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Abstract

Since motor vehicles are a major air pollution source, urban designs that decrease private 

automobile use could improve air quality and decrease air pollution health risks. Yet, the 

relationships among urban form, air quality, and health are complex and not fully understood. To 

explore these relationships, we model the effects of three alternative development scenarios on 

annual average fine particulate matter (PM2.5) concentrations in ambient air and associated health 

risks from PM2.5 exposure in North Carolina’s Raleigh-Durham-Chapel Hill area. We integrate 

transportation demand, land-use regression, and health risk assessment models to predict air 

quality and health impacts for three development scenarios: current conditions, compact 

development, and sprawling development. Compact development slightly decreases (−0.2%) point 

estimates of regional annual average PM2.5 concentrations, while sprawling development slightly 

increases (+1%) concentrations. However, point estimates of health impacts are in opposite 

directions: compact development increases (+39%) and sprawling development decreases (−33%) 

PM2.5-attributable mortality. Further, compactness increases local variation in PM2.5 

concentrations and increases the severity of local air pollution hotspots. Hence, this research 

suggests that while compact development may improve air quality from a regional perspective, it 

may also increase the concentration of PM2.5 in local hotspots and increase population exposure to 

PM2.5. Health effects may be magnified if compact neighborhoods and PM2.5 hotspots are 
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spatially co-located. We conclude that compactness alone is an insufficient means of reducing the 

public health impacts of transportation emissions in automobile-dependent regions. Rather, 

additional measures are needed to decrease automobile dependence and the health risks of 

transportation emissions.
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1. INTRODUCTION

1.1 Background

Globally, ambient air pollution is one of the ten leading causes of premature mortality and 

preventable disease.(1) In urban areas, motor vehicle emissions are a leading air pollution 

source and an important public health risk factor.(2) However, under current practice, 

transportation and urban planners often do not account for air quality-related health effects 

when evaluating alternative transportation infrastructure investments and policies.(3) 

Recently, public health specialists have promoted formal health impact assessment (HIA) as 

a process for encouraging transportation and city planners to consider the health impacts of 

their decisions.(4) Yet, tools to support HIAs of transportation and urban planning projects 

are not readily available or easy to use. Hence, most HIAs of transportation projects have 

employed qualitative assessments.(5) Inadequate understanding of the complex relationships 

linking urban form, air quality, and public health presents a barrier to improved HIA 

practice for transportation projects.

The relationships among urban form, air quality, and health are complex and not fully 

understood. Compact and walkable urban forms have been associated with lower per-capita 

vehicle kilometers travelled (VKT) and thus lower emissions of transportation-related air 

pollutants.(6–13) While one might expect decreases in VKT and the associated air quality 

benefits to improve public health, recent research has raised concerns that compact urban 

forms may increase population exposure to poor air quality and hence elevate incidence 

rates of air-quality-associated illnesses due in part to elevated environmental concentrations 

of pollutants resulting from more compact urban forms.(14–19) Further, while urban form 

interventions, such as increased residential density and land use diversity, have shown 

promise in decreasing transportation-related air pollutant emissions, some studies have 

shown that innovations in the vehicle fleet, such as the adoption of hybrid vehicle 

technology, are more effective policy levers in improving air quality.(18, 19) Previous 

research conducted in our study region has demonstrated the efficacy of vehicle fleet 

innovations in reducing mobile-source emissions but has not considered the effects of urban 

form directly. (20)

To better understand the manner in which urban form, air quality, and public health interact, 

we employ an innovative approach for modeling the relationships between urban form and 

all-cause mortality associated with chronic exposure to fine particulate matter (PM2.5) in 

ambient air. We examine the effects of three alternative land development scenarios—a 
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compact development scenario, a decentralized development scenario, and an intermediate 

scenario representing current conditions—on annual average PM2.5 concentrations in air and 

related health effects in the Raleigh-Durham-Chapel Hill area of North Carolina (NC), a 

region collectively referred to as “The Research Triangle.” Our modeling approach links a 

transportation demand model that predicts automobile traffic patterns to a land use 

regression (LUR) model that predicts PM2.5 concentrations in air. In turn, the LUR model 

links to a health risk assessment model (Figure 1). To our knowledge, this is the first study 

to link a transportation demand model, a LUR model for PM2.5 concentrations, and a health 

risk assessment model to explore how urban development patterns might influence traffic 

patterns, air quality, and public health. The modeling framework we employ may be 

applicable to urban planners, environmental regulators, and public health practitioners in 

other regions considering land-use and transportation policies as means to improve health 

outcomes. This research is timely in providing a further exploration, using a new modeling 

approach, of the relationships among urban form, air quality, and health in a rapidly growing 

area of study.

