 was typically superior to the dentate gyrus but 
also weaved throughout hippocampal folds. Here, we also labeled the molecular layer in CA2/3 separately 
from the CA2/3 pyramidal layer.

CA4 (light brown) CA4 is also known as the hilar region of the dentate gyrus. Topographically, the CA4 subfield lies within 
the dentate gyrus. Thus, CA4 fills the interior of the GC-DG label. The limit between CA2/3 and CA4 is at 
the entrance of the hilus. The contrast of CA4 has a similar contrast to CA1–3 but lighter contrast for the 
polymorphic layer. Thus, in ex vivo MRI with a FLASH sequence, it appears slightly darker intensity in the 
inner-most portion (i.e. the modified pyramidal area of CA4), but lighter outside of that (i.e. the 
polymorphic cell layer of the dentate gyrus). The ability to distinguish these particular strata depended on 
the brain quality and resolution. We included the polymorphic layer in our CA4 label.

GC-DG: granule cell layer of 
dentate gyrus (cyan)

The dentate gyrus is another three layered structure. The dentate gyrus consists of a molecular layer, a 
granule cell layer and a polymorphic layer. The granule cell layer shows a bright white intensity with a 
FLASH sequence in ex vivo MRI, the intense contrast likely due to the high packing density of the granule 
cells. The molecular layer of the dentate gyrus has dark contrast and was included in the CA4 label because 
we could not always distinguish the stratum. The dentate gyrus begins about one third to halfway through 
the hippocampal head from the rostral-most slices. The shape of the dentate gyrus varies depending on the 
cut plane.
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STRUCTURE DEFINITION

HATA (ligh green) The hippocampus-amygdala-transition-area (HATA) lies in the medial region of the hippocampus and is 
superior to the other subfields. The HATA shows a dark intensity compared to the CA subfields. Its base 
forms the medial and slightly dorsal border of the hippocampus, but this may depend on orientation. We 
consistently observed that the top of the hippocampal folds (i.e. the superior-most folds) were a tangential 
landmark to delineate the HATA inferior boundary. The inferior horn of the lateral ventricle borders the 
medial side of the HATA and the alveus borders the HATA laterally.

Fimbria (violet) The fimbria is a white matter structure that extends from the alveus and eventually forms the fornix. The 
fimbria exits posteriorly the mid-body level of the hippocampus and has the same dark intensity as the 
alveus.

Molecular layer (brown) This label consists of two parts, molecular layer for subiculum or molecular layer for CA fields. The 
molecular layer appears as dark contrast that lies directly underneath the hippocampal fissure and above the 
subiculum. The molecular layer of the hippocampus continues as dark contrast that forms between the CA 
regions and the GC-DG as well as the hippocampal fissure. The molecular layer follows the shape of the 
hippocampal folds.

Hippocampal Fissure (purple) The hippocampal fissure opens up medially and extends laterally until it is a vestigial space between the 
molecular layers of the hippocampus and dentate gyrus. In ex vivo MRI, our scanning liquid 
(paraformaldehyde solution) fills the ventricle as cerebrospinal fluid would in the living brain. Air bubbles 
frequently appear as artifacts in this kind of imaging.

Tail (bright green) The hippocampal tail has not been extensively studied in the neuroanatomical literature yet, so it is difficult 
to make reliable annotations in this region. Instead, we identified the first coronal slice (anterior to posterior) 
where the fornix is fully connected to the hippocampus, and labeled the whole hippocampus with this 
“umbrella” label in the remaining slices (approximately 40).
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iiFor this study, we left out the AD cases and averaged the volumes from the elderly controls only.
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Table 6

Effect sizes (Cohen’s d) of the group analysis for the hippocampal subregion volumes in the AD 

discrimination task. Larger effect sizes correspond to larger differences between the two groups.

STRUCTURES
LEFT RIGHT

Ex vivo In vivo Ex vivo In vivo

Parasubiculum 1.37 1.06

Presubiculum 1.99 1.94 1.80 1.48

Subiculum 1.89 1.78 1.89 1.54

CA1 1.99 0.90 1.82 0.67

CA2/3 1.58 1.39 1.59 1.24

CA4 1.79 1.53 1.80

GC-ML-DG 1.81 1.84

Molecular layer 2.09 2.03

Fimbria 0.60 0.70 0.39 0.67

Hippocampal fissure 0.13 0.15 0.21 0.17

HATA 1.45 1.51

Hippocampal tail 1.71 1.45 1.64 1.24

Whole hippocampus 2.11 1.82 2.08 1.49
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Table 7

Accuracy and area under the curve for the AD discrimination task.

Atlas Accuracy at elbow AUROC

Whole hippocampus (“aseg”, FreeSurfer v5.3) 82.1% 0.887

Whole hippocampus (adding up the volumes of the subregions) 84.0% 0.901

In vivo (FreeSurfer v5.3) 86.3% 0.917

Ex vivo (this study and FreeSurfer v6.0) 88.0% 0.931
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