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Abstract

The quality of fit of sedimentation velocity data is critical to judge the veracity of the 

sedimentation model and accuracy of the derived macromolecular parameters. Absolute statistical 

measures are usually complicated by the presence of characteristic systematic errors and run-to-

run variation in the stochastic noise of data acquisition. We present a new graphical approach to 

visualize systematic deviations between data and model in the form of a histogram of residuals. In 

comparison with the ideally expected Gaussian distribution it can provide a robust measure of fit 

quality and be used to flag poor models.
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Sedimentation velocity (SV) analytical ultracentrifugation has re-emerged in the last decade 

as a popular and powerful physical tool for characterizing nanoscopic particles in a wide 

range of fields, including the study of biological macromolecules and their interactions [1–

5]. This was contributed to, among other factors, by new instrumentation and extended 

detection limits [6–8], theoretical advances in the sedimentation of interacting systems 

[9,10], new sedimentation data analysis approaches [11–16], and new computational 

methods for hydrodynamic modeling [17–19]. Analysis strategies for the global analysis of 

hydrodynamic data and those of other techniques are expected to further enhance the utility 

of SV [20–22].

A critical step in the renaissance of SV has been an advance in the mathematical data 

analysis enabling the direct fitting of raw sedimentation velocity data with explicit models 

based on solutions of the Lamm equation [23], where macromolecular sedimentation 

parameters and/or distributions of parameters are calculated and/or refined in non-linear 
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optimization. An obvious criterion for the quality of fit, and the primary optimization 

objective, is the root-mean-square deviation (rmsd) between experimental data and model.

However, it is not always trivial to judge whether the final best-fit adequately describes the 

data, or whether extended models should be tested. One of the problems is that the rmsd (or 

χ2) of the fit, is not necessarily a reliable absolute measure for the quality of fit, due to the 

common (and sometimes considerable) run-to-run variations in the level of stochastic noise 

of the data. The noise level can depend, for example, on the lamp emission intensity and 

buffer absorption properties at the acquisition wavelength when using the absorbance optical 

system, or on changes in the fringe contrast in the interference optical system, respectively. 

Thus, an important additional criterion for a satisfactory fit is the lack of systematicity of the 

residuals. Ideally they should be completely random; this has been quantified rigorously 

with a runs test [24], where the Z-value reports the number of standard deviations by which 

the runs of positive or negative residuals differ from the expectation for normally distributed 

residuals [24]. This is implemented as a default output of SV analyses in the software 

SEDFIT (https://sedfitsedphat.nibib.nih.gov/software/). But, unfortunately, when applied to 

SV, the Z-value is overly sensitive in practice. Here, it is useful only as a qualitative 

comparative measure of fit quality, since SV data are typically subject to considerably 

systematic errors from data acquisition. For example, even though algebraic noise 

decomposition techniques [25,26] can account explicitly for time-invariant and radial-

invariant signal offsets, respectively, when using the interference optics, fluctuations in the 

radial baseline profiles can occur from vibrational modes or thermal distortions of the 

optical path that are not captured in this baseline model. Although the signals from these 

imperfections in the data acquisition are typically small compared to the macromolecular 

signal, they can still dominate the residuals in conjunction with a good model of the 

sedimentation process. This poses the question which criterion of goodness of fit can be 

used in practice, in addition to the overall rmsd, to examine in a robust way the quality of 

the sedimentation boundary model.

To this end, we have previously introduced and implemented in SEDFIT a picture 

representation of the residuals [27], where the time and radial dimension of the SV data are 

mapped to the row and column number of pixels, respectively, and the magnitude of the 

residual is mapped onto its grey scale (Figure 1C and G). This takes advantage of the superb 

sensitivity of the human eye to recognize patterns, and allows systematic misfits of the 

sedimentation boundary to be identified as diagonal features in a picture that would ideally 

be neutral grey, distinct from vertical and horizontal features that indicate imperfections in 

the TI and RI noise model, respectively [27,28]. Mapping residual values onto the color 

scale in bitmaps solves the problem that a simple overlay of the many radial residual curves 

for all scans at all times will conceal critical systematic misfits of the sedimentation 

boundary, even more so when modeling difference curves [14]. This bitmap representation 

was widely adopted and subsequently utilized also by the software SEDANAL [29] and 

ULTRASCAN [30].