2. METHODS

2.1 Study Region

The Research Triangle, consisting of Raleigh, Durham, Cary, Chapel Hill, and a number of 

smaller municipalities, is a sprawling urban agglomeration in central NC with a 2010 

population of 1,589,853 spread over 3,380 square miles. (21) Over the past decade, the 

Research Triangle was the second-fastest-growing metropolitan region in the United 

States. (22) Smart Growth America has ranked Raleigh third worst in the United States on an 

index of urban sprawl and as a result the city earned the dubious nickname 

“Sprawleigh.” (23) This rapid growth and sprawling development pattern typify urban areas 

throughout the southeastern United States. The region is highly auto-dependent, with nearly 

90% of trips occurring in private automobiles. (24) 38% of the study area population lives 

within one-half of a mile of a freeway or major arterial. Due in part to automobile emissions, 

the Research Triangle suffers from intermittent poor air quality. In 2010, 117 days were 

recorded with a moderate Air Quality Index and five days were considered “unhealthy for 

sensitive groups.” (25)

2.2 Transportation Demand Model

Transportation planners in the study area use a regional transportation demand model—the 

Triangle Regional Model (TRM)—to predict the number, length, and types of trips in the 

region and the modes (private cars, public transit, and non-motorized) used for each trip. 

These predictions are based on structural features of the built environment, including land-

use patterns and transportation infrastructure, and household socioeconomic data. The TRM 

is a macroscopic model (in other words, it simulates the whole traffic system rather than 

individual vehicles) calibrated using household transportation surveys and validated using 

work trip distributions estimated by the 2000 Census Transportation Planning Package and 

the 2006–2008 American Community Survey. The TRM covers 12 counties and divides the 

study region into 2,678 transportation analysis zones (TAZs)—the geographic units used in 

transportation demand modeling and constructed by the Census Bureau based on census 
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block information. Of the 2,678 TAZs in the study region, 99 are “point TAZs” used to 

represent a single employment node, resulting in 2,579 TAZs with a defined spatial 

extent. (21)

The TRM employs four steps typical of traditional transportation demand models: 1) trip 

generation, 2) trip distribution, 3) mode choice, and 4) trip assignment. The output includes 

estimates of VKT during different time intervals on 19,575 transportation network links in 

the study region. The TRM explicitly models traffic on freeways and major roadways (major 

and minor arterials) between TAZs; however, it does not model traffic on local streets or 

trips that begin and end within the same TAZ. We use the TRM to estimate VKT during the 

weekday morning peak traffic period (6:00 AM–10:00 AM) for the study year (2010). The 

TRM output consists of a line file containing all links in the transportation system and 

accompanying traffic counts per link. While the TRM does not provide uncertainty 

associated with traffic count estimation, we use a coefficient of variation derived in a recent 

study of traffic demand modeling output sensitivity to uncertainties in input variables to 

develop distributions for each TRM output variable (see Appendix 1). (26) The TRM was 

executed using TransCAD version 5.0 build 1880.

2.3 Development Scenarios

We model the impacts of three regional development scenarios on air quality and public 

health: current (base case) conditions plus two alternative scenarios, one emphasizing 

compact development and the other urban sprawl. Rather than projecting growth to the 

future, we consider two alternative presents, given a hypothetical history of different land-

use and transportation policy choices. In effect, this modeling approach enables a controlled 

experiment to test the effects of alternative land use patterns alone on air quality and 

population health. In the sprawl and compact development scenarios, we alter the spatial 

distribution of population and housing while holding constant aggregate population, 

household socioeconomic characteristics, and transportation system infrastructure based on 

2010 data.

Scenario 1—Base Case uses observed land-use, population, and employment data and 

modeled travel patterns in the Triangle in 2010. While the base case contains several dense 

urban cores, the region as a whole is relatively dispersed, with low population densities in 

large portions of the study area, shown in the top left corner of Figure 2. This dispersed land 

use pattern resulted from historic policy choices in the Triangle, including poor investment 

in mass transit, pedestrian, and bicycle infrastructure; limited jurisdictional cooperation in 

enacting land development controls; and strong incentives for economic development in 

suburban research campuses and industrial parks near the region’s geographic center.

Scenario 2—Compact Development emulates how land use in the Triangle might be 

distributed today if growth management and land conservation policies had been 

implemented in the past. Examples of such policies include density incentives, transfer of 

development rights, urban growth boundaries, and targeted investment to concentrate 

growth in urban cores instead of rural areas. To create this scenario, we first calculate the 

base case population density in each TAZ in the study region. We then classify TAZs into 
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quintiles based on population density. Next, we reallocate evenly all households and 

employment locations in TAZs in the two lowest density quintiles across all TAZs in the 

highest two quintiles. The middle quintile is unchanged from the base case. Thus, 

households and workplaces are transferred from non-core areas to urban cores, increasing 

the population and employment density of core urban areas and leaving many non-core areas 

uninhabited. Given the low population density across much of the study region, reallocating 

the lowest density TAZs to existing urban cores increases the average density of already 

dense areas by only a small amount, even though the percentage of the population living in 

high-density TAZs increases substantially, as shown in the map in the top center of Figure 2 

and the histogram of population density in the center of the right-most column of Figure 2. 

Because the density increase in urban cores is modest, this scenario is conservative and may 

understate potential reductions in motor vehicle travel that could occur given more 

aggressive policies to discourage sprawl.

Scenario 3—Increased Sprawl amplifies the “hollowing-out” of urban areas typical of 

post-1950’s urban development in the United States. This scenario represents a history of 

policies supporting increased decentralization, including limited land development controls 

and rapid expansion of utility service areas. To develop this scenario, we first apply a 

density cap of 1,121 persons/mi2 (1.75 persons/acre) – the 60th percentile of TAZ household 

density in the base case. We then relocate all households in TAZs with densities above the 

cap to TAZs with densities below the cap but having non-zero populations in the base case 

without moving employment locations to increase the spatial mismatch between housing and 

employment locations.

Let ρ=1,121 people/mi2 (the density threshold). To reallocate population from TAZs with 

densities above ρ, we employ the following procedure. First, we divide the TAZs into three 

groups: (1) those with density>ρ, (2) those with density≤ρ, and (3) those with zero 

population. Let Mi denote the population in TAZi from within the first group of TAZs. Let 

Rj represent the population that TAZj (from within the second group of TAZs) could receive 

without exceeding a density of ρ. Then for each TAZi in group 1, we remove Mi persons, 

and into each TAZj in group 2, we add an additional number of persons equal to:

(1)

Figure 2 maps the resulting population spatial distributions (left) and histograms of TAZ 

population densities (right) for the three scenarios. In the sprawl scenario, a relatively high 

percentage of the population resides in TAZs with relatively low population densities 

whereas in the compact growth scenario, a much higher percentage of the population lives in 

TAZs with relatively high population density. Comparing the population density histograms 

between scenarios (right), a significant portion of the base case population is shifted to 

higher density TAZs in the compact scenario and to lower density TAZs in the sprawl 

scenario. We enter new TAZ population and employment information into the TRM to 

estimate traffic for each scenario.
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2.4 LUR Model

To quantify the effects of land-use changes on PM2.5 concentrations, we develop and 

calibrate a LUR model for the study region. Previous studies have found that LUR models 

perform well in estimating PM2.5 and other air pollutant concentrations at fine spatial scales, 

with R2 values of 0.6–0.7.(27–32) At fine spatial scales, LUR models have significant 

advantages over more complex chemical transport models due to their computational 

simplicity.(33–35) Additionally, LUR models can represent pollutant spatial heterogeneity 

that may not be accounted for by geostatistical techniques (such as kriging) in cases where 

monitoring station locations mask spatial heterogeneity due to their intentional siting away 

from major local pollution sources. (36) A meta-analysis of studies assessing the spatial 

extent of pollutants from mobile sources found that significant spatial gradients exist in 

PM2.5 concentrations above regional background levels in urban areas. (37) Thus, LUR is an 

appropriate and demonstrated technique to capture expected spatial variations in urban 

PM2.5 concentrations above regional background concentrations.

We rely on previous LUR studies to identify explanatory variables most likely to 

significantly predict PM2.5 concentrations in urban areas. While the study region contains a 

limited number (eight) of fixed-site air quality monitors, studies investigating the region-to-

region transferability of LUR models suggest that observations from as few as ten 

monitoring stations are sufficient to calibrate a LUR model that has previously been 

successfully calibrated in an urban area with similar cultural and regulatory 

environments.(27, 38–40) Furthermore, research suggests that the variation between stations is 

more important for model calibration than the number of stations.(41) While our study region 

contains only one rural monitor, the outcome variable and all explanatory variables tested 

with the exception of industrial land use vary significantly among monitors (Table II).

2.5 Calibration Data

Figure 3 shows the locations of the eight air quality monitoring stations in the study area. 

Seven stations track both PM2.5 and PM10 mass concentration over time, with most stations 

tracking daily concentrations since 1999. The eighth station tracks only PM10 concentrations 

and has records dating back to 1990. Consistent with previously demonstrated methods, 

annual average PM2.5 concentrations are estimated at the latter monitoring station using the 

average PM2.5:PM10 ratio observed at the other seven monitoring stations.(42) Four 

monitoring stations stopped reporting PM2.5 concentrations before 2010, but time series data 

from prior years are available (Table I). For these stations, we developed station-specific 

linear regression models including all available time series data in order to predict 2010 

PM2.5 concentrations. Factors that influence PM2.5 concentrations, including urban form, 

transportation demand, and vehicle fleet characteristics, vary over time; thus, we must 

impute missing 2010 data to capture changes in these factors over time. Table I shows the 

resulting regression models and their significance levels. Three of the four models (monitors 

183-0015, 135-0007, and 063-0001) are statistically significant at the 95% confidence level. 

The fourth model (183-0003) is significant only at the 85% confidence level; however, we 

retain this station due to limited data in the study region. Additionally, cross-validation 

(Section 3.1) showed that inclusion of station 183-003 in the analysis did not significantly 
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change the parameters of our LUR model, supporting the decision to include these data in 

our analysis.