Yet, even though the complete visual inspection of residuals with the bitmap overview is 

extremely useful and provides detailed insight in the origin of misfit, its interpretation is 

entirely qualitative and requires some degree of familiarity with the technique of SV for 
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empirical assessment. It would be desirable to achieve a simpler description that reduces the 

dimensionality of the residuals into a single curve or a single number that reflects in a robust 

way on their systematicity. Therefore, we have developed a residuals histogram, where the 

magnitude of deviation between best-fit model and data, usually comprising 104 – 105 data 

points, are binned (aiming for ~ 102 – 103 data points per bin) and compared to the 

frequency expected for normally distributed noise with the same rmsd (Figure 1D and H). 

The comparison with a normal distribution is further condensed into a number ‘H’, which is 

calculated as the sum of square differences between obtained and ideally expected 

frequencies for a normal distribution, normalized by the sum of squares of the ideal 

frequencies. These measures are complementary to the bitmap and overall rmsd in that they 

display the amplitude of residuals and frequency of larger than average deviations, which 

will be more than normally expected for boundary misfits.

As an illustration, Figure 1 shows two alternative fits of sedimentation velocity profiles of a 

bovine serum albumin sample. The c(s) model (left panels) results in a sedimentation 

coefficient distribution where the BSA monomer and dimer represents 95% of all signal, but 

there are also traces of higher order oligomers and smaller breakdown products (not shown). 

The rmsd is 0.0039 fringes, which is ~ 0.15% of the total signal, in our experience 

representing an excellent fit. However, there is a low level of remaining systematicity in the 

residuals, which may be recognized by a faint diagonal feature in the residuals bitmap (C), 

in addition to weak vertical and horizontal features indicating instabilities in the fringe 

pattern. With the 76,000 data points, the low level of systematicity causes the runs of 

residuals to be already 160 standard deviations removed from the expectation of a normal 

distribution. The residuals histogram is less detailed and shows frequencies deviating only 

little from the normal expectation with H = 0.6%.

For comparison, shown in the right panels is an alternative fit from modeling the data with 

only monomer and dimer species, not accounting for the remaining 5% of trace higher 

oligomers and breakdown products. (Similar simplified descriptions are often required to 

enable direct fits the coupled Lamm equations of interacting systems, which are intrinsically 

discrete models, as opposed to fits with sedimentation coefficient distributions followed by 

boundary structure analysis [31].) Even though the rmsd is more than twofold that of the 

good fit, the poor fit cannot be recognized either directly from inspection of the data fit (E) 

or the residuals overlay (F). The bitmap (G) clearly shows diagonal features corresponding 

to misfits co-localized with the data points of the moving boundary. In the residual 

histogram (H), these misfits are clearly highlighted as the substantial deviation from 

normalcy with an H-value of 3.2%.

We have added the residuals histogram and report of H-values in the default display after 

fits of SV data in the SEDFIT software. When modeling interference data, we found H-

values > 1% to correlate well with inadequate fits. In particular, this value can highlight the 

effect of unaccounted low amplitude boundaries, such as of trace aggregates. However, in 

conjunction with data of lower signal/noise ratio it will be less sensitive to imperfections in 

the model and rather highlight statistical properties of the data acquisition. This, too, can 

offer useful insights in properties of SV data that are otherwise obscured. For example, in 

the application to fluorescence optical data the underlying noise distribution is sometimes 

Ma et al. Page 3

Anal Biochem. Author manuscript; available in PMC 2016 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



not Gaussian but exhibits tails. This makes the quantification by the H-value not as useful, 

but the symmetry and monotonicity of the residual distribution is still a good indicator for 

the quality of fit. In the meantime, the histogram has to be considered in the context of other 

measures for the quality of fit, such as the rmsd.

In conclusion, we found the residuals histogram to provide a useful tool to effectively 

evaluate statistical aspects of data acquisition and fit in a simpler way than bitmaps, robust 

to common instrumental imperfections, and requiring less technical experience.
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Figure 1. 
Fits with two different models for SV data of BSA sedimenting at 50,000 rpm: (A – D) A 

c(s) analysis leads to a good fit with rmsd of 0.0039 fringes (Z-value 160); (E – H) a two 

discrete species model leads to an inadequate fit with rmsd of 0.0081 fringes (Z-value 224). 

The top panels (A, E) show the raw data (points, only every 2nd scan shown) and best-fit 

profiles (lines). Panels B and F are an overlay of the residuals, and C and G are the 

corresponding residual bitmaps (with time indicated by row number, and radius by column 

number of pixel). The residuals histogram is shown in panels D and H, with the grey bins 

indicating the frequency of residuals of a certain magnitude, and the red solid line the ideally 

expected distribution of residuals for normally distributed noise with the same rmsd, leading 

the H-numbers of 0.6% and 3.2%, respectively.
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