Common explanatory variables in studies predicting PM2.5 concentrations include traffic 

density and/or intensity, land use classification, population density, and elevation.(28–32) 

While these model parameters capture most significant anthropogenic sources of PM2.5, 

they do not capture factors such as the fuel mix (such as the proportion of diesel and 

gasoline vehicles). We fit a linear LUR model to the study area by testing combination of 

the following explanatory variables: weekday AM peak VKT, population density, and total 

industrial land use as defined in the most recent available land use data. (43–49) The value of 

each explanatory variable is calculated within four circular buffers (0.5, 1, 1.5, and 2 km) 

around each monitoring station. Elevation differences between monitoring stations used to 

calibrate the LUR model are minimal, as the last column of Table II shows; therefore we do 

not include elevation as an explanatory variable. While variation in elevation around a 

station may increase vehicle emissions (due to increased emission rates when vehicles travel 

uphill), we did not identify previous LUR studies in the literature that found variation in 

elevation around air quality monitoring stations a significant predictor of annual average 

PM2.5 concentrations. Table II summarizes all explanatory data within all buffer sizes used 

for model calibration.

2.6 Risk Assessment Model

As the first step in assessing the health risks of PM2.5 air pollution under each development 

scenario, we impose a 1 km × 1 km grid containing 9,185 cells over the study area. As 

Figure 1 illustrates, the LUR model predicts annual average PM2.5 concentration, denoted as 

Cik for grid cell k within TAZ i. Then, for each TAZ i, we compute the spatial average 

PM2.5 concentration, denoted as Ci, as the spatially-weighted mean value of the Cik’s. Like 

numerous previous studies quantifying impacts of PM2.5 on health,(42, 50–54) the following 

health impact function translates Ci into an estimate Δyi of the number of premature deaths 

in 2010 in TAZ i attributable to PM2.5:

(2)

Where:

Δyi = Deaths per year attributable to PM2.5 in ambient air in TAZ i

yi0 = Total deaths in TAZ i in the year 2010

AFi = Fraction of deaths attributable to PM2.5 in ambient air in TAZ i

Ci = Annual average PM2.5 concentration in TAZ i (in μg/m3)

RR(Ci) = Relative risk of premature mortality when exposed to PM2.5 at an annual 

average concentration Ci; equal to 1 + 0.06Ci/(10 μg/m3) (from reference 56)

P(Ci) = Probability distribution of population exposure to PM2.5 in TAZ i under the 

scenario being modeled
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P′(Ci) = Counterfactual exposure distribution—assumed to represent the case in which 

all VKT=0

Total deaths from all-cause mortality in 2010 are calculated for each TAZ using 2010 

population and county-level death rates. (55) Because the relative risk function is assumed to 

be linear and the exposure concentration in each TAZ is assumed to be constant across the 

population, equation 2 simplifies to the following:

(3)

Where:

α = LUR model constant, assumed to represent regional background PM2.5 

concentrations

This health risk assessment approach, although the standard approach used in quantifying 

health impacts of PM2.5 in ambient air, makes several important simplifying assumptions. 

First, the approach uses household location as a proxy for exposure. In the epidemiological 

studies that underlie the health impact function in equation 2, exposures at other locations, 

such as workplaces and schools, are averaged across large populations.(56) We assume 

exposures outside the household are similar in our application and thus use household 

exposure as a proxy for total exposure as well, which is common practice in other risk 

assessments of ambient air. (42, 50–54) Finally, we assume that 2010 death rates are 

applicable across all scenarios; the relationship between land use and transportation behavior 

remains stable across all scenarios; population density is uniform within TAZs; and PM2.5 

exposure concentrations are uniform within TAZs.

3. RESULTS

3.1 LUR Model

We calibrate the LUR model using the observed 2010 annual average PM2.5 concentrations 

(where available) or predicted concentrations (where observed data are not available) shown 

in Table I. We test all unique combinations of buffer sizes and explanatory variables to 

maximize the adjusted R2 of the model. Neither acres of industrial land use nor household 

density significantly predicted PM2.5 concentration, regardless of buffer size; thus, they are 

not included in the final model. The final LUR model (adjusted R2=0.80; root mean square 

error =0.61 μg/m3; F1,6=28.4, p=0.0018) for annual average PM2.5 concentrations in the 

study area is:

(4)

Where:

PM2.5 = Predicted annual average PM2.5 concentration, μg/m3
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VKT = Thousands of vehicle-kilometers (VKT) travelled during the AM peak within a 

1,000 meter buffer of the center of the estimation cell, thousands of VKT

Both the model constant (p<0.0001; standard error = 0.445 μg/m3) and the VKT parameter 

(p=0.0011; standard error = 8.89×10−3 μg/m3 per thousand VKT) are statistically 

significant. Due to data limitations previously discussed, the model was calibrated using a 

small sample (n=8). Given the small sample size, we employ a standard leave-one-out cross 

validation (LOOCV) procedure for all monitoring stations to test the robustness of the 

model. The LOOCV shows that the model is quite robust despite limited availability of 

observational data (Table III), with a low root-mean-square error and high correlation 

between predicted and observed concentrations. Extrapolation beyond the range of observed 

independent variable values can be a concern for LUR models. However, in this study, VKT 

values outside the observed range (9.26–88.0) occurred for only 0.6%, 0.7%, and 0.3% of 

the study area in the base case, compact, and sprawl scenarios, respectively. The model is 

limited due to poor variation in industrial land-use around monitoring stations (Table II). 

While the model is unable to capture variation in PM2.5 concentrations attributable to 

industrial or special (e.g., airport) land uses, this limitation is not necessarily relevant given 

the fundamental research aim of investigating how transportation behavior, air quality, and 

health impacts respond to changes in regional land-use patterns.

3.2 PM2.5 Concentrations

In each grid cell, we use the TRM’s traffic volume estimates for each roadway link to 

tabulate total VKT during 6:00–10:00 AM occurring within a 1 km buffer of the centroid of 

the cell and apply the LUR model to estimate annual average PM2.5 concentrations (Figure 

3). As expected based on the LUR model, the highest estimated annual average PM2.5 

concentrations are generally located near significant links in the transportation network: in 

the base case, the highest estimated concentration, 15.0 (9.61–41.3) μg/m3, occurs at the 

intersection of two limited-access highways that provide regional mobility. While the 1 km 

buffer surrounding this grid cell comprises only 0.036% of the total study area, 0.62% of the 

predicted VKT occurs within the same buffer, illustrating how local impacts that may arise 

due to regional transportation patterns.

Estimated PM2.5 concentrations in the compact development scenario are more spatially 

concentrated; however, the region-wide average estimated concentration is nearly identical 

to the base case (Table VI). Thus, while impacts are more localized, region-wide 

concentrations are relatively unchanged despite lower predicted transportation demand. The 

highest estimated concentration of PM2.5 occurs in the same cell as in the base case; 

however, in the compact development scenario, the estimated concentration in this cell 

increases slightly to 15.2 (9.57–48.8) μg/m3 from 15.0 μg/m3. This result is intriguing in that 

potentially conflicting policy goals at the local and regional levels arise: while compact 

development may reduce VKT—and in turn may reduce vehicle emissions—air quality 

issues may become pronounced in specific locations.

Relative to the base case, the sprawl scenario reduces localized impacts; however, the 

region-wide average PM2.5 concentration increases slightly (Table VI). The highest 

estimated concentration of PM2.5 occurs in the same cell as in the base case and the compact 
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development scenario; however, the maximum estimated concentration in the increased 

sprawl scenario decreases to 14.3 (9.30–39.4) μg/m3 from 15.0 μg/m3 in the base case and 

15.2 μg/m3 in the compact development scenario. Thus, while dispersing population across 

the study area reduces the highest predicted PM2.5 concentrations, regional average PM2.5 

concentrations are slightly higher. While not estimated directly, vehicle emissions are an 

important source of PM2.5; therefore, in conjunction with predicted increases in VKT, we 

can infer that the sprawl scenario increases aggregate vehicle emissions relative to the base 

case and compact development scenarios.

Several limitations of the LUR model should be noted. We calibrated the model using 2010 

data and did not consider meteorological data; thus, the model implicitly assumes 2010 

meteorological conditions and can therefore only be used to estimate PM2.5 concentrations 

in 2010. However, this limitation does not affect comparisons between scenarios. 

Additionally, given that LUR is sensitive to the differences in values across space rather 

than the magnitude of values, the spatial distribution of the modeled weekday morning peak 

traffic patterns sufficiently represents the spatial variation in traffic throughout the year. 

Despite these limitations, diagnostics of the LUR model suggest that it captures a large 

amount of observed variation in PM2.5 concentrations given 2010 meteorological conditions.

In all three scenarios, portions of the study area exceed both the EPA standard for annual 

average PM2.5 concentrations (12 μg/m3) and the World Health Organization (WHO) air 

quality guidelines for annual average PM2.5 concentrations (10 μg/m3). (57, 58) The fine-

grained spatial scale of our air quality predictions enables comparisons across scenarios of 

the number of people living in areas that exceed both the EPA and WHO standards for 

annual average PM2.5 concentrations (Table IV). Relative to the base case scenario, compact 

development increases the number of people living in areas above the EPA and WHO 

thresholds by 59,962 and 236,913 persons, respectively, whereas the sprawl scenario 

decreases these numbers by 21,346 and 279,238 persons, respectively. Similarly, the 

compact development scenario increases the total area exceeding the EPA and WHO 

standards by 9.5 mi2 and 13.6 mi2, respectively. In contrast, the sprawl scenario decreases 

the total land area exceeding the EPA standard by 2.5 mi2 but increases the area in 

exceeding the WHO standard by 20.3 mi2 (6.7 mi2 more than in the compact development 

scenario). Thus, while more compact development may result in higher numbers of people 

living in more polluted areas, more dispersed urban forms may decrease the spatial extent of 

relatively higher PM2.5 (i.e., greater than 12 μg/m3) concentrations and increase the spatial 

extent of moderate PM2.5 concentrations (i.e., 10 to 12 μg/m3).

3.2 Attributable Mortality

Figure 4 presents estimated death rates per 100,000 persons attributable to exposure to 

PM2.5 above regional background for all scenarios. For the base case, the model estimates 

47 (5–167) deaths in 2010 associated with PM2.5 exposure (Table VI). In the compact 

development scenario, estimated premature mortality associated with PM2.5 exposure 

increases to 65 (6–220). The compact development scenario increases PM2.5 exposure 

despite a marginal reduction in regional PM2.5 concentrations (Table IV); however, the point 

estimate of associated mortality is within the 95% confidence interval (CI) for the base case. 
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Compared to the base case, population density is relatively higher in areas with higher 

predicted VKT in the compact development scenario despite aggregate reductions in 

transportation demand (Table V). In the sprawl scenario, 31 (2–122) deaths are associated 

with PM2.5 exposure—less than in the base case, but once again within the bounds of the 

95% CI. It is counter-intuitive that sprawling development reduces the point estimate of 

mortality associated with exposure to PM2.5 considering higher predicted regional VKT and 

higher predicted PM2.5 concentrations over much of the study area compared to the base 

case scenarios (Table VI). However, dispersing population reduces household exposure 

enough to counteract the modest increase in the regional PM2.5 concentrations. Table V 

shows that those living in areas with high traffic (TAZs in the highest decile of VKT; last 

row of the table) decrease substantially in the sprawl scenario compared to the base case. In 

contrast, in the compact development scenario, half of the population lives in areas with 

very high traffic.

Across scenarios, the areas with the highest predicted death rate associated with PM2.5 

generally share two characteristics: 1) close proximity major regional transportation 

corridors; and 2) high population density. Thus, while clustering population near 

transportation infrastructure may reduce transportation demand, our study indicates that this 

effect may not be powerful enough to counteract the negative health effects associated with 

concomitant increased exposure to PM2.5. Furthermore, Figure 4 illustrates that regional 

mobility needs may result in highly localized PM2.5 hotspots and, if development is 

clustered along or near the intersections major regional transportation links, highly localized 

health impacts. While this finding is intuitive, the tendency of highly localized health 

impacts to persist despite significant land-use change underscores the need to address 

transportation issues holistically when considering health outcomes.

Several limitations should be considered in interpreting these results. Because we consider 

transportation infrastructure, including public transit, fixed across all scenarios, it is likely 

that the compact development scenario over-predicts VKT. Compact development would 

likely be complemented by increased provision of local and express bus services and 

increased walkability, resulting in shifts to public transit and non-motorized transport 

(cycling and walking) that may not be captured by the TRM. However, this simplification 

likely results in minimal error given the conservative nature of the compact development 

scenario: while the scenario increases population density in urban cores, the magnitude of 

the increase is not necessarily large enough to trigger significant investment in public transit. 

Further, VKT in the sprawl scenario is likely underestimated. Many rural areas have few 

transportation links modeled by the TRM; thus, only a small portion of the redistributed 

rural population may live near a transportation network link with predicted use. Further, the 

TRM does not predict intra-zonal trips and trips on minor roads; thus, short-distance 

motorized and non-motorized trips are likely systematically under-predicted. While the low 

population density in the sprawl scenario likely results in a low number of short non-

motorized trips, it also likely leads to a larger number of short motorized trips that are not 

captured by the TRM, resulting in unaccounted-for VKT from intra-zonal trips that may be 

larger in the sprawl scenario than in the other two scenarios. This effect is magnified in 

TAZs with large geographic extents, which are more heavily populated in the sprawl 

scenario. Additionally, this research does not consider many potential health benefits of 
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compact development, such as increased physical activity from increased walking and 

cycling. While there is emerging interest in characterizing how increased physical activity 

and increased exposure to air pollutants interact to influence health outcomes in urban areas, 

we do not consider these potential interactions. Finally, while the efficacy of vehicle fleet 

characteristics in reducing transportation emissions and improving air quality has been 

demonstrated, (17–19) we do not consider changes in vehicle fleet characteristics. As the 

adoption of improved vehicle technology in the fleet increases over time, the negative health 

impacts associated compact development relative to other urban development patterns will 

likely be reduced. Overall, while this study supports recent findings that compactness may 

exacerbate health impacts, (17–18) these results should be interpreted in the context of studies 

that find positive air quality impacts from other interventions that may require population 

density above certain thresholds, such as increased investment in public transportation, and 

positive health impacts from increased physical activity that may be associated with 

walkable and transit-supportive urban forms. (59)

3.3 Sensitivity Analysis

Because the variables used to predict relationships linking urban form, transportation 

behavior, PM2.5 concentrations, and health are uncertain, our results also are uncertain. To 

consider the effects of uncertainty in key model variables on the results of this research, we 

perform a sensitivity analysis, focusing on four sources of uncertainty: 1) the LUR model 

constant (representing the regional background PM2.5 concentration); 2) the LUR model 

parameter (which predicts how VKT changes affect PM2.5 concentration); 3) estimated 

VKT; and 4) the relative risk of premature mortality for 10 μg/m3 increases in PM2.5 

concentration. We repeat our analysis while varying one of these model input at a time, 

using the upper and lower bounds of the 95% CI for each variable: 8.24 μg/m3–9.13 μg/m3 

for the LUR model constant; 0.0385–0.0562 μg/m3 per thousand VKT for the LUR model 

parameter; the upper and lower bounds of VKT in each TAZ accounting for uncertainty and 

variability (see Appendix 1); and 1.02–1.11 for the relative risk per 10 μg/m3 in PM2.5 

concentration.

Figure 5 shows that the health risk estimates are most sensitive to uncertainty in the relative 

risk parameter. In addition, the estimates are sensitive to assumptions about VKT in each 

TAZ. Nonetheless, the differences among scenarios— the fundamental research question 

being explored—are stable at both the low and high ends of the 95% CIs for these variables. 

By contrast, the LUR model constant and VKT parameter in the LUR model have 

comparatively small effects on the risk estimates. In sum, the sensitivity shows that (1) the 

relative risk function is the greatest source of uncertainty in estimating mortality attributable 

to PM2.5 and (2) the differences among scenarios are generally consistent when random 

model input variables range across their 95% CIs, although the magnitude of these 

differences changes in some instances. This latter finding strengthens the conclusion that 

compact development may exacerbate health impacts if pursued without other strategies to 

reduce automobile dependency.
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4. DISCUSSION

Compact development alone may not be an effective strategy for reducing the health impacts 

of exposure to PM2.5 in urban areas, even though it may reduce regional VKT. If households 

are clustered near significant transportation corridors to achieve compact urban forms, an 

increasing proportion of the population may be exposed to high concentrations of PM2.5 

unless complementary incentives to reduce trip length, encourage use of public and non-

motorized transit, and/or increase the adoption of lower emitting vehicle technologies are 

provided. Thus, other policies should be considered, alone or in conjunction with compact 

development, to reduce the health impacts of transportation— a conclusion consistent with 

studies finding that road pricing strategies may reduce exposure to pollutants in ambient air 

while land development controls may increase exposure and that an urban sprawl land 

development scenario may decrease exposure to pollutants in for individuals who move to 

the urban periphery but increase exposure for individuals who remain in urbanized areas, 

compared to a base case scenario (18, 9) Our findings also support recent literature suggesting 

that neighborhood-scale air quality is an important risk factor for a variety of negative health 

outcomes and that holistic policy approaches are critical in improving health in urban 

areas.(60) While not considered here, if compactness is associated with spatial homogeneity 

of income or races, there is potential for disproportionate impacts on specific populations, 

raising equity and environmental justice concerns. (61)

While our findings support decentralization as a means of reducing air quality-related public 

health impacts in a limited sense, this result must be strongly qualified. Given existing urban 

forms, the relatively slow nature of land use change, and existing large-scale transportation 

infrastructure that supports private automobile mobility, simply avoiding development in 

areas with locally high PM2.5 concentrations due to established regional mobility patterns is 

not a feasible policy option. Further, decentralized development may also decrease 

opportunities for physical activity, increase emissions of pollutants that exacerbate global 

climate change, and diminish ecosystem services with indirect human health benefits via 

increased land consumption—all outcomes that likely have negative impacts on human 

health at both local and global scales.

In a broader sense, an intriguing finding is the potential for counterintuitive outcomes when 

considering human health. The complex relationships that link urban form, transportation 

behavior, air quality, and public health merit continued research to better inform 

policymakers with the goal of improving public health in urban areas. Considering the rising 

use of HIA in the United States, our findings support the integration of quantitative methods 

into HIA practice to untangle complex relationships and elucidate tradeoffs that occur in 

real-world decision-making environments. A second thought-provoking finding is the 

critical role that large transportation infrastructure investments may play in influencing the 

health impacts of transportation in urban areas. Despite significant land-use change across 

scenarios, we find the location of and degree to which PM2.5 hotspots are above regional 

average concentrations remarkably consistent. The consistency of PM2.5 hotspots despite 

significant changes in regional land use is likely attributable to the hierarchal nature of 

transportation systems, which tend to have limited redundancy and funnel large proportions 

of regional traffic through specific network links. Thus, existing transportation infrastructure 

Mansfield et al. Page 13

Risk Anal. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



may play a significant role in characterizing the relationships linking land use, transportation 

behavior, air quality, and public health—and ultimately, constrain the ability of certain 

policy instruments to positively affect public health outcomes. The potential of 

transportation investments to influence how land-use, transportation behavior, and air 

quality interact to health outcomes supports the integration of quantitative HIA into long-

range scenario-planning efforts to test the sensitivity of health outcomes to future land use 

visions in the context of future transportation infrastructure investments.
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Appendix 1. Characterization of Uncertainty and Variability in VKT 

estimates

To consider potential sources of uncertainty and variability in the VKT estimates that 

underlie our LUR model, we consider: 1) VKT uncertainty given uncertain trip generation 

within the TRM; and 2) variability in VKT within groups of similar TAZs.

To account for uncertainty within the TRM, we assume that the uncertainty in the TRM 

output is characterized by a normal distribution having a mean equal to the TRM output and 

a standard deviation equal to the mean multiplied by the coefficient of variation (CV) 

derived by Zhang et al. in a study characterizing the uncertainty in model outputs from a 

four-step transportation demand model using Monte Carlo simulation to account for 

uncertain model inputs (Figure A1).(26)

To account for variability, we first remove all TAZs with zero population and then divide 

the remaining TAZs into quintiles by population density for each scenario. We then 

calculate the CV for each quintile and the zero-population group for each scenario (Table 

A1). We assume that the variability in VKT within each TAZ is characterized by a 

lognormal distribution with a mean equal to the mean predicted by the TRM (adjusted for 

uncertainty) and a standard deviation equal to the mean multiplied by the CV calculated for 

each group of TAZs.

We combine the VKT distributions described above with other model parameters, assuming 

distributions as appropriate, in Analytica (Lumina Decision Systems, Los Gatos, CA) to 

estimate health risks (Figure A1; Table A2). All distributions are truncated as appropriate to 

avoid spurious values in the tails of the distribution (e.g., VKT is truncated to avoid values 

less than zero). We use the VKT distributions obtained from above, combining both 

uncertainty and variability, to estimate PM2.5 in each TAZ using our calibrated LUR model 

(Equation 4). We assume both the model constant and the VKT parameter are normally 

distributed. We then subtract background PM2.5 concentrations from these estimates and 

apply Equation 3, assuming that the RR function is normally distributed.
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Table A1

Summary of TAZs by Quintile of Population Density

Base Case Compact Development Sprawl

Mean VKT C.V. Mean VKT C.V. Mean VKT C.V.

Population Density Quintile

1 37,940 0.53 51,760 0.47 26,002 0.68

2 30,310 0.70 35,944 0.56 33,328 0.61

3 22,767 0.99 31,723 0.68 27,763 0.80

4 14,592 1.38 22,886 0.99 17,612 1.12

5 12,431 1.60 20,280 1.29 14,918 1.28

Zero Pop. TAZs 53,496 0.50 19,164 1.45 50,528 0.50

ALL TAZs 25,439 0.95 27,237 0.99 25,545 0.87

Table A2

Analytica Model Variables

Variable Name Variable Type Specification

TAZ Index Range: 1 – 2,579

Mean VKT (VKT) Discrete; indexed by TAZ TRM outputs (data not shown)

C.V. from Uncertainty (CVU) Discrete 0.4245(26)

S.D. from Uncertainty (SDU) Expression CVU × VKT

VKT with Uncertainty (VKTU) Normal; indexed by TAZ Mean: VKT
S.D.: SDU

C.V. from Variability (CVV) Discrete See Table A1

S.D. from Variability (SDV) Expression CVV × VKTU

VKT (VKTU+V) Lognormal; indexed by TAZ Mean: VKTU
S.D.: CVV

Beta0 (β0) Normal Mean: 8.689
S.D.: 0.555

Beta1 (β1) Normal Mean: 0.0474
S.D.: 0.011

PM Expression; indexed by TAZ β0 + β1 × VKTU+V

PM Above Expression; indexed by TAZ PM – β0

Relative Risk Function Normal Mean: 1.06(56)

S.D.: 0.023

Relative Risk (RR) Expression; indexed by TAZ 1 + ((PM_Above/10)*(RR-1))

Attributable Fraction (AF) Expression; indexed by TAZ (RR-1)/(RR)

Baseline Death Rate (DR) (per 
100,000 persons)

Discrete; indexed by TAZ 2010 Death Rates by County(55) (data not 
shown)

Population (Pop) Discrete; indexed by TAZ TRM input data or scenario specifications 
(data not shown)

Mortality (Mort) Expression; indexed by TAZ AF*Pop*DR/100,000

PM Death Rate (DRPM) (per 100,000 
persons)

Expression; indexed by TAZ Mort/Pop*100,000
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Variable Name Variable Type Specification

Sum of Mortality Expression Sum(Mort,TAZ)

Figure A1. 
Analytica Model Schematic
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Figure 1. 
The modeling approach employed in this research links a transportation demand model 

(Model 1) to a LUR model of PM2.5 concentrations (Model 2) and a health risk assessment 

model (Model 3) to investigate of the effects of urban form on traffic, air quality, and health. 

Dashed lines indicate data used only for calibration of the LUR model.
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Figure 2. 
Population spatial distributions (left) and histograms of population density in TAZs (right) 

for the three scenarios. The compact development scenario moves households from low-

density areas to higher density areas, while the sprawl scenario does the opposite.
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Figure 3. 
Monitoring station locations
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Figure 4. 
Annual average PM2.5 concentrations and attributable mortality for each scenario.
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Figure 5. 
Relative effect of varying each model component from its lower to upper 95% CI value on 

estimated mortality for each scenario
